Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9414
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGurgel, Monique de Moura
dc.date.accessioned2023-12-21T18:38:34Z-
dc.date.available2023-12-21T18:38:34Z-
dc.date.issued2016-04-29
dc.identifier.citationGURGEL, Monique de Moura. Processo de ozonólise aplicado ao aproveitamento tecnológico de resíduos de coco verde. 2016. 129 f. Tese (Doutorado em Ciências Ambientais e Florestais) - Instituo de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, 2016.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9414-
dc.description.abstractAnálises químicas e estruturais dos produtos de biomassa tropical tem se tornado um potencial interesse para produção de novos produtos que agreguem valores sustentáveis, dentre eles, os biocombustíveis. Resíduos de coco se tornam promissores pois não competem com a indústria alimentícia e podem ser transformados em um produto de maior valor agregado visto serem de origem lignocelulósica. Nesse contexto, os cocos verdes foram separados entre fibra e parênquima e por conseguinte, caracterizados a nível anatômico para que melhor pudesse ser compreendido a relação do tratamento utilizado para deslignificação; no caso, a ozonólise, assim como as alterações químicas e composicionais da parede celular. Para acessar os carboidratos, a lignina precisa ser removida, portanto foi explorado as mudanças induzidas pelo ozônio sob condições de pH; através adição de ácido acético e hidróxido de sódio, e tempo. O tratamento com ozônio em solução de água biodeionizada foi conduzido em pH 3, 5 e 8 por 2, 4 e 6 horas a temperatura de 25°C. As análises foram realizadas com amostras anteriores e posteriores à reação de ozonólise, investigando as alterações dos polissacarídeos e da lignina com as seguintes técnicas: MEV, Pi-GC/MS, CLAE, FT-IR e TGA. De acordo com a Microscospia eletrônica de varredura e Espectroscopia de infravermelho, foi possível observar a degradação dos componentes estruturais das fibras, em forma de “mola”, a partir de 4 horas de oxidação e alterações nas intensidades das bandas respecivamente. De acordo com a Pi-GC/MS, os derivados da lignina foram identificados e estabelecido uma relação S/G de 0,73 para fibra. O teor de lignina de Klason foi de 26,28% para a fibra e 25,45% para o parênquima. Em visto disso, chegou-se a conclusão que a melhor condição de tratamento com ozônio foi obtido com as fibras sem adição de reagente sob 4 horas de exposição ao agente oxidante, determinado pelo aumento do teor de glicose a 45,96%.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectcarboidratoeng
dc.subjectCoconut fibereng
dc.subjectozone treatmenteng
dc.subjectlignineng
dc.subjectcarbohydrateseng
dc.subjectFibra de cocopor
dc.subjectozonólisepor
dc.subjectligninapor
dc.titleProcesso de ozonólise aplicado ao aproveitamento tecnológico de resísuos de coco verdepor
dc.title.alternativeOzonolysis process applied to the technological use of green coconut wasteeng
dc.typeTesepor
dc.description.abstractOtherThe chemical analysis and structural analyzes of tropical biomass products has become a potential interest for the production of biofuels. Residues from coconut is promising because it doesn`t compete with the food industry and it can be transformed into a higher product added value due the lignocellulosic origin. Green coconuts had been separated between fiber and parenchyma following by anatomical characterization which it could better be understood and visualized the effect of pretreatment delignification; ozonolysis, with the chemical and compositional changes in the cell wall. To access the carbohydrates, lignin must be removed, thus it had been explored the changes induced by ozone under pH conditions; with addition of acetic acid and sodium hydroxide, and treatment time in milli-Q water. The ozonolysis was carried out at pH 3, 5 and 8 for 2; 4 and 6 hours at 25 ° C. Analyses were performed before and after the ozonolysis reaction to investigate the change of polysaccharides and lignin with the following techniques: SEM, Py-GC/MS, HPLC, FT-IR and TGA. With Scanning electron microscope and infrared spectroscopy, it was possible to observe the degradation of structural components of the fibers, in the form of "spring", from 4 hours of oxidation and changes in the intensities of the bands. According to the Py-GC/MS results, compounds resulting from lignin had been identified and stablished S/G ratio as 0,73. With a lignin Klason content of 26.28% from green coconut fiber and 25.45% from parenchyma. The best conditions of ozone treatment were determined to be the fiber with no addition of reagents for 4 hours under oxidation as determined by the increase of glucose content in the hydrolysate to 45.96 % after acid hydrolysis of ozone treated fibers.eng
dc.contributor.advisor1Lelis, Roberto Carlos Costa
dc.contributor.advisor1ID497.049.906-34por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5175502780570226por
dc.contributor.advisor-co1Stevanovic, Tatjana
dc.contributor.advisor-co2castro, Rosane Nora
dc.contributor.advisor-co2ID9580673374por
dc.contributor.advisor-co2Latteshttp://lattes.cnpq.br/5479814788308057por
dc.contributor.referee1Muniz, Graciela Inês Bolzon de
dc.contributor.referee2Lopes, Claudio Rocha
dc.contributor.referee3Garcia, Rosilei A.
dc.contributor.referee4Nascimento, Alexandre Miguel do
dc.creator.ID105.090.647-01por
dc.creator.Latteshttp://lattes.cnpq.br/0048844467110922por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Florestaspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Ambientais e Florestaispor
dc.relation.referencesABREU, H. DOS S. Determinação do teor de lignina por espectroscopia no infravermelho por transformada de Fourier para as madeiras de Lophantera lactescens, Gallesia gorazema, Peltogyne paniculata, Aspidosperma macrocarpum e A. polyneuron. Revista Universidade Rural – Série Ciência da Vida, Vol. 17 (1) : 45 – 49.1995. ABREU, H. S., NASCIMENTO, A. M. & MARIA, M. A. Lignin structure and wood properties, Wood and Fiber Science, V. 31, n. 4, p.426-433, 1999. AL JIBOURI, A. K. H. et al. Ozone pretreatment of humid wheat straw for biofuel production. Energy Science & Engineering, v. 3, n. 6, p. 541–548, 2015. ALAVEZ-RAMIREZ, R. et al. Thermal conductivity of coconut fibre filled ferrocement sandwich panels. Construction and Building Materials, v. 37, p. 425–431, 2012. ALAWAR, A.; HAMED, A. M.; AL-KAABI, K. Characterization of treated date palm tree fiber as composite reinforcement. Composites Part B: Engineering, v. 40, n. 7, p. 601–606, 2009. ALI, M. et al. Mechanical and dynamic properties of coconut fibre reinforced concrete. Construction and Building Materials, v. 30, p. 814–825, 2012. ALMEIDA, E.; ASSALIN, M.R.; ROSA, M.A.) Tratamento de efluentes industriais por processos oxidativos na presença de ozônio. Química Nova, São Paulo, vol. 27 (5) : 818 – 824, 2004. ÁLVAREZ-MOZOS, J. et al. Evaluation of erosion control geotextiles on steep slopes. Part 1: Effects on runoff and soil loss. Catena, v. 118, p. 168–178, 2014. ARAGÃO, W. M. Embrapa Tabuleiros Costeiros Sistemas de Produção. Cultivares de coqueiro. 2007. Disponível em: < https://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Coco/ACulturadoCoqueiro/cultivares.htm>. >. Acesso em: 08 fev. 2016. ASASUTJARIT, C. et al. Materials and mechanical properties of pretreated coir-based green composites. Composites Part B: Engineering, v. 40, n. 7, p. 633–637, 2009. ASGHER, M.; AHMAD, Z.; IQBAL, H. M. N. Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Industrial Crops and Products, v. 44, p. 488–495, 2013. ASSOCIAÇÃO BRASILEIRA DE PRODUTORES DE FLORESTAS PLANTADAS. Anuário Estatístico da ABRAF 2009 – Ano base 2008. BAILEY, P. S. Ozonation in Organic Chemistry. Nonolefinic Compounds. [s.l: s.n.]. v. 39, 1982. BHATNAGAR, A. et al. Coconut-based biosorbents for water treatment — A review of the recent literature. Advances in Colloid and Interface Science, v. 160, n. 1-2, p. 1–15, 2010. 123 BENASSI, A. C.; RUGGIERO, C.; MARTINS, A. B. G.; SILVA, J. A. A.Caracterização biométrica de coqueiro Cocos nucifera L. variedade Anã Verde, em diferentes estádios de desenvolvimento. Revista Brasileira de Fruticultura,Jaboticabal, v. 29, n. 2, p. 302-307, 2007. BLEDZKI, A. K.; MAMUN, A. A.; VOLK, J. Barley husk and coconut shell reinforced polypropylene composites: The effect of fibre physical, chemical and surface properties. Composites Science and Technology, v. 70, n. 5, p. 840–846, 2010. BREBU, M.; VASILE, C. Thermal degradation of lignin—a review. Cellulose Chemistry & Technology, v. 44, n. 9, p. 353–363, 2010. BRÍGIDA, A. I. S. et al. Effect of chemical treatments on properties of green coconut fiber. Carbohydrate Polymers, v. 79, n. 4, p. 832–838, 2010. BULE, M. V.; GAO, A. H.; HISCOX, B.; CHEN, S. Structural Modification of Lignin and Characterization of Pretreated Wheat Straw by Ozonation. J. Agric. Food Chem. 61, 3916−3925. 2013. CABALLERO, J. A. et al. Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. Journal of Analytical and Applied Pyrolysis, v. 42, n. 2, p. 159–175, 1997. CABANE, M.; AFIF, D.; HAWKINS, S. Lignins and Abiotic Stresses. 1. ed. [s.l.] Elsevier Ltd., 2012. v. 61 CALADO, V.; BARRETO, D. W.; D’ALMEIDA, J. R. M. The effect of a chemical treatment on the structure and morphology of coir fibers. Journal of materials Science Letters, p. 2151–2153, 2000. CARRIJO, O. A.; LIZ, R. S.; MAKISHIMA, N. Fibra da casca de coco verde como substrato agrícola. Horticultura Brasileira, Brasília, v.20, n. 4, p. 533-535, 2002. CARVALHO, K. C. C.; MULINARI, D. R.; VOORWALD, H, J. C.; CIOFFI, M. O. H. Chemical modification effect on the mechanical properties of hips/coconut fiber composites. Bioresources, v. 5, n. 2, p. 1143-1155, 2010. CHILD, R. Coconuts. 2. ed. London: Longman, 1974. 335 p. DEMIRBAS, M. F.; BALAT, M.; BALAT, H. Potential contribution of biomass to the sustainable energy development. Energy Conversion and Management, v. 50, n. 7, p. 1746–1760, 2009. DIXON, R.; WANG, Z. Lignin Deposition and Associated Changes in Anatomy , Enzyme Activity , Gene Expression , and Ruminal Degradability in Stems of Tall Fescue at Different Developmental Stages. n. February 2016, 2002. CUENCA, M. A. G. Embrapa Tabuleiros Costeiros Sistemas de Produção. Importância econômica da cocoicultura no Brasil. 2007. Disponível em: < https://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Coco/ACulturadoCoqueiro/importancia.htm>. Acesso em: 08 fev. 2016. 124 DA SILVA, M.R.; DA SILVA, F.J. O papel do ozônio na remoção dos ácidos hexenurônicos e na deslignificação, durante o branqueamento ECF de polpa kraft de eucalipto. 35º Congresso e Exposição Anual de Celulose e Papel – São Paulo, 1 – 12. 2002. DAVIN, L. B.; LEWIS, N. G. Lignin primary structures and dirigent sites. Current Opinion in Biotechnology, v. 16, n. 4, p. 407–415, 2005. EFFLAND, M. J. Modified procedure to determine acid-insoluble lignin in wood and pulp. Tappi, V.60, n. 10. p. 143-144, 1977. Esau, K. Anatomy of Seed Plants. New York: John Wiley & Sons, 1977. ETIM, U. J.; UMOREN, S. A.; EDUOK, U. M. Coconut coir dust as a low cost adsorbent for the removal of cationic dye from aqueous solution. Journal of Saudi Chemical Society, 2012. FAO 2011. World Production. Disponível em: < http://faostat.fao.org/ >. Acesso em: 05 jul. 2013. FAOSTAT. Statistics Division. Production. Crops. Coconut. Disponível em: <http://faostat3.fao.org/download/Q/QC/E>. Acesso em: 03 fev. 2016. FAGERSTEDT, K. et al. Determining the Composition of Lignins in Different Tissues of Silver Birch. Plants, v. 4, n. 2, p. 183–195, 2015. FERNANDA, L.; CASTILHOS, F. DE. Aproveitamento da fibra de coco. 2011. FONTES, H. R.; FERREIRA, J. M. S.; SIQUEIRA, L. A. Sistema de Produção para a Cultura do Coqueiro. p. 63, 2002. FREMOND, Y.; ZILLER, R.; NUCE de LAMOTHE, M. de. El cocotero: técnicas agrícolas y producciones tropicales. Barcelona: Editorial Blume, 1975. 236 p. GARCÍA-CUBERO, M. T., GONZÁLEZ-BENITO, G., INDACOECHEA, I., BOLADO, M. C., BOLADO, S. Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresource Technology. N.100, 1608–1613.2009. GAUTAM, R. K. et al. Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. Journal of Environmental Chemical Engineering, v. 2, n. 1, p. 239–259, 2014. GODSAY, M.P. Ozone-cellulose studies: Physico-chemical properties of ozone oxidized cellulosic and lignocellulosic materials. New York: University Microfilms International, 239 p. Tese de Doutorado em Ciência e Engenharia de Polímeros. 1985. GOGATE, P.R.; PANDIT, A.B. A review of imperative technologies for wastewater treatment: oxidation technologies at ambient conditions. Advances in Environmental Research, Amsterdã, Vol. 8 : 501 – 551.2004. 125 GONZALEZ, M. H. et al. Coconut coir as biosorbent for Cr(VI) removal from laboratory wastewater. Journal of Hazardous Materials, v. 159, n. 2-3, p. 252–256, 2008. HATFIELD, R.; FUKUSHIMA, R. S. Can lignin be accurately measured? Crop Science, v. 45, n. 3, p. 832–839, 2005. HORVATH, A. L. Solubility of Structurally Complicated Materials: I. Wood. Journal of Physical Chemistry, Vol. 35 (1) : 77-92. 2006. HU, Z. Elucidation of the structure of Cellulolytic Enzyme Lignin from Loblolly Pine (Pinus Taeda). Thesis Submited to the Graduate Faculty of North Carolina State University in partial fulfillment of the degree of Master of Science. 2006. IBGE. Produção Agrícola Municipal. Disponível em: <http://www.sidra.ibge.gov.br/bda/tabela/protabl.asp?c=1613&z=p&o=25&i=P>. Acesso em: 5 jul. 2013. IBGE. Produção Agrícola Municipal. Disponível em: <htttp:www.sidra.ibge.gov.br/bda/pesquisa>. Acesso em: 05 de fev. 2016. JAYARAMUDU, J.; GUDURI, B. R.; VARADA RAJULU, A. Characterization of new natural cellulosic fabric Grewia tilifolia. Carbohydrate Polymers, v. 79, n. 4, p. 847–851, 2010. JERONIMO, C. E. M. Tecnologias limpas aplicadas a gestão dos resíduos do coco. Revista Qualidade Emergente, 2012, v.3 n.1: 20-29. JERONIMO, C. E. M.; COELHO, M. S. Sensibilidade do estudo de viabilidade técnico-econômica de uma agroindústria de processamento de coco. Revista Economia e Desenvolvimento, n. 24, vol. 1, 2012. JØRGENSEN, H.; KRISTENSEN, J. B.; FELBY, C. Enzymatic conversion of lignocellulose into fermentable sugars: Challenges and opportunities. Biofuels, Bioproducts and Biorefining, v. 1, n. 2, p. 119–134, 2007. KAKKAR, S.; BAIS, S. A review on protocatechuic Acid and its pharmacological potential. ISRN pharmacology, v. 2014, p. 952943, 2014. KHALIL, H. P. S. A.; ALWANI, M. S.; OMAR, A. K. M. Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources, v. 1, n. 2, p. 220–232, 2006. KHAN, G. M.A & ALAN, M.D.S. Thermal characterization of chemically treated coconut husk fiber. Indian Journal of Fiber Textile Reseach. v.37. pp.20-26. 2012. KIM, J. S.; LEE, Y. Y.; KIM, T. H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, v. 199, p. 42–48, 2015. KIM, S.; DALE, B. E. Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy, v. 26, n. 4, p. 361–375, 2004. 126 KOBAYASHI, M.; ASANO, T.; KAJIYAMA, M.; TOMITA, B. Effect of ozone treatment of wood on its liquefaction. Journal Wood Science, Vol. 51 : 348 – 356. 2005. KUNZ, A.; PERALTA-ZAMORA, P. Novas tendências no tratamento de efluentes têxteis. Química Nova, São Paulo, Vol. 25 (1) : 78 - 82. 2002. KUMAR, N.; PRUTHI, V. Potential applications of ferulic acid from natural sources. Biotechnology Reports, v. 4, n. 1, p. 86–93, 2014. KURODA, K. I.; OZAWA, T.; UENO, T. Characterization of sago palm (Metroxylon sagu) lignin by analytical pyrolysis. Journal of Agricultural and Food Chemistry, v. 49, n. 4, p. 1840–1847, 2001. LERTWATTANARUK, P.; SUNTIJITTO, A. Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications. Construction and Building Materials, v. 94, p. 664–669, 2015. LIYANAGE, C. D.; PIERIS, M. A Physico-Chemical Analysis of Coconut Shell Powder. Procedia Chemistry, v. 16, p. 222–228, 2015. LIN, S. Y. & DANCE, C. W. Methods in lignin chemistry. Springer, Berlim Heidelberg New York, 1992. MABEE, W. E.; MCFARLANE, P. N.; SADDLER, J. N. Biomass availability for lignocellulosic ethanol production. Biomass and Bioenergy, v. 35, n. 11, p. 4519–4529, 2011. MACEDO, I. C. The current situation and prospects for ethanol. ESTUDOS AVANÇADOS, v. 21, n.59, 2007. MAHADEVAN, N.; KAMBOJ, S.; KAMBOJ, P. Hibiscus sabdariffa Linn . – An overview. Natural Product Radiance, v. 8, n. 1, p. 77–83, 2009. MAMLEEVA, N. A.; AUTLOV, S. A.; FIONOV, A. V.; BAZARNOVA, N. G.; LUNIN ,V. V. The Oxidative Destruction of Lignin in the Ozonation of Wood, Russian Journal of Physical Chemistry A, , Vol. 83, No. 5, pp. 745–751, 2009. MANCUSO, C.; SANTANGELO, R. Ferulic acid: Pharmacological and toxicological aspects. Food and Chemical Toxicology, v. 65, p. 185–195, 2014. MARQUES, A. R. et al. Effects of the climatic conditions of the southeastern Brazil on degradation the fibers of coir-geotextile: Evaluation of mechanical and structural properties. Geotextiles and Geomembranes, v. 42, n. 1, p. 76–82, 2014. MARTINS, C. R.; ALVES, L.; JÚNIOR, D. J. comércio internacional - Panorama 2010 Panorama 2010. 2011. MARTINS, C. R.; JESUS JUNIOR, L. A. D. Produção e Comercialização de Coco no Brasil Frente ao Comércio Internacional: Panorama 2014. p. 53, 2014. 127 MARTINS, C. R.; JÚNIOR, L. A. J. Evolução da produção de côco no Brasil e o comércio internacional : panorama 2010. Embrapa Tabuleiros Costeiros – Aracaju, 2011. MATOS, D. A. et al. Cell Walls and the Developmental Anatomy of the Brachypodium distachyon Stem Internode. v. 8, n. 11, 2013. MATTOS, A. L. A. et al. Beneficiamento da casca de coco verde. Embrapa Agroindústria Tropical, Fortaleza, p. 37, 2011 MCLEAN, J. P. et al. Using NIR and ATR-FTIR spectroscopy to rapidly detect compression wood in Pinus radiata. Canadian Journal of Forest Research, v. 44, n. March 2016, p. 820–830, 2014. MINTOROGO, D. S.; WIDIGDO, W. K.; JUNIWATI, A. Application of Coconut Fibres as Outer Eco-insulation to Control Solar Heat Radiation on Horizontal Concrete Slab Rooftop. Procedia Engineering, v. 125, p. 765–772, 2015. MOHAN, D.; PITTMAN, JR., C. U.; STEELE, P. H. Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy & Fuels. V. 20, p. 848-889, 2006. MORAIS, A.A. Uso de ozônio como pré e pós-tratamento de efluentes da indústria de celulose Kraft branqueada. UFV – Dissertação apresentada à Universidade Federal de Viçosa como parte das exigências do Programa de Pós-Graduação em Engenharia Civil, para obtenção do título de Mestre. 2006. MOREIRA-VILAR, F. C. et al. The Acetyl Bromide Method Is Faster, Simpler and Presents Best Recovery of Lignin in Different Herbaceous Tissues than Klason and Thioglycolic Acid Methods. PLoS ONE, v. 9, n. 10, p. e110000, 2014. NASCIMENTO, D. M. DO et al. A comprehensive approach for obtaining cellulose nanocrystal from coconut fiber. Part I: Proposition of technological pathways. Industrial Crops and Products, n. JANUARY, 2016. NASCIMENTO, E. A. et al. Ozonólise das ligninas organossolve e kraft eucalipto. Parte II: Cinética nos meios ácido e básico. Quimica Nova, v. 21, n. 5, p. 578–583, 1998. NOVAK, A. C.; SYDNEY, E. B.; SOCCOL, C. R. Biotransformation of Waste Biomass into High Value Biochemicals. [s.l: s.n.]. NUNES, M. U. C. Fibra e pó da casca de coco: produtos de grande importância para a indústria e a agricultura. In: ARAGÃO, W. M. (Ed.). Coco pós-colheita. Brasília: EMBRAPA, 2002. p. 66-71. (Série Frutas do Brasil, 29). PASSOS, E. E. M. Ecofisiologia do coqueiro. In: FERREIRA, J.M. S.; WARWICK, D. R. N.; SIQUEIRA, L. A. (Ed.). A cultura do coqueiro no Brasil. 2. ed. Aracaju: Embrapa SPI, 1998. p. 65-72. PASSOS, E. E. M. Embrapa Tabuleiros Costeiros Sistemas de Produção. Exigências climáticas do coqueiro. 2007. Disponível em: < 128 https://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Coco/ACulturadoCoqueiro/exigencias.htm>. Acesso em: 08 fev. 2016. PEREIRA, J.C.D.; STURION, J. A.; HIGA, R.C.V.; SHIMIZU, J.Y (2000). Características da Madeira de algumas espécies de eucalipto plantadas no Brasil. Colombo. Embrapa florestas, 113 p. POKE, F. S.; VAILLANCOURT, R., E.; POTTS, B. M.; REID. J.B. (2005).Genomic research in Eucalyptus. 125: 79-101. RAVINDRAN, R.; JAISWAL, A. K. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities. Bioresource technology, v. 199, p. 92–102, 2015. RENCORET, J., RALPH, J., GUTIÉRREZ , A., MARTÍNEZ, A. T., MARQUES, G., DEL RIO, J. C. Structural characterization of lignin isolated from coconut (Cocos nucifera) coir fibers. Journal of Agricultural and Food Chemistry. n. 61 pp.2434-2445, 2013. ROBIL, J. L. M.; TOLENTINO, V. S. Histological localization of tannins at different developmental stages of vegetative and reproductive organs in Medinilla magnifica (Melastomataceae). Flora, v. 217, p. 82–89, 2015. ROSA, M. F. et al. Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites. Bioresource Technology, v. 100, n. 21, p. 5196–5202, 2009. ROSA, M. F. et al. Cellulose nanowhiskers from coconut husk fibers : Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers, v. 81, n. 1, p. 83–92, 2010. ROSLI, N. A.; AHMAD, I.; ABDULLAH, I. Isolation and characterization of cellulose nanocrystals from agave angustifolia fibre. BioResources, v. 8, n. 2, p. 1893–1908, 2013. ROWELL, R. M.; HAN, J. S.; ROWELL, J. S. Characterization and Factors Effecting Fiber Properties. Natural Polymers an Agrofibers Composites, p. 115–134, 2000. SADEEK, S. A. et al. Metal adsorption by agricultural biosorbents: Adsorption isotherm, kinetic and biosorbents chemical structures. International journal of biological macromolecules, v. 81, p. 400–409, 2015. SÁNCHEZ, Ó. J.; CARDONA, C. A. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, v. 99, n. 13, p. 5270–5295, 2008. SANT’ANNA, C. et al. Sugarcane cell wall structure and lignin distribution investigated by confocal and electron microscopy. Microscopy Research and Technique, v. 76, n. 8, p. 829–834, 2013. 129 SAVY, D. et al. Water-soluble lignins from different bioenergy crops stimulate the early development of maize (Zea mays, L.). Molecules, v. 20, n. 11, p. 19958–19970, 2015. SAREENA, C.; RAMESAN, M. T.; PURUSHOTHAMAN, E. Utilization of peanut shell powder as a novel filler in natural rubber. Journal of Applied Polymer Science, v. 125, n. 3, p. 2322–2334, 2012. SGRICCIA, N.; HAWLEY, M. C.; MISRA, M. Characterization of natural fiber surfaces and natural fiber composites. Composites Part A: Applied Science and Manufacturing, v. 39, n. 10, p. 1632–1637, 2008. SILVA, S; TASSARA, H. Frutas no Brasil. São Paulo: Empresa das Artes, 1996. SILVA, G. G.; SOUZA, D. A.; MACHADO, J. C.; HOURSTON, D. J. Mechanical and thermal characterization of native Brazilian Coir fiber. Journal of Applied Polymer Science, v. 76, p. 1197-1206, 2000. SIQUEIRA, L. A.; ARAGÃO, W. M.; TUPINAMBÁ, E. A. Introdução do coqueiro no Brasil. Importância histórica histórica e agronômica. Documentos, v. 47, p. 24, 2002. SONNENBERG, L.B.; POLL, K.M.; LE LACHEUR, R.M.; MURPHY, R.G. Characterization of Pulp Ozonolysis Products. IPST Technical Paper Series – Number 420, 19p.1992. SU, Y.; ZHANG, P.; SU, Y. An overview of biofuels policies and industrialization in the major biofuel producing countries. Renewable and Sustainable Energy Reviews, v. 50, p. 991–1003, 2015. SURIYA, A. C. N. P. Breeding Oilseed Crops for Sustainable Production. [s.l.] Elsevier, 2016. SWARNAM, T. P. et al. Enhancing nutrient recovery and compost maturity of coconut husk by vermicomposting technology. Bioresource Technology, v. 207, p. 76–84, 2016. TAPPI – Official test methods and provisional test methods/Technical Association of the Pulp and Paper Industry , One Dunwoody Park Atlanta, GA 30338 USA. 1979. TAHERZADEH, M. J.; KARIMI, K. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. International Journal of Molecular Sciences. n.9. 1621-1651. 2008. TESSMER, M. A.; KLUGE, R. A.; APPEZZATO-DA-GLÓRIA, B. Scientia Horticulturae The accumulation of tannins during the development of “ Giombo ” and “ Fuyu ” persimmon fruits. Scientia Horticulturae, v. 172, p. 292–299, 2014. TRAN, V. S. et al. Typical low cost biosorbents for adsorptive removal of specific organic pollutants from water. Bioresource Technology, v. 182, p. 353–363, 2015. 130 TRAVAINI, R. et al. Sugarcane bagasse ozonolysis pretreatment: effect on enzymatic digestibility and inhibitory compound formation. Bioresource technology, v. 133, p. 332–9, abr. 2013. TRAVAINI, R.; MARANGON-JARDIM, C.; COLODETTE, J.L.; MORALES-OTERO, M; RODRÍGUEZ-BOLADO, S. Ozonolysis. In: Pretreatment of Biomass, Publisher: Elsevier, cap. 7, 2015, p.105-135. TRAVAINI, R. et al. Bioresource Technology Ozonolysis: An advantageous pretreatment for lignocellulosic biomass revisited. Bioresource Technology, v. 199, p. 2–12, 2016. TYE, Y. Y. et al. The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renewable and Sustainable Energy Reviews, v. 60, p. 155–172, 2016. VARGAS, I. J. Biomassa. In: Simpósio Nacional sobre fontes convencionais e de energia. Brasília: Câmara dos Deputados, 1979. p. 626-640. VIDAL, P. F.; MOLINIER, J., Ozonolysis of lignin–improvement of in vitro digestibility of poplar sawdust. Biomass ,16, 1–17,1988. WANDERLEY. M.; LOPES, G. M. Importância sócio-econômica da produção de coco seco no Brasil. In: CINTRA, F. L. D.; FONTES, H. R.; PASSOS, E. E. M.; FERREIRA, J. M. S. (Ed.). Fundamentos tecnológicos para a revitalização das áreas cultivadas com coqueiro gigante no nordeste do Brasil. Aracaju: Embrapa Tabuleiros Costeiros, 2009. 232 p. p. 37-60. WATANABE, T. et al. Purification and characterization of NAD-dependent formate dehydrogenase from the white-rot fungus Ceriporiopsis subvermispora and a possible role of the enzyme in oxalate metabolism. Enzyme and Microbial Technology, v. 37, n. 1, p. 68–75, 2005. XU, Y.; HANNA, M. A.; ISOM, L. “Green” Chemicals from Renewable Agricultural Biomass - A Mini Review. The Open Agriculture Journal, v. 2, n. 1, p. 54–61, 2008. XU, F. et al. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Applied Energy, v. 104, p. 801–809, 2013. YANG, H. et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, v. 86, n. 12-13, p. 1781–1788, 2007. ZHBANKOV, R. G. et al. Structural physico-chemistry of cellulose macromolecules. Vibrational spectra and structure of cellulose. Journal of Molecular Structure, v. 614, n. 1-3, p. 117–125, 2002. ZHU, J. Y.; PAN, X. J. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresource Technology, v. 101, n. 13, p. 4992–5002, 2010por
dc.subject.cnpqQuímicapor
dc.subject.cnpqQuímicapor
dc.subject.cnpqRecursos Florestais e Engenharia Florestalpor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/5186/2016%20-%20Monique%20de%20Moura%20Gurgel.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/19894/2016%20-%20Monique%20de%20Moura%20Gurgel.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/26223/2016%20-%20Monique%20de%20Moura%20Gurgel.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/32624/2016%20-%20Monique%20de%20Moura%20Gurgel.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/39006/2016%20-%20Monique%20de%20Moura%20Gurgel.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/45432/2016%20-%20Monique%20de%20Moura%20Gurgel.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/51772/2016%20-%20Monique%20de%20Moura%20Gurgel.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/58216/2016%20-%20Monique%20de%20Moura%20Gurgel.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/1472
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2017-03-21T17:26:15Z No. of bitstreams: 1 2016 - Monique de Moura Gurgel.pdf: 5504454 bytes, checksum: 56c93476cae66a9ba7cfc9cad8b26016 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2017-03-21T17:26:15Z (GMT). No. of bitstreams: 1 2016 - Monique de Moura Gurgel.pdf: 5504454 bytes, checksum: 56c93476cae66a9ba7cfc9cad8b26016 (MD5) Previous issue date: 2016-04-29eng
Appears in Collections:Doutorado em Ciências Ambientais e Florestais

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2016 - Monique de Moura Gurgel.pdf2016 - Monique de Moura Gurgel5.38 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.