Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9575
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMarciano, Allan Felipe
dc.date.accessioned2023-12-21T18:41:45Z-
dc.date.available2023-12-21T18:41:45Z-
dc.date.issued2021-02-04
dc.identifier.citationMARCIANO, Allan Felipe. Metarhizium spp.: seleção de isolados, ação antimicrobiana e eficácia de formulações granulares no controle de Rhipicephalus microplus. 2021. 92 f. Tese (Doutorado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9575-
dc.description.abstractMetarhizium sp. é encontrado no solo e em raízes de plantas e a pastagem é um ambiente propício para o desenvolvimento desse entomopatogeno, tornando a rizosfera de forrageiras e a presença de hospedeiros como o carrapato Rhipicephalus microplus um nicho ecológico ideal. Porém, fatores bióticos e abióticos interferem na persistência fúngica, sendo fundamental selecionar bons isolados, considerar as interações ecológicas com outros microrganismos e formulá-los. Baseado nisso, o presente trabalho apresenta estudos aplicados ao gênero Metarhizium no controle de pragas. Foram avaliados: a tolerância térmica e a capacidade de diferentes isolados do fungo em colonizar tecidos da planta Vigna radiata; a expressão do gene de adesão na planta em diferentes substratos; o efeito antimicrobiano e acaricida do exsudato fúngico; e a eficácia de formulações granulares de microescleródios (MS) e blastosporos (BLS) para o controle R. microplus. No ensaio de tolerância térmica, suspensões conidiais foram expostas a 25ºC, 40°C e 45°C, por 2h, 4h, 8h e 12h, e posteriormente a germinação foi avaliada após incubação por 48h a 25 ± 1°C, para a atividade dos isolados no frio esses foram submetidos à temperatura de 5ºC durante 14 dias, selecionando assim os termotolerantes. Para o estudo de colonização endofítica, sementes, raiz, caule e folha de V. radiata foram tratadas com suspensões de diferentes isolados, e a colonização dos tecidos do vegetal foi avaliada. No ensaio de expressão gênica, após o cultivo do fungo sobre meio mínimo (MM), meio batata dextrose ágar (BDA) e sobre a planta, a expressão do Gene mad2 foi observada. Para avaliar o efeito do exsudato de Metarhizium sp. no carrapato e em bactérias, o líquido resultante da exsudação de colônias foi coletado e a partir do teste de difusão em disco sobre cepas de duas bactérias isoladas do solo e sobre cepas resistentes e sensíveis de Staphylococcus sp. e Escherichia coli foi avaliado. Para o efeito acaricida, o exsudato fúngico foi inoculado nas fêmeas do carrapato e parâmetros biológicos, mortalidade e resposta celular do artrópode foram avaliadas. Por último, no teste de eficácia de formulações granulares de MS e BLS, vasos contendo Urochloa decumbens foram tratados com os grânulos, e posteriormente fêmeas de R. microplus foram introduzidas. Foram avaliados, a mortalidade, o número de larvas infestantes, assim como a persistência do fungo no solo. Quanto aos resultados, no teste de tolerância térmica, todos os isolados de Metarhizium spp testados germinaram mais que 90% após 12h a 40 °C e após a incubação no frio. Foram considerados bons isolados, aqueles que não sofreram variação drástica na germinação ao longo do tempo de exposição. Ao avaliar a capacidade de colonizar V. radiata, todos os isolados testados foram capazes de colonizar raízes, caules e folhas, havendo variação na colonização dos diferentes tecidos. Quando o fungo se desenvolveu sobre a planta o gene mad2 foi mais expresso que em BDA, porem foi no MM que o gene foi mais expresso. O exsudato fúngico foi capaz de inibir o crescimento das cepas resistente e sensível de Staphylococcus spp., e afetou mais as cepas de bactérias isoladas do solo do que as demais quando comparadas entre si. O exsudato também afetou diretamente o carrapato, reduzindo a resposta celular, causando morte e diminuição da postura de ovos. As formulações granulares de M. robertsii mostraram-se eficazes em controlar o carrapato nas condições testadas e o isolado fúngico colonizou a rizosfera da de U. decumbens. Este estudo fornece dados sobre a aplicação de isolados de Metarhizium spp. no solo e contribui para futuras pesquisas e bioprospecção desse microrganismo.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectbiopesticidaspor
dc.subjectcarrapato dos bovinospor
dc.subjectfungo entomopatogênicopor
dc.subjectbiopesticideeng
dc.subjectcattle tickeng
dc.subjectentomopathogenic funguseng
dc.titleMetarhizium spp.: seleção de isolados, ação antimicrobiana e eficácia de formulações granulares no controle de Rhipicephalus micropluspor
dc.title.alternativeMetarhizium spp.: isolates screening, antimicrobial action and granular formulations efficacy in the control of Rhipicephalus micropluseng
dc.typeTesepor
dc.description.abstractOtherMetarhizium sp. species could be found in soil and plant roots, and the pasture is ideal environment for this fungus development, where the plant's rhizosphere and the presence of hosts such as the tick Rhipicephalus microplus make the best ecological niche. However, biotic and abiotic factors interfere on its persistence been essential to select good isolates, consider ecological interactions with other microorganisms, and formulate them. Based on this, the present study considers the applicability of the genus Metarhizium spp. in pest control. Were evaluated: thermal tolerance and the ability of different isolates of the fungus to colonize tissues of the Vigna radiata plant; the antimicrobial and acaricidal effect of fungal exudate; and the effectiveness of granular formulations of microsclerotia (MS) and blastospores (BLS) to control cattle ticks. In the thermal tolerance test, conidial suspensions of the fungus were exposed to 25 ° C, 40 ° C and 45 ° C, for 2h, 4h, 8h and 12h, the germination was evaluated after incubation for 48h at 28 ± 1 ° C, and also the cold activity of the isolates (at 5 ºC for 14 days) were evaluated, based on that, thermal tolerant isolates were selected. For the study of endophytic colonization, seeds, root, stem, and leaf of V. radiata were treated with fungus suspensions, and the colonization of the plant tissues by different isolates was evaluated. In the gene expression assay, after cultivating the fungus on minimal medium (MM), potato dextrose agar (BDA) and on the plant, the expression of the mad2 gene was observed. To assess the effect of Metarhizium sp. exudate on ticks and bacteria, the liquid resulting from colonies exudation was collected. Then, using disk diffusion test, the effect on strains of two bacteria isolated from the soil and on resistant and sensitive strains of Staphylococcus and Escherichia coli was evaluated. For the action on ticks, the fungal exudate was inoculated in tick females and the biological parameters, mortality, and immune response of the arthropod were evaluated. Finally, for the test with MS and BLS granular formulations, pots containing Urochloa decumbens were used and their soil was treated with the granular formulations, where later R. microplus females were introduced and the mortality, the number of larvae obtained in each group, as well as the persistence of the fungus in the soil were evaluated. As regards to the results, in the thermal tolerance test, all Metarhizium spp. isolates tested germinated more than 90% after 12h at 40 °C and after the be cooled, been considered good isolates those that did not suffer drastic variation in germination over the time of exposure. When evaluated the ability to colonize V. radiata, all tested isolates were able to colonize roots, stems, and leaves, with variation in the colonization of different tissues. When the fungus developed on the plant, the mad2 gene was more expressed than in PDA, but it was in the MM that the gene obtained greater expression. The fungal exudate was also able to inhibit the growth of the resistant and sensitive strains of Staphylococcus spp., and it affected more the strains of bacteria isolated from the soil than the others. The exudate also directly affected engorged R. microplus females, reducing the cellular response, causing death, and decreased egg production. The treatment with different concentrations of granular formulations of M. robertsii proved to be effective in controlling the cattle tick under the conditions tested and the fungus isolate colonized U. decumbens rhizosphere. This study provides data about the application of Metarhizium spp. in the soil and contributes to future research, showing the bioprospecting of this microorganism.eng
dc.contributor.advisor1Bittencourt, Vânia Rita Elias Pinheiro
dc.contributor.advisor1ID505.198.676-53por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3888832724995864por
dc.contributor.referee1Bittencourt, Vânia Rita Elias Pinheiro
dc.contributor.referee2Angelo, Isabele da Costa
dc.contributor.referee3Monteiro, Caio Márcio de Oliveira
dc.contributor.referee4Golo, Patrícia Silva
dc.contributor.referee5Mascarin, Gabriel Moura
dc.creator.ID380.818.198-27por
dc.creator.IDhttps://orcid.org/0000-0002-6077-9082por
dc.creator.Latteshttp://lattes.cnpq.br/5815837457381517por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Veterináriapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Veterináriaspor
dc.relation.referencesADAMEK, L. SUBMERSE CULTIVATION OF THE FUNGUS METARRHIZIUM ANISOPLIAE (METSCH.). Folia microbiologica, 10, p. 255-257, 1965/07// 1965. BARELLI, L.; WALLER, A. S.; BEHIE, S. W.; BIDOCHKA, M. J. Plant microbiome analysis after Metarhizium amendment reveals increases in abundance of plant growth-promoting organisms and maintenance of disease-suppressive soil. PLOS ONE, 15, n. 4, p. e0231150, 2020. BEHLE, R. W.; JACKSON, M. A.; FLOR–WEILER, L. B. Efficacy of a Granular Formulation Containing Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) Microsclerotia Against Nymphs of Ixodes scapularis (Acari: Ixoididae). Journal of Economic Entomology, 106, n. 1, p. 57-63, 2013. BERNARDO, C. C.; BARRETO, L. P.; E SILVA, C. d. S. R.; LUZ, C. et al. Conidia and blastospores of Metarhizium spp. and Beauveria bassiana s.l.: Their development during the infection process and virulence against the tick Rhipicephalus microplus. Ticks and Tick-borne Diseases, 9, n. 5, p. 1334- 1342, 2018/07/01/ 2018. BEYS-DA-SILVA, W. O.; ROSA, R. L.; BERGER, M.; COUTINHO-RODRIGUES, C. J. B. et al. Updating the application of Metarhizium anisopliae to control cattle tick Rhipicephalus microplus (Acari: Ixodidae). Experimental Parasitology, 208, p. 107812, 2020/01/01/ 2020. BIDOCHKA, M. J.; KAMP, A. M.; LAVENDER, T. M.; DEKONING, J. et al. Habitat Association in Two Genetic Groups of the Insect-Pathogenic Fungus Metarhizium anisopliae: Uncovering Cryptic Species? Applied and Environmental Microbiology, 67, n. 3, p. 1335-1342, 2001. BISCHOFF, J. F.; REHNER, S. A.; HUMBER, R. A. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia, 101, n. 4, p. 512-530, 2009/07/01 2009. BITTENCOURT, V. R. E. P.; BAHIESE, T. C.; FERNANDES, E. K. K.; E.J., S. Avaliação da ação in vivo de Metarhizium anisopliae (Metschnikoff, 1879) Sorokin, 1883 aplicado sobre Brachiaria decumbens infestada com larvas de Boophilus microplus (Canestrini, 1887) (Acari: Ixodidae). Revista Brasileira de Parasitologia Veterinária, 12, p. 38-42, 2003. BROOKS, M. E.; KRISTENSEN, K.; VAN BENTHEM, K. J.; MAGNUSSON, A. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R journal, 9, p. 400, 2017. BRUCK, D. J. Fungal entomopathogens in the rhizosphere. In: ROY, H. E.;VEGA, F. E., et al (Ed.). The Ecology of Fungal Entomopathogens. Dordrecht: Springer Netherlands, 2010. p. 103-112. CAMARGO, M. G.; GOLO, P. S.; ANGELO, I. C.; PERINOTTO, W. M. S. et al. Effect of oil-based formulations of acaripathogenic fungi to control Rhipicephalus microplus ticks under laboratory conditions. Veterinary Parasitology, 188, n. 1, p. 140-147, 2012/08/13/ 2012. CLIFTON, E. H.; GARDESCU, S.; BEHLE, R. W.; HAJEK, A. E. Asian longhorned beetle bioassays to evaluate formulation and dose-response effects of Metarhizium microsclerotia. Journal of Invertebrate Pathology, 163, p. 64-66, 2019/05/01/ 2019. CORVAL, A. R. C.; MESQUITA, E.; CORRÊA, T. A.; SILVA, C. d. S. R. et al. UV-B tolerances of conidia, blastospores, and microsclerotia of Metarhizium spp. entomopathogenic fungi. n/a, n. n/a. EKESI, S.; MANIANIA, N. K.; LUX, S. A. Effect of soil temperature and moisture on survival and infectivity of Metarhizium anisopliae to four tephritid fruit fly puparia. Journal of Invertebrate Pathology, 83, n. 2, p. 157-167, 2003/06/01/ 2003. FARIA, M. R. d.; WRAIGHT, S. P. Mycoinsecticides and Mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43, n. 3, p. 237-256, 2007/12/01/ 2007. FERNANDES, É. K. K.; KEYSER, C. A.; RANGEL, D. E. N.; FOSTER, R. N. et al. CTC medium: A novel dodinefree selective medium for isolating entomopathogenic fungi, especially Metarhizium acridum, from soil. Biological Control, 54, n. 3, p. 197-205, 2010/09/01/ 2010. FETROW, J.; CADY, R.; JONES, G. Dairy Production Medicine in the United States. Retrieved from the University of Minnesota Digital Conservancy, 38, p. 57-64, 2004/06/18 2005. FERNANDES, É. K. K.; BITTENCOURT, V. R. E. P.; ROBERTS, D. W. Perspectives on the potential of entomopathogenic fungi in biological control of ticks. Experimental Parasitology, 130, n. 3, p. 300-305, 2012/03/01/ 2012. FERNANDES, É. K. K.; RANGEL, D. E. N.; BRAGA, G. U. L.; ROBERTS, D. W. Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation. Current Genetics, 61, n. 3, p. 427-440, 2015/08/01 2015. FERNÁNDEZ -SALAS, A.; ALONSO-DÍAZ, M. A.; ALONSO-MORALES, R. A.; LEZAMA-GUTIÉRREZ, R. et al. Acaricidal activity of Metarhizium anisopliae isolated from paddocks in the Mexican tropics against two populations of the cattle tick Rhipicephalus microplus. 31, n. 1, p. 36-43, 2017. GHINI, R.; MORANDI, M. A. B. Biotic and abiotic factors associated with soil suppressiveness to Rhizoctonia solani %J Scientia Agricola. 63, p. 153-160, 2006. GINDIN, G.; SAMISH, M.; ZANGI, G.; MISHOUTCHENKO, A. et al. The Susceptibility of Different Species and Stages of Ticks to Entomopathogenic Fungi. Experimental & Applied Acarology, 28, n. 1, p. 283- 288, 2002/05/01 2002. HUMBER, R. A. Chapter VI - Identification of entomopathogenic fungi. In: LACEY, L. A. (Ed.). Manual of Techniques in Invertebrate Pathology (Second Edition). San Diego: Academic Press, 2012. p. 151-187. IWANICKI, N. S. A.; PEREIRA, A. A.; BOTELHO, A. B. R. Z.; REZENDE, J. M. et al. Monitoring of the field application of Metarhizium anisopliae in Brazil revealed high molecular diversity of Metarhizium spp in insects, soil and sugarcane roots. Scientific Reports, 9, n. 1, p. 4443, 2019/03/14 2019. JACKSON, A. M.; WHIPPS, J. M.; LYNCH, J. M. Effects of temperature, pH and water potential on growth of four fungi with disease biocontrol potential. World Journal of Microbiology and Biotechnology, 7, n. 4, p. 494-501, 1991/07/01 1991. JACKSON, M. A.; JARONSKI, S. T. Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. Mycological Research, 113, n. 8, p. 842-850, 2009/08/01/ 2009. JACKSON, M. A.; DUNLAP, C. A.; JARONSKI, S. T. Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. BioControl, 55, n. 1, p. 129-145, 2010/02/01 2010. JARONSKI, S. T. Ecological factors in the inundative use of fungal entomopathogens. BioControl, 55, n. 1, p. 159-185, 2010/02/01 2010. JARONSKI, S. T.; JACKSON, M. A. Efficacy of Metarhizium anisopliae microsclerotial granules. Biocontrol Science and Technology, 18, n. 8, p. 849-863, 2008/10/01 2008. LIAO, X.; O’BRIEN, T. R.; FANG, W.; ST. LEGER, R. J. The plant beneficial effects of Metarhizium species correlate with their association with roots. Applied Microbiology and Biotechnology, 98, n. 16, p. 7089-7096, 2014/08/01 2014. LORENZ, S.-C.; HUMBERT, P.; PATEL, A. V. Chitin increases drying survival of encapsulated Metarhizium pemphigi blastospores for Ixodes ricinus control. Ticks and Tick-borne Diseases, 11, n. 6, p. 101537, 2020/11/01/ 2020. MARCIANO, A. F.; GOLO, P. S.; COUTINHO-RODRIGUES, C. J. B.; CAMARGO, M. G. et al. Metarhizium anisopliae sensu lato (s.l.) oil-in-water emulsions drastically reduced Rhipicephalus microplus larvae outbreak population on artificially infested grass. Medical and Veterinary Entomology, n/a, n. n/a, 2020/04/15 2020. MASCARIN, G. M.; JARONSKI, S. T. The production and uses of Beauveria bassiana as a microbial insecticide. World Journal of Microbiology and Biotechnology, 32, n. 11, p. 177, 2016/09/15 2016. MASCARIN, G. M.; KOBORI, N. N.; DE JESUS VITAL, R. C.; JACKSON, M. A. et al. Production of microsclerotia by Brazilian strains of Metarhizium spp. using submerged liquid culture fermentation. World Journal of Microbiology and Biotechnology, 30, n. 5, p. 1583-1590, 2014/05/01 2014. MASCARIN, G. M.; LOPES, R. B.; DELALIBERA, Í.; FERNANDES, É. K. K. et al. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. Journal of Invertebrate Pathology, 165, p. 46-53, 2019/07/01/ 2019. MASTROPAOLO, M.; MANGOLD, A. J.; GUGLIELMONE, A. A.; NAVA, S. Non-parasitic life cycle of the cattle tick Rhipicephalus (Boophilus) microplus in Panicum maximum pastures in northern Argentina. Research in Veterinary Science, 115, p. 138-145, 2017/12/01/ 2017. MESQUITA, E.; MARCIANO, A. F.; CORVAL, A. R. C.; FIOROTTI, J. et al. Efficacy of a native isolate of the entomopathogenic fungus Metarhizium anisopliae against larval tick outbreaks under semifield conditions. BioControl, 2020/03/02 2020. MUNIZ, E. R.; PAIXÃO, F. R. S.; BARRETO, L. P.; LUZ, C. et al. Efficacy of Metarhizium anisopliae conidia in oil-in-water emulsion against the tick Rhipicephalus microplus under heat and dry conditions. BioControl, 65, n. 3, p. 339-351, 2020/06/01 2020. NCHU, F.; MANIANIA, N. K.; HASSANALI, A.; ELOFF, J. N. Performance of a Metarhizium anisopliaetreated semiochemical-baited trap in reducing Amblyomma variegatum populations in the field. Veterinary Parasitology, 169, n. 3, p. 367-372, 2010/05/11/ 2010. OJEDA-CHI, M. M.; RODRIGUEZ-VIVAS, R. I.; GALINDO-VELASCO, E.; LEZAMA-GUTIÉRRREZ, R. Laboratory and field evaluation of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) for the control of Rhipicephalus microplus (Acari: Ixodidae) in the Mexican tropics. Veterinary Parasitology, 170, n. 3, p. 348-354, 2010/06/24/ 2010. PARSA, S.; ORTIZ, V.; GÓMEZ-JIMÉNEZ, M. I.; KRAMER, M. et al. Root environment is a key determinant of fungal entomopathogen endophytism following seed treatment in the common bean, Phaseolus vulgaris. Biological Control, 116, p. 74-81, 2018/01/01/ 2018. PARSA, S.; ORTIZ, V.; VEGA, F. E. Establishing fungal entomopathogens as endophytes: towards endophytic biological control. Journal of visualized experiments : JoVE, n. 74, p. 50360, 2013. PERINOTTO, W. M. S.; ANGELO, I. C.; GOLO, P. S.; QUINELATO, S. et al. Susceptibility of different populations of ticks to entomopathogenic fungi. Experimental Parasitology, 130, n. 3, p. 257-260, 2012/03/01/ 2012. PINHEIRO, J.; BATES, D.; DEBROY, S.; SARKAR, D. et al. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-149, 2020. R CORE TEAM. R: A Language and Environment for Statistical Computing. Versão 4.0.2. Vienna, Austria: R Foundation for Statistical Computing, 2020. RUSSELL, L. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.8, 2020. TERRY, M. T. A Package for Survival Analysis in R. R package version 3.2-3, 2020. SAMISH, M.; GINSBERG, H.; GLAZER, I. Biological control of ticks. Parasitology, 129, n. S1, p. S389-S403, 2004. SAMISH, M.; ROT, A.; MENT, D.; BAREL, S. et al. Efficacy of the entomopathogenic fungus Metarhizium brunneum in controlling the tick Rhipicephalus annulatus under field conditions. Veterinary Parasitology, 206, n. 3, p. 258-266, 2014/12/15/ 2014. SCHEEPMAKER, J. W. A.; BUTT, T. M. Natural and released inoculum levels of entomopathogenic fungal biocontrol agents in soil in relation to risk assessment and in accordance with EU regulations. Biocontrol Science and Technology, 20, n. 5, p. 503-552, 2010/01/01 2010. SINGH, B. K.; DAWSON, L. A.; MACDONALD, C. A.; BUCKLAND, S. M. Impact of biotic and abiotic interaction on soil microbial communities and functions: A field study. Applied Soil Ecology, 41, n. 3, p. 239-248, 2009/03/01/ 2009. VEGA, F. E.; GOETTEL, M. S.; BLACKWELL, M.; CHANDLER, D. et al. Fungal entomopathogens: new insights on their ecology. Fungal Ecology, 2, n. 4, p. 149-159, 2009/11/01/ 2009. WASSERMANN, M.; SELZER, P.; STEIDLE, J. L. M.; MACKENSTEDT, U. Biological control of Ixodes ricinus larvae and nymphs with Metarhizium anisopliae blastospores. Ticks and Tick-borne Diseases, 7, n. 5, p. 768-771, 2016/07/01/ 2016. YANG, H.; QIN, C.-s.; CHEN, Y.-m.; ZHANG, G.-y. et al. Persistence of Metarhizium (Hypocreales: Clavicipitaceae) and Beauveria bassiana (Hypocreales: Clavicipitaceae) in Tobacco Soils and Potential as Biocontrol Agents of Spodoptera litura (Lepidoptera: Noctuidae). Environmental Entomology, 48, n. 1, p. 147-155, 2018. ZHANG, X.; LEI, Z.; REITZ, S. R.; WU, S. et al. Laboratory and Greenhouse Evaluation of a Granular Formulation of Beauveria bassiana for Control of Western Flower Thrips, Frankliniella occidentalis. Insects, 10, n. 2, p. 58, 2019.por
dc.subject.cnpqMedicina Veterináriapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/70435/2021%20-%20Allan%20Felipe%20Marciano.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5915
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-08-23T17:49:08Z No. of bitstreams: 1 2021 - Allan Felipe Marciano.pdf: 2876717 bytes, checksum: a5756537e7ee1a6af3c23b657bd0c52f (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-08-23T17:49:08Z (GMT). No. of bitstreams: 1 2021 - Allan Felipe Marciano.pdf: 2876717 bytes, checksum: a5756537e7ee1a6af3c23b657bd0c52f (MD5) Previous issue date: 2021-02-04eng
Appears in Collections:Doutorado em Ciências Veterinárias

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2021 - Allan Felipe Marciano.pdf2.81 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.