Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9290
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBonfim, Rosiane Costa
dc.date.accessioned2023-12-21T18:37:11Z-
dc.date.available2023-12-21T18:37:11Z-
dc.date.issued2019-02-26
dc.identifier.citationBOMFIM, Rosiane Costa. Aplicação de alta pressão hidrostática no processamento de vieiras “Nodipecten nodosus” (Linnaeus, 1758). 2019. 76f. Tese (Doutorado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2019.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9290-
dc.description.abstractO processamento de alta pressão hidrostática (APH) é um método não térmico usado para assegurar a segurança microbiológica, mantendo ou incrementando as características sensoriais e nutricionais desejáveis, pois pode aumentar a biodisponibilidade. Na indústria de pescados, a APH é usada para descasque de frutos do mar como ostras e lagostas e extensão da vida de prateleira de peixes, mas tem sido pouco investigada para processamento de vieiras. As vieiras são moluscos com alta perecibilidade que são tipicamente vendidas vivas ou congeladas (produto importado). Os objetivos dessa pesquisa foram 1) avaliar o efeito da APH nos atributos de qualidade do músculo vieira; 2) otimizar os principais parâmetros de processamento (nível de pressão e tempo de espera) para reduzir as contagens microbianas, mantendo atributos de qualidade fisico-química, textura e cor produtos e 3) investigar as alterações bioquímicas e microbiológicas e a influência na qualidade promovida pelo processamento por APH no músculo adutor de vieiras estocadas a 4°C por 21 dias. O capítulo I compreende uma revisão bibliográfica focada na aplicação da APH em moluscos bivalves. No capítulo II, foi realizado um planejamento experimental (delineamento Box-Bhenken) de otimização para obtenção da condição mais adequada para redução da carga microbiana e manutenção das características físico-químicas do músculo adutor. Os músculos adutores foram submetidos a pressões variando de 200 a 400 MPa e 0 a 5 min de tempo de processo e foram comparados a um controle. O nível de 200 MPa/5 min foi eficiente no controle da microbiota, no entanto, promoveu modificações físico-químicas no músculo adutor da vieira. APH promoveu um ligeiro aumento na umidade e pH, bem como uma diminuição na capacidade de retenção de água (water holding capacity, WHC). A força de cisalhamento relacionada à textura instrumental diminuiu e os parâmetros de cor Brancura (whiteness, W) e luminosidade (L *) do músculo aumentaram em nível mais intenso de pressão (400 MPa/5 min). Empregou-se a metodologia de superfície de resposta e a função desejabilidade para realização da otimização simultânea. A desejabilidade apontou as condições de 365 MPa por 2 min como a condição mais adequada para um processamento eficiente. No capítulo III, o tempo de vida de prateleira dos músculos adutores pressurizados a 300 MPa por 2,5 min e 400 MPa/5 min foram avaliados durante 21 dias a 4°C, utilizando-se parâmetros bioquímicos e de qualidade microbiológica, em comparação com controle não tratado por APH. A microbiota das amostras tratadas por pressão não excedeu o limite de 106 CFU/g e os parâmetros de qualidade, N-BVT, pH e TBARS apresentaram valores abaixo dos limites estabelecidos pela legislação. Os resultados desse estudo indicam o nível de 300 MPa por 2,5 min como a condição mais adequada para aumentar a vida de prateleira de vieiras refrigeradas.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectAlta pressão hidrostáticapor
dc.subjectmoluscos bivalvespor
dc.subjectOtimização simultânea de processopor
dc.subjectVida de prateleirapor
dc.subjectDeterioração bioquímica e microbiológicapor
dc.subjectHigh pressure hydrostaticeng
dc.subjectBivalve molluskseng
dc.subjectSimultaneous process optimizationeng
dc.subjectShelf lifeeng
dc.subjectMicrobial and biochemical spoilageeng
dc.titleAplicação de alta pressão hidrostática no processamento de vieiras “Nodipecten nodosus” (Linnaeus, 1758)por
dc.title.alternativeApplication of high hydrostatic pressure in the processing of scallops "Nodipecten nodosus" (Linnaeus, 1758)por
dc.typeTesepor
dc.description.abstractOtherHigh Hydrostatic Pressure (HHP) is a non-thermal technology used to increase food safety and shelf life. In the fishery industry, HHP has been used for shelling seafood such as oysters and lobsters and extending shelf life of fishes, but it has been little investigated for processing scallops. Scallops are mollusks with high perishability that are typically sold alive or frozen (imported product). The objectives of this research were 1) to evaluate the effect of HHP on scallop quality attributes; 2) to optimize the main processing parameters (pressure level and holding time) to reduce microbial counts while maintaining attributes related to nutritional quality, texture and color and 3) to investigate biochemical and microbiological changes promoted by HHP and their influence on the quality of scallop adductor muscle stored at 4 ° C for 21 days. In Chapter I a review was carried out focused on the application of HHP to bivalve mollusks. In Chapter II, an experimental optimization plan, Box-Bhenken design, was carried out to obtain the most adequate condition for decreasing microbial load and maintaining physical characteristics of the adductor muscle. The adductor muscles were submitted to pressures ranging from 200 to 400 MPa for 0 to 5 min holding time and were compared to a non-processed control. The level of 200 MPa/5 min was efficient for controlling the microbiota, however, it promoted physicochemical modifications in the adductor muscle of the scallop. HHP promoted a slight increase in moisture and pH as well as a decrease in water retention capacity (WHC). The shear force related to the instrumental texture decreased and the Whiteness (W) and brightness (L*) parameters of the muscle increased at a more severe pressure level (400 MPa/5 min). The response surface methodology and the desirability function were used to perform the simultaneous optimization. Desirability indicated conditions of 365 MPa for 2 min as the most suitable condition for efficient processing. In Chapter III, the shelf life of the pressurized adductor muscles at 300 MPa for 2.5 min and 400 MPa/5 min were evaluated for 21 days at 4 ° C using microbiological and biochemical quality parameters in comparison to the control. The microbiota of samples treated by high pressure did not exceed the limit of 106 FCU/g and the quality parameters, N-BVT, pH and TBARS presented values below the established legal limits. The results of this study indicate the level of 300 MPa for 2.5 min as the most adequate conditions to increase the shelf life of refrigerated scallops.eng
dc.contributor.advisor1Rosenthal, Amauri
dc.contributor.advisor1ID025.072.978-40por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1329532290735502por
dc.contributor.advisor-co1Godoy, Ronoel Luiz de Oliveira
dc.contributor.advisor-co1ID507.802.047-00por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/3671854931659782por
dc.contributor.referee1Godoy, Ronoel Luiz de Oliveira
dc.contributor.referee1ID507.802.047-00por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/3671854931659782por
dc.contributor.referee2Silva, Caroline Mellinger
dc.contributor.referee2Latteshttp://lattes.cnpq.br/4981972339690532por
dc.contributor.referee3Pacheco, Sidney
dc.contributor.referee3Latteshttp://lattes.cnpq.br/1148865776679739por
dc.contributor.referee4Conte Junior, Carlos Adam
dc.contributor.referee4IDhttps://orcid.org/0000-0001-6133-5080por
dc.contributor.referee4Latteshttp://lattes.cnpq.br/6146781658944580por
dc.contributor.referee5Silva, Pedro Paulo de Oliveira
dc.contributor.referee5Latteshttp://lattes.cnpq.br/4059934620802246por
dc.creator.ID091.221.357-40por
dc.creator.Latteshttp://lattes.cnpq.br/6372349499542759por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospor
dc.relation.referencesBARBA, F. J. et al. New opportunities and perspectives of high pressure treatment to improve health and safety attributes of foods. A review. Food Research International, v. 77, Part 4, p. 725-742, 11// 2015. ISSN 0963-9969. Disponível em: < //www.sciencedirect.com/science/article/pii/S0963996915300041 >. BARBOSA-CÁNOVAS, G. V.; RODRÍGUEZ, J. J. Update on nonthermal food processing technologies: Pulsed electric field, high hydrostatic pressure, irradiation and ultrasound. Food Australia, v. 54, n. 11, p. 513-520, 2002. Disponível em: < http://www.scopus.com/inward/record.url?eid=2-s2.0-0036848140&partnerID=40&md5=9764db61952c85b5c03c22a43b47ebc8 >. BERMÚDEZ-AGUIRRE, D.; BARBOSA-CÁNOVAS, G. V. An Update on High Hydrostatic Pressure, from the Laboratory to Industrial Applications. Food Engineering Reviews, v. 3, n. 1, p. 44-61, 2011. Disponível em: < http://www.scopus.com/inward/record.url?eid=2-s2.0-79952488480&partnerID=40&md5=665f95e50c5d652b7e151669599fd42c >. BINDU, J. et al. High pressure treatment of green mussel Perna viridis Linnaeus, 1758: effect on shucking and quality changes in meat during chill storage. Indian Journal of Fisheries, v. 62, n. 2, 2015. ISSN 0970-6011. BRIONES-LABARCA, V. et al. Effects of high hydrostatic pressure on microstructure, texture, colour and biochemical changes of red abalone (Haliotis rufecens) during cold storage time. Innovative Food Science & Emerging Technologies, v. 13, p. 42-50, 2012. ISSN 1466-8564. CALCI, K. R. et al. High-pressure inactivation of hepatitis A virus within oysters. Applied and environmental microbiology, v. 71, n. 1, p. 339-343, 2005. ISSN 0099-2240. CALDERÓN-MIRANDA, M. et al. Métodos no térmicos para procesamiento de alimentos: Variables e inactivación microbiana. Braz J Food Technol, v. 1, p. 3-11, 1998. CAMPOS, F.; DOSUALDO, G.; CRISTIANINI, M. Utilização da tecnologia de alta pressão no processamento de alimentos. Brazilian Journal of Food Technology, v. 6, n. 2, p. 351-357, 2003. 16 CHAWLA, R.; PATIL, G. R.; SINGH, A. K. High hydrostatic pressure technology in dairy processing: a review. Journal of food science and technology, v. 48, n. 3, p. 260-268, 2011. ISSN 0022-1155. CHEFTEL, J. C. Review: High-pressure, microbial inactivation and food preservation/Revision: Alta-presion, inactivacion microbiologica y conservacion de alimentos. Food science and technology international, v. 1, n. 2-3, p. 75-90, 1995. ISSN 1082-0132. CHEFTEL, J. C.; CULIOLI, J. Effects of high pressure on meat: a review. Meat science, v. 46, n. 3, p. 211-236, 1997. ISSN 0309-1740. CONSIDINE, K. M. et al. High-pressure processing–effects on microbial food safety and food quality. FEMS Microbiology Letters, v. 281, n. 1, p. 1-9, 2008. ISSN 0378-1097. CRUZ-ROMERO, M.; KELLY, A. L.; KERRY, J. P. Effects of high-pressure treatment on the microflora of oysters (Crassostrea gigas) during chilled storage. Innovative Food Science & Emerging Technologies, v. 9, n. 4, p. 441-447, 2008/10/01/ 2008. ISSN 1466-8564. Disponível em: < http://www.sciencedirect.com/science/article/pii/S1466856408000362 >. CRUZ-ROMERO, M.; KERRY, J. P.; KELLY, A. L. Changes in the microbiological and physicochemical quality of high-pressure-treated oysters (Crassostrea gigas) during chilled storage. Food Control, v. 19, n. 12, p. 1139-1147, 2008/12/01/ 2008. ISSN 0956-7135. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0956713507002630 >. CRUZ-ROMERO, M. C.; KERRY, J. P.; KELLY, A. L. Fatty acids, volatile compounds and colour changes in high-pressure-treated oysters (Crassostrea gigas). Innovative Food Science & Emerging Technologies, v. 9, n. 1, p. 54-61, 2008/01/01/ 2008. ISSN 1466-8564. Disponível em: < http://www.sciencedirect.com/science/article/pii/S1466856407000707 >. CRUZ-ROMERO, M. C.; KERRY, J. P.; KELLY, A. L. Fatty acids, volatile compounds and colour changes in high-pressure-treated oysters (Crassostrea gigas). Innovative Food Science & Emerging Technologies, v. 9, n. 1, p. 54-61, 2008/01/01/ 2008. ISSN 1466-8564. Disponível em: < http://www.sciencedirect.com/science/article/pii/S1466856407000707 >. CRUZ-ROMERO, M. et al. Effects of high pressure treatment on physicochemical characteristics of fresh oysters (Crassostrea gigas). Innovative Food Science & Emerging Technologies, v. 5, n. 2, p. 161-169, 2004. ISSN 1466-8564. DU, X. et al. Draft genome and SNPs associated with carotenoid accumulation in adductor muscles of bay scallop (Argopecten irradians). Journal of genomics, v. 5, p. 83, 2017. FARKAS, D. F.; HOOVER, D. G. High pressure processing. Journal of Food Science, v. 65, n. s8, p. 47-64, 2000. ISSN 1750-3841. GINSON, J. et al. Effect of high pressure treatment on microbiological quality of Indian white prawn (Fenneropenaeus indicus) during chilled storage. Food Microbiology, v. 46, p. 596-603, 2015. Disponível em: < http://www.scopus.com/inward/record.url?eid=2-s2.0-84909587300&partnerID=40&md5=9ff69792d1d03bc6bcb4eb2909b6598c >. 17 HE, H. et al. Use of high‐pressure processing for oyster shucking and shelf‐life extension. Journal of Food Science, v. 67, n. 2, p. 640-645, 2002. ISSN 0022-1147. HEINZ, V.; BUCKOW, R. Food preservation by high pressure. Journal für Verbraucherschutz und Lebensmittelsicherheit, v. 5, n. 1, p. 73-81, 2010. Disponível em: < http://www.scopus.com/inward/record.url?eid=2-s2.0-75849148917&partnerID=40&md5=2f79581a8c4be63f0b84b3c98f5ef068>. HEREMANS, K.; SMELLER, L. Protein structure and dynamics at high pressure1. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, v. 1386, n. 2, p. 353-370, 8/18/ 1998. ISSN 0167-4838. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0167483898001022 >. HOOVER, D. G. et al. Biological effects of high hydrostatic pressure on food microorganisms. Food technology (USA), 1989. ISSN 0015-6639. HSU, K. C. et al. Effect of different high pressure treatments on shucking, biochemical, physical and sensory characteristics of oysters to elaborate a traditional Taiwanese oyster omelette. Journal of the Science of Food and Agriculture, v. 90, n. 3, p. 530-535, 2010. ISSN 0022-5142. HUANG, H.-W. et al. Current status and future trends of high-pressure processing in food industry. Food Control, v. 72, p. 1-8, 2017. ISSN 0956-7135. HUGHES, B. H. et al. Impact of post-rigor high pressure processing on the physicochemical and microbial shelf-life of cultured red abalone (Haliotis rufescens). Food Chemistry, v. 194, p. 487-494, 2016. Disponível em: < http://www.scopus.com/inward/record.url?eid=2-s2.0-84939865414&partnerID=40&md5=91d793a51b3bc14364adb5dc005db6e9 >. JAYKUS, L. Enteric Viruses as 'Emerging Agents' of Foodborne Disease. Irish Journal of Agricultural and Food Research, v. 39, n. 2, p. 245-255, 2000. ISSN 07916833. Disponível em: < http://www.jstor.org/stable/25562390 >. KINGSLEY, D. H. High pressure processing of bivalve shellfish and HPP’s use as a virus intervention. Foods, v. 3, n. 2, p. 336-350, 2014. DOI: 10.3390/foods3020336 KINGSLEY, D. H. et al. High pressure inactivation of HAV within oysters: comparison of shucked oysters with whole-in-shell meats. Food and environmental virology, v. 1, n. 3-4, p. 137, 2009. ISSN 1867-0334. KINGSLEY, D. H. et al. High-pressure processing with hot sauce flavouring enhances sensory quality for raw oysters (Crassostrea virginica). International Journal of Food Science and Technology, v. 50, n. 9, p. 2013-2021, 2015. Disponível em: < http://www.scopus.com/inward/record.url?eid=2-s2.0-84939252907&partnerID=40&md5=41d8ad3c6283c5d821b105e8349e927a >. KINGSLEY, D. H.; GUAN, D.; HOOVER, D. G. Pressure inactivation of hepatitis A virus in strawberry puree and sliced green onions. Journal of food protection, v. 68, n. 8, p. 1748-1751, 2005. ISSN 0362-028X. 18 KINGSLEY, D. H. et al. Inactivation of a norovirus by high-pressure processing. Appl. Environ. Microbiol., v. 73, n. 2, p. 581-585, 2007. ISSN 0099-2240. KINGSLEY, D. H. et al. Inactivation of hepatitis A virus and a calicivirus by high hydrostatic pressure. Journal of food protection, v. 65, n. 10, p. 1605-1609, 2002. ISSN 0362-028X. KRUK, Z. A. et al. The effect of high pressure on microbial population, meat quality and sensory characteristics of chicken breast fillet. Food control, v. 22, n. 1, p. 6-12, 2011. ISSN 0956-7135. KURAL, A. G. et al. Conditions for high pressure inactivation of Vibrio parahaemolyticus in oysters. International journal of food microbiology, v. 127, n. 1-2, p. 1-5, 2008. ISSN 0168-1605. LEES, D. Viruses and bivalve shellfish. International Journal of Food Microbiology, v. 59, n. 1-2, p. 81-116, 2000. Disponível em: < http://www.scopus.com/inward/record.url?eid=2-s2.0-0034713913&partnerID=40&md5=995a0fd17de085b4a5fd703f336f92df >. LEON, J. S. et al. Randomized, double-blinded clinical trial for human norovirus inactivation in oysters by high hydrostatic pressure processing. Appl. Environ. Microbiol., v. 77, n. 15, p. 5476-5482, 2011. ISSN 0099-2240. LI, N. et al. Isolation and identification of the main carotenoid pigment from the rare orange muscle of the Yesso scallop. Food chemistry, v. 118, n. 3, p. 616-619, 2010. ISSN 0308-8146. LOPEZ-CABALLERO, M. et al. Oyster preservation by high-pressure treatment. Journal of food protection, v. 63, n. 2, p. 196-201, 2000. ISSN 0362-028X. LULLIEN-PELLERIN, V.; BALNY, C. High-pressure as a tool to study some proteins’ properties: conformational modification, activity and oligomeric dissociation. Innovative Food Science & Emerging Technologies, v. 3, n. 3, p. 209-221, 2002. ISSN 1466-8564. MA, L.; SU, Y.-C. Validation of high pressure processing for inactivating Vibrio parahaemolyticus in Pacific oysters (Crassostrea gigas). International journal of food microbiology, v. 144, n. 3, p. 469-474, 2011. ISSN 0168-1605. MEDINA-MEZA, I. G.; BARNABA, C.; BARBOSA-CÁNOVAS, G. V. Effects of high pressure processing on lipid oxidation: A review. Innovative Food Science & Emerging Technologies, v. 22, p. 1-10, 2014/04/01/ 2014. ISSN 1466-8564. Disponível em: < http://www.sciencedirect.com/science/article/pii/S1466856413001653 >. MESSENS, W.; VAN CAMP, J.; HUYGHEBAERT, A. The use of high pressure to modify the functionality of food proteins. Trends in Food Science & Technology, v. 8, n. 4, p. 107-112, 1997. ISSN 0924-2244. MOOTIAN, G. K. et al. Inactivation of Vibrio parahaemolyticus in Hard Clams (Mercanaria mercanaria) by High Hydrostatic Pressure (HHP) and the Effect of HHP on the Physical Characteristics of Hard Clam Meat. Journal of Food Science, v. 78, n. 2, p. E251-E257, 2013. Disponível em: < http://www.scopus.com/inward/record.url?eid=2-s2.0-84873455048&partnerID=40&md5=ed85b3d43c4e9da4c016a745331e0a6e >. 19 MURCHIE, L. W. et al. High pressure processing of shellfish: a review of microbiological and other quality aspects. Innovative Food Science & Emerging Technologies, v. 6, n. 3, p. 257-270, 2005. ISSN 1466-8564. OLIVEIRA, F. A. D. et al. Effect of high pressure on fish meat quality – A review. Trends in Food Science & Technology, v. 66, p. 1-19, 2017/08/01/ 2017. ISSN 0924-2244. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0924224416304344 >. PAGÁN, R.; MACKEY, B. Relationship between membrane damage and cell death in pressure-treated Escherichia coli cells: differences between exponential-and stationary-phase cells and variation among strains. Applied and Environmental Microbiology, v. 66, n. 7, p. 2829-2834, 2000. ISSN 0099-2240. PATRAS, A. et al. Effect of thermal and high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purées. Innovative Food Science & Emerging Technologies, v. 10, n. 1, p. 16-22, 1// 2009. ISSN 1466-8564. Disponível em: < //www.sciencedirect.com/science/article/pii/S1466856408000921 >. PATRAS, A. et al. Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innovative Food Science & Emerging Technologies, v. 10, n. 3, p. 308-313, 7// 2009. ISSN 1466-8564. Disponível em: < //www.sciencedirect.com/science/article/pii/S1466856408001288 >. PEREIRA, R.; VICENTE, A. Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International, v. 43, n. 7, p. 1936-1943, 2010. ISSN 0963-9969. PÉREZ-WON, M.; TABILO-MUNIZAGA, G.; BARBOSA-CÁNOVAS, G. V. Effects of ultra high pressure on bay scallop (Aequipecten irradians) adductor muscles. Food science and technology international, v. 11, n. 6, p. 477-484, 2005. ISSN 1082-0132. PHUVASATE, S.; SU, Y.-C. Efficacy of low-temperature high hydrostatic pressure processing in inactivating Vibrio parahaemolyticus in culture suspension and oyster homogenate. International journal of food microbiology, v. 196, p. 11-15, 2015. ISSN 0168-1605. PLAZA, L. et al. Carotenoid content and antioxidant capacity of Mediterranean vegetable soup (gazpacho) treated by high-pressure/temperature during refrigerated storage. European Food Research and Technology, v. 223, n. 2, p. 210-215, 2006. ISSN 1438-2385. Disponível em: < http://dx.doi.org/10.1007/s00217-005-0174-z >. PRAPAIWONG, N.; WALLACE, R. K.; ARIAS, C. R. Bacterial loads and microbial composition in high pressure treated oysters during storage. International journal of food microbiology, v. 131, n. 2-3, p. 145-150, 2009. ISSN 0168-1605. RENDUELES, E. et al. Microbiological food safety assessment of high hydrostatic pressure processing: A review. LWT - Food Science and Technology, v. 44, n. 5, p. 1251-1260, 2011. Disponível em: < http://www.scopus.com/inward/record.url?eid=2-s2.0-79951511811&partnerID=40&md5=3249ad91fd6748146a1a2626bb425b52 >. 20 RODRIGUEZ-AMAYA, D. Nature and distribution of carotenoids in foods. Developments in food science, 1993. ISSN 0167-4501. RONG, C. et al. Characterization of microbial community in high-pressure treated oysters by high-throughput sequencing technology. Innovative Food Science & Emerging Technologies, v. 45, p. 241-248, 2018/02/01/ 2018. ISSN 1466-8564. Disponível em: < http://www.sciencedirect.com/science/article/pii/S1466856417305659 >. SÁNCHEZ-MORENO, C. et al. Impact of High Pressure and Pulsed Electric Fields on Bioactive Compounds and Antioxidant Activity of Orange Juice in Comparison with Traditional Thermal Processing. Journal of Agricultural and Food Chemistry, v. 53, n. 11, p. 4403-4409, 2005/06/01 2005. ISSN 0021-8561. Disponível em: < http://dx.doi.org/10.1021/jf048839b >. SILVA, J. L.; FOGUEL, D.; ROYER, C. A. Pressure provides new insights into protein folding, dynamics and structure. Trends in Biochemical Sciences, v. 26, n. 10, p. 612-618, ISSN 0968-0004. Disponível em: < http://dx.doi.org/10.1016/S0968-0004(01)01949-1 >. Acesso em: 2018/04/04. SMELT, J. P. P. M. Recent advances in the microbiology of high pressure processing. Trends in Food Science and Technology, v. 9, n. 4, p. 152-158, 1998. Disponível em: < http://www.scopus.com/inward/record.url?eid=2-s2.0-0032052931&partnerID=40&md5=65d48157adcd52b47b0eef9af7607f84 >. TERIO, V. et al. High pressure inactivation of HAV within mussels. Food and environmental virology, v. 2, n. 2, p. 83-88, 2010. ISSN 1867-0334. TRUONG, B. Q. et al. Advances in High-Pressure Processing of Fish Muscles. Food Engineering Reviews, v. 7, n. 2, p. 109-129, 2014. Disponível em: < http://www.scopus.com/inward/record.url?eid=2-s2.0-84931565070&partnerID=40&md5=81189bd2cd346dc7e7a0531b65f2490b >. WANG, C.-Y. et al. Inactivation and morphological damage of Vibrio parahaemolyticus treated with high hydrostatic pressure. Food Control, v. 32, n. 2, p. 348-353, 2013. ISSN 0956-7135. YE, M.; HUANG, Y.; CHEN, H. Inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in oysters by high-hydrostatic pressure and mild heat. Food Microbiology, v. 32, n. 1, p. 179-184, 2012. Disponível em: < http://www.scopus.com/inward/record.url?eid=2-s2.0-84864332879&partnerID=40&md5=047d576cd4b84ffd993894199fc57136 >. YE, M. et al. Effects of pre- or post-processing storage conditions on high-hydrostatic pressure inactivation of Vibrio parahaemolyticus and V. vulnificus in oysters. International Journal of Food Microbiology, v. 163, n. 2-3, p. 146-152, 2013. Disponível em: < http://www.scopus.com/inward/record.url?eid=2-s2.0-84875767978&partnerID=40&md5=9233df64bcc337d89d790d5a0da164d6 >. YE, M. et al. Inactivation of human norovirus in contaminated oysters and clams by high hydrostatic pressure. Appl. Environ. Microbiol., v. 80, n. 7, p. 2248-2253, 2014. ISSN 0099-2240. 21 YI, J. et al. Shucking of bay scallop (Argopecten irradians) using high hydrostatic pressure and its effect on microbiological and physical quality of adductor muscle. Innovative Food Science & Emerging Technologies, v. 18, p. 57-64, 2013. ISSN 1466-8564. ABELIN, P.; L DE ARAÚJO, A.; ROMBENSO, A. Current Status of Scallop Culture in Brazil. 2016. ADEKUNLE, A. S.; OZOEMENA, K. I. Electron transport and electrocatalytic properties of MWCNT/nickel nanocomposites: hydrazine and diethylaminoethanethiol as analytical probes. Journal of Electroanalytical Chemistry, v. 645, n. 1, p. 41-49, 2010. ISSN 1572-6657. ANGSUPANICH, Kongkarn; LEDWARD, D. A. High pressure treatment effects on cod (Gadus morhua) muscle. Food chemistry, v. 63, n. 1, p. 39-50, 1998. ASHIE, I. et al. Spoilage and shelf‐life extension of fresh fish and shellfish. Critical Reviews in Food Science & Nutrition, v. 36, n. 1-2, p. 87-121, 1996. ISSN 1040-8398. BELTRÁN-LUGO, A. I. et al. Seasonal variations in chemical, physical, textural, and microstructural properties of adductor muscles of Pacific lions-paw scallop (Nodipecten subnodosus). Aquaculture, v. 258, n. 1-4, p. 619-632, 2006. ISSN 0044-8486. BERMÚDEZ-AGUIRRE, D.; BARBOSA-CÁNOVAS, G. V. An update on high hydrostatic pressure, from the laboratory to industrial applications. Food Engineering Reviews, v. 3, n. 1, p. 44-61, 2011. ISSN 1866-7910. BINDU, J. et al. High pressure treatment of green mussel Perna viridis Linnaeus, 1758: effect on shucking and quality changes in meat during chill storage. Indian Journal of Fisheries, v. 62, n. 2, 2015. ISSN 0970-6011. 39 BINDU, J. et al. Physico-chemical changes in high pressure treated Indian white prawn (Fenneropenaeus indicus) during chill storage. Innovative Food Science & Emerging Technologies, v. 17, p. 37-42, 2013/01/01/ 2013. ISSN 1466-8564. Disponível em: < http://www.sciencedirect.com/science/article/pii/S1466856412001221 >. BOX, G. E.; BEHNKEN, D. W. Some new three level designs for the study of quantitative variables. Technometrics, v. 2, n. 4, p. 455-475, 1960. ISSN 0040-1706. BRIONES, L. S. et al. Microbial shelf-life extension of chilled Coho salmon (Oncorhynchus kisutch) and abalone (Haliotis rufescens) by high hydrostatic pressure treatment. Food Control, v. 21, n. 11, p. 1530-1535, 2010. ISSN 0956-7135. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0956713510001489>. BRIONES-LABARCA, V. et al. Effects of high hydrostatic pressure on microstructure, texture, colour and biochemical changes of red abalone (Haliotis rufecens) during cold storage time. Innovative Food Science & Emerging Technologies, v. 13, p. 42-50, 2012. ISSN 1466-8564. CHEFTEL, J. Cl. Effects of high hydrostatic pressure on food constituents: an overview. Hiph Pressure Biotechnology, p. 195-209, 1992. CHEFTEL, J. C.; CULIOLI, J. Effects of high pressure on meat: a review. Meat science, v. 46, n. 3, p. 211-236, 1997. ISSN 0309-1740. CHÉRET, R. et al. Effects of high pressure on texture and microstructure of sea bass (Dicentrarchus labrax L.) fillets. Journal of Food Science, v. 70, n. 8, p. e477-e483, 2005. ISSN 0022-1147. CHEVALIER, D.; LE BAIL, A.; GHOUL, M. Effects of high pressure treatment (100–200 MPa) at low temperature on turbot (Scophthalmus maximus) muscle. Food Research International, v. 34, n. 5, p. 425-429, 2001. CHRISTENSEN, LINE BACH; HOVDA, MARIA BEFRING; RODE, TONE MARI. Quality changes in high pressure processed cod, salmon and mackerel during storage. Food control, v. 72, p. 90-96, 2017. CRUZ-ROMERO, M.; KELLY, A. L.; KERRY, J. P. Effects of high-pressure treatment on the microflora of oysters (Crassostrea gigas) during chilled storage. Innovative Food Science & Emerging Technologies, v. 9, n. 4, p. 441-447, 2008. ISSN 1466-8564. Disponível em: < http://www.sciencedirect.com/science/article/pii/S1466856408000362 >. CRUZ-ROMERO, M.; KERRY, J. P.; KELLY, A. L. Changes in the microbiological and physicochemical quality of high-pressure-treated oysters (Crassostrea gigas) during chilled storage. Food Control, v. 19, n. 12, p. 1139-1147, 2008. ISSN 0956-7135. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0956713507002630 >. CRUZ-ROMERO, M. et al. Effects of high pressure treatment on physicochemical characteristics of fresh oysters (Crassostrea gigas). Innovative Food Science & Emerging Technologies, v. 5, n. 2, p. 161-169, 2004. ISSN 1466-8564. 40 CRUZ-ROMERO, M. C.; KERRY, J. P.; KELLY, A. L. Fatty acids, volatile compounds and colour changes in high-pressure-treated oysters (Crassostrea gigas). Innovative Food Science & Emerging Technologies, v. 9, n. 1, p. 54-61, 2008. ISSN 1466-8564. Disponível em: < http://www.sciencedirect.com/science/article/pii/S1466856407000707 >. DENOYA, G. I. et al. Optimization of high hydrostatic pressure processing for the preservation of minimally processed peach pieces. Innovative Food Science & Emerging Technologies, v. 33, p. 84-93, 2016. ISSN 1466-8564. Disponível em: < http://www.sciencedirect.com/science/article/pii/S1466856415002441 >. DERRINGER, G.; SUICH, R. Simultaneous optimization of several response variables. Journal of quality technology, v. 12, n. 4, p. 214-219, 1980. ISSN 0022-4065. DUNAJSKI, E. Texture of fish muscle. Journal of Texture Studies, v. 10, n. 4, p. 301-318, 1980. DUONG, T.; BALABAN, M. Optimisation of the process parameters of combined high hydrostatic pressure and dense phase carbon dioxide on enzyme inactivation in feijoa (Acca sellowiana) puree using response surface methodology. Innovative Food Science & Emerging Technologies, v. 26, p. 93-101, 2014. ISSN 1466-8564. Disponível em: < http://www.sciencedirect.com/science/article/pii/S1466856414001519 >. ERKAN, N.; ÜRETENER, G.; ALPAS, H. Effect of high pressure (HP) on the quality and shelf life of red mullet (Mullus surmelutus). Innovative Food Science & Emerging Technologies, v. 11, n. 2, p. 259-264, 2010. ISSN 1466-8564. FERNANDEZ, M. et al. Optimization of high pressure processing parameters to preserve quality attributes of a mixed fruit and vegetable smoothie. Innovative Food Science & Emerging Technologies, v. 47, p. 170-179, 2018. ISSN 1466-8564. FRANCIS, F. J.; CLYDESDALE, F. M. Food colorimetry: theory and applications. Westport, Connecticut: AVI Publishing Co. Inc., 1975. x + 477pp. ISBN 0870551833. GEHRING, C. K. et al. Functional and nutritional characteristics of proteins and lipids recovered by isoelectric processing of fish by-products and low-value fish: A review. Food Chemistry, v. 124, n. 2, p. 422-431, 2011. ISSN 0308-8146. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0308814610007892 >. GINSON, J. et al. Effect of high pressure treatment on microbiological quality of Indian white prawn (Fenneropenaeus indicus) during chilled storage. Food Microbiology, v. 46, p. 596-603, 2015. ISSN 0740-0020. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0740002014002585 >. GÓMEZ-GUILLÉN, M. C. et al. Structural and physical properties of gelatin extracted from different marine species: a comparative study. Food Hydrocolloids, v. 16, n. 1, p. 25-34, 2002. ISSN 0268-005X. 41 GRAM, L.; HUSS, H. H. Microbiological spoilage of fish and fish products. International Journal of Food Microbiology, v. 33, n. 1, p. 121-137, 1996. ISSN 0168-1605. Disponível em: < http://www.sciencedirect.com/science/article/pii/0168160596011348 >. GRANATO, D. et al. Sensory evaluation and physicochemical optimisation of soy-based desserts using response surface methodology. Food Chemistry, v. 121, n. 3, p. 899-906, 2010. ISSN 0308-8146. HE, H. et al. Use of high‐pressure processing for oyster shucking and shelf‐life extension. Journal of Food Science, v. 67, n. 2, p. 640-645, 2002. ISSN 0022-1147. HSU, C.-P.; HUANG, H.-W.; WANG, C.-Y. Effects of high-pressure processing on the quality of chopped raw octopus. LWT - Food Science and Technology, v. 56, n. 2, p. 303-308, 2014. ISSN 0023-6438. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0023643813004416 >. HSU, K. C. et al. Effect of different high pressure treatments on shucking, biochemical, physical and sensory characteristics of oysters to elaborate a traditional Taiwanese oyster omelette. Journal of the Science of Food and Agriculture, v. 90, n. 3, p. 530-535, 2010. ISSN 0022-5142. HUGHES, BRIANNA H. et al. Effects of Rigor Status during High‐Pressure Processing on the Physical Qualities of Farm‐Raised Abalone (Haliotis rufescens). Journal of food science, v. 80, n. 1, p. C40-C48, 2015. HUGHES, B. H. et al. Impact of post-rigor high pressure processing on the physicochemical and microbial shelf-life of cultured red abalone (Haliotis rufescens). Food chemistry, v. 194, p. 487-494, 2016. ISSN 0308-8146. HUI, Y. et al. Biochemistry of seafood processing. Food biochemistry & food processing, p. 351-378, 2006. HURTADO, JOSÉ L. et al. High-pressure/temperature treatment effect on the characteristics of octopus (Octopus vulgaris) arm muscle. European Food Research and Technology, v. 213, n. 1, p. 22-29, 2001. HUSS, H. H. Quality and quality changes in fresh fish. Food & Agriculture Org., 1995. ISBN 9251035075. KAUSHIK, N.; RAO, P. S.; MISHRA, H. N. Process optimization for thermal-assisted high pressure processing of mango (Mangifera indica L.) pulp using response surface methodology. LWT - Food Science and Technology, v. 69, p. 372-381, 2016. ISSN 0023-6438. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0023643816300627 >. KRUK, ZBIGNIEW A. et al. The effect of high pressure on microbial population, meat quality and sensory characteristics of chicken breast fillet. Food control, v. 22, n. 1, p. 6-12, 2011. LAEMMLI, U. K. SDS-page Laemmli method. Nature, v. 227, p. 680-5, 1970. 42 LINTON, M.; MC CLEMENTS, J.; PATTERSON, M. Changes in the microbiological quality of shellfish, brought about by treatment with high hydrostatic pressure. International journal of food science & technology, v. 38, n. 6, p. 713-727, 2003. ISSN 0950-5423. LOPEZ-CABALLERO, M. et al. Oyster preservation by high-pressure treatment. Journal of food protection, v. 63, n. 2, p. 196-201, 2000. ISSN 0362-028X. LOUGOVOIS, V.; KYRANA, V. Freshness quality and spoilage of chill-stored fish. Food Policy, Control and Research, v. 1, p. 35-86, 2005. LULLIEN-PELLERIN, V.; BALNY, C. High-pressure as a tool to study some proteins’ properties: conformational modification, activity and oligomeric dissociation. Innovative Food Science & Emerging Technologies, v. 3, n. 3, p. 209-221, 2002. ISSN 1466-8564. MANZONI, G. C. Aspectos da biologia de nodipecten nodosus.(Linnaeus, 1758)(Mollusca: Bivalvia), nos arredores da Ilha do Arvoredo (Santa Catarina-Brasil) com vistas a utilização na aquicultura. 1994. MARTÍNEZ, M. A. et al. Effects of high pressure processing on protein fractions of blue crab (Callinectes sapidus) meat. Innovative Food Science & Emerging Technologies, v. 41, p. 323-329, 2017. ISSN 1466-8564. Disponível em: < http://www.sciencedirect.com/science/article/pii/S1466856416309006 >. MESSENS, W.; VAN CAMP, J.; HUYGHEBAERT, A. The use of high pressure to modify the functionality of food proteins. Trends in Food Science & Technology, v. 8, n. 4, p. 107-112, 1997. ISSN 0924-2244. MINCHIN, D. Introductions: some biological and ecological characteristics of scallops. Aquatic Living Resources, v. 16, n. 6, p. 521-532, 2003. ISSN 0990-7440. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0990744003000937 >. MOOTIAN, G. K. et al. Inactivation of Vibrio parahaemolyticus in hard clams (Mercanaria mercanaria) by high hydrostatic pressure (HHP) and the effect of HHP on the physical characteristics of hard clam meat. Journal of food science, v. 78, n. 2, p. E251-E257, 2013. ISSN 0022-1147. MURCHIE, L. W. et al. High pressure processing of shellfish: a review of microbiological and other quality aspects. Innovative Food Science & Emerging Technologies, v. 6, n. 3, p. 257-270, 2005. ISSN 1466-8564. OLIVEIRA, F. A. D. et al. Effect of high pressure on fish meat quality – A review. Trends in Food Science & Technology, v. 66, p. 1-19, 2017. ISSN 0924-2244. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0924224416304344 >. ORTEA, IGNACIO et al. Effect of hydrostatic high-pressure treatment on proteins, lipids and nucleotides in chilled farmed salmon (Oncorhynchus kisutch) muscle. European Food Research and Technology, v. 230, n. 6, p. 925-934, 2010. PATHARE, P. B.; OPARA, U. L.; AL-SAID, F. A.-J. Colour measurement and analysis in fresh and processed foods: a review. Food and bioprocess technology, v. 6, n. 1, p. 36-60, 2013. ISSN 1935-5130. PÉREZ-WON, M.; TABILO-MUNIZAGA, G.; BARBOSA-CÁNOVAS, G. V. Effects of ultra high pressure on bay scallop (Aequipecten irradians) adductor muscles. Food science and technology international, v. 11, n. 6, p. 477-484, 2005. ISSN 1082-0132. RAMIREZ-SUAREZ, JUAN C.; MORRISSEY, MICHAEL T. Effect of high pressure processing (HPP) on shelf life of albacore tuna (Thunnus alalunga) minced muscle. Innovative Food Science & Emerging Technologies, v. 7, n. 1-2, p. 19-27, 2006. RENDUELES, E. et al. Microbiological food safety assessment of high hydrostatic pressure processing: A review. LWT - Food Science and Technology, v. 44, n. 5, p. 1251-1260, 2011/06/01/ 2011. ISSN 0023-6438. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0023643810003786 >. RODRIGUEZ-AMAYA, D. B. Nature and distribution of carotenoids in foods. Developments in food science, 1993. RUPP, G. S.; PARSONS, G. J. Scallop aquaculture and fisheries in Brazil. In: (Ed.). Developments in Aquaculture and Fisheries Science: Elsevier, v.35, 2006. p.1225-1250. ISBN 0167-9309. SERMENT-MORENO, V. et al. Monte Carlo analysis of the product handling and high-pressure treatment effects on the Vibrio vulnificus risk to raw oysters consumers. Journal of Food Engineering, v. 144, p. 86-92, 2015. ISSN 0260-8774. SHAO, Y. et al. Effect of ultra-high pressure treatment on shucking and meat properties of red swamp crayfish (Procambarus clarkia). LWT-Food Science and Technology, v. 87, p. 234-240, 2018. ISSN 0023-6438. SUEMITSU, L.; CRISTIANINI, M. Effects of high pressure processing (HPP) on quality attributes of tilapia (Oreochromis niloticus) fillets during refrigerated storage. LWT, v. 101, p. 92-99, 2019. ISSN 0023-6438. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0023643818309794 >. SWANSON, K.; PETRAN, R.; HANLIN, J. Culture methods for enumeration of microorganisms. Compendium of methods for the microbiological examination of foods, v. 4, p. 53-62, 2001. TAYLOR, R.; FJAERA, S.; SKJERVOLD, P. Salmon fillet texture is determined by myofiber‐myofiber and myofiber‐myocommata attachment. Journal of Food Science, v. 67, n. 6, p. 2067-2071, 2002. ISSN 0022-1147. TEIXEIRA, B. et al. Effect of high pressure processing in the quality of sea bass (Dicentrarchus labrax) fillets: Pressurization rate, pressure level and holding time. Innovative Food Science & Emerging Technologies, v. 22, p. 31-39, 2014. ISSN 1466-8564. Disponível em: < http://www.sciencedirect.com/science/article/pii/S1466856413002038 >. 44 URESTI, ROCÍO M. et al. Effect of high‐pressure treatments on mechanical and functional properties of restructured products from arrowtooth flounder (Atheresthes stomias). Journal of the Science of Food and Agriculture, v. 84, n. 13, p. 1741-1749, 2004. YAGIZ, Y. et al. Effect of high pressure treatment on the quality of rainbow trout (Oncorhynchus mykiss) and mahi mahi (Coryphaena hippurus). Journal of Food Science, v. 72, n. 9, p. C509-C515, 2007. ISSN 0022-1147. YAGIZ, Yavuz et al. Effect of high pressure processing and cooking treatment on the quality of Atlantic salmon. Food Chemistry, v. 116, n. 4, p. 828-835, 2009. YI, J. et al. Shucking of bay scallop (Argopecten irradians) using high hydrostatic pressure and its effect on microbiological and physical quality of adductor muscle. Innovative Food Science & Emerging Technologies, v. 18, p. 57-64, 2013. ISSN 1466-8564. ZHANG, Y. et al. Effect of Single‐and Two‐Cycle High Hydrostatic Pressure Treatments on Water Properties, Physicochemical and Microbial Qualities of Minimally Processed Squids (Todarodes pacificus). Journal of food science, v. 80, n. 5, p. E1012-E1020, 2015. ISSN 0022-1147. AARAAS, R. et al. Sensory, histological, and bacteriological changes in flat oysters, Ostrea edulis L., during different storage conditions. Journal of food science, v. 69, n. 6, p. S205-S210, 2004. ISSN 0022-1147. ALASALVAR, C. et al. Comparison of freshness quality of cultured and wild sea bass (Dicentrarchus labrax). Journal of food science, v. 67, n. 9, p. 3220-3226, 2002. ISSN 0022-1147. ARU, V. et al. The foodome of bivalve molluscs: From hedonic eating to healthy diet. Journal of Food Composition and Analysis, v. 69, p. 13-19, 2018. ISSN 0889-1575. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0889157518300188 >. ARU, V. et al. Metabolomics analysis of shucked mussels’ freshness. Food Chemistry, v. 205, p. 58-65, 2016. ISSN 0308-8146. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0308814616303302 >. 62 ASHIE, I. et al. Spoilage and shelf‐life extension of fresh fish and shellfish. Critical Reviews in Food Science & Nutrition, v. 36, n. 1-2, p. 87-121, 1996. ISSN 1040-8398. BELTRÁN-LUGO, A. I. et al. Seasonal variations in chemical, physical, textural, and microstructural properties of adductor muscles of Pacific lions-paw scallop (Nodipecten subnodosus). Aquaculture, v. 258, n. 1-4, p. 619-632, 2006. ISSN 0044-8486. BINDU, J. et al. Physico-chemical changes in high pressure treated Indian white prawn (Fenneropenaeus indicus) during chill storage. Innovative Food Science & Emerging Technologies, v. 17, p. 37-42, 2013. ISSN 1466-8564. Disponível em: < http://www.sciencedirect.com/science/article/pii/S1466856412001221 >. BRASIL. Ministério da Agricultura. Regulamento da Inspeção Industrial e Sanitária de Produtos de Origem Animal do Ministério da Agricultura (RIISPOA). Pescados e derivados. Rio de Janeiro, 2017. BRIONES, L. S. et al. Microbial shelf-life extension of chilled Coho salmon (Oncorhynchus kisutch) and abalone (Haliotis rufescens) by high hydrostatic pressure treatment. Food Control, v. 21, n. 11, p. 1530-1535, 2010. ISSN 0956-7135. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0956713510001489 >. BÜYÜKCAN, M.; BOZOGLU, F.; ALPAS, H. Preservation and shelf‐life extension of shrimps and clams by high hydrostatic pressure. International journal of food science & technology, v. 44, n. 8, p. 1495-1502, 2009. ISSN 0950-5423. CHEMISTS, A. O. O. A.; CHEMISTS, A. O. O. A. Official methods of analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemists., 1920. ISBN 0066-961X. CHENG, J.-H. et al. Non-destructive and rapid determination of TVB-N content for freshness evaluation of grass carp (Ctenopharyngodon idella) by hyperspectral imaging. Innovative Food Science & Emerging Technologies, v. 21, p. 179-187, 2014. ISSN 1466-8564. CHEVALIER, D.; LE BAIL, A.; GHOUL, M. Effects of high pressure treatment (100–200 MPa) at low temperature on turbot (Scophthalmus maximus) muscle. Food Research International, v. 34, n. 5, p. 425-429, 2001. ISSN 0963-9969. CONTRERAS-GUZMÁN, E. S. Bioquímica de pescados e derivados. FUNESP, 1994. CRUZ-ROMERO, M.; KELLY, A. L.; KERRY, J. P. Effects of high-pressure and heat treatments on physical and biochemical characteristics of oysters (Crassostrea gigas). Innovative Food Science & Emerging Technologies, v. 8, n. 1, p. 30-38, 2007. ISSN 1466-8564. Disponível em: < http://www.sciencedirect.com/science/article/pii/S1466856406000464 >. CRUZ-ROMERO, M.; KELLY, A. L.; KERRY, J. P. Effects of high-pressure treatment on the microflora of oysters (Crassostrea gigas) during chilled storage. Innovative Food Science & Emerging Technologies, v. 9, n. 4, p. 441-447, 2008. ISSN 1466-8564. Disponível em: < http://www.sciencedirect.com/science/article/pii/S1466856408000362 >. 63 CRUZ-ROMERO, M.; KERRY, J. P.; KELLY, A. L. Changes in the microbiological and physicochemical quality of high-pressure-treated oysters (Crassostrea gigas) during chilled storage. Food Control, v. 19, n. 12, p. 1139-1147, 2008. ISSN 0956-7135. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0956713507002630 >. CRUZ-ROMERO, M. et al. Effects of high pressure treatment on physicochemical characteristics of fresh oysters (Crassostrea gigas). Innovative Food Science & Emerging Technologies, v. 5, n. 2, p. 161-169, 2004. ISSN 1466-8564. DE AZEVEDO GOMES, H. et al. Evaluation of the 2-thiobarbituric acid method for the measurement of lipid oxidation in mechanically deboned gamma irradiated chicken meat. Food Chemistry, v. 80, n. 3, p. 433-437, 2003. ISSN 0308-8146. DORE, I. Shellfish: a guide to oysters, mussels, scallops, clams, and similar products for the commercial user. Van Nostrand Reinhold, 1991. ISBN 0442002033. ERKAN, N.; ÜRETENER, G. The effect of high hydrostatic pressure on the microbiological, chemical and sensory quality of fresh gilthead sea bream (Sparus aurata). European Food Research and Technology, v. 230, n. 4, p. 533-542, 2010. ISSN 1438-2377. FARKAS, D. F.; HOOVER, D. G. High pressure processing. Journal of Food Science, v. 65, p. 47-64, 2000. ISSN 0022-1147. GRAM, L.; HUSS, H. H. Microbiological spoilage of fish and fish products. International Journal of Food Microbiology, v. 33, n. 1, p. 121-137, 1996. ISSN 0168-1605. Disponível em: < http://www.sciencedirect.com/science/article/pii/0168160596011348 >. GRAM, L.; MELCHIORSEN, J. Interaction between fish spoilage bacteria Pseudomonas sp. and Shewanella putrefaciens in fish extracts and on fish tissue. Journal of Applied Bacteriology, v. 80, n. 6, p. 589-595, 1996. ISSN 0021-8847. HATAE, K. et al. Abalone (Hariltis discus): Seasonal variations in chemical composition and textural properties. Journal of food science, v. 60, n. 1, p. 32-35, 1995. ISSN 0022-1147. HE, H. et al. Use of high‐pressure processing for oyster shucking and shelf‐life extension. Journal of Food Science, v. 67, n. 2, p. 640-645, 2002. ISSN 0022-1147. HONG, H.; REGENSTEIN, J. M.; LUO, Y. The importance of ATP-related compounds for the freshness and flavor of post-mortem fish and shellfish muscle: A review. Critical reviews in food science and nutrition, v. 57, n. 9, p. 1787-1798, 2017. ISSN 1040-8398. HOOVER, D. G. Biological effects of high hydrostatic pressure on food microorganisms. Food Technol., v. 43, p. 99-107, 1989. HOWGATE, P. A review of the kinetics of degradation of inosine monophosphate in some species of fish during chilled storage. International journal of food science & technology, v. 41, n. 4, p. 341-353, 2006. ISSN 0950-5423. HSU, K. C. et al. Effect of different high pressure treatments on shucking, biochemical, physical and sensory characteristics of oysters to elaborate a traditional Taiwanese oyster 64 omelette. Journal of the Science of Food and Agriculture, v. 90, n. 3, p. 530-535, 2010. ISSN 0022-5142. HUGHES, B. H. et al. Impact of post-rigor high pressure processing on the physicochemical and microbial shelf-life of cultured red abalone (Haliotis rufescens). Food chemistry, v. 194, p. 487-494, 2016. ISSN 0308-8146. HUIDOBRO, A.; PASTOR, A.; TEJADA, M. Adenosine triphosphate and derivatives as freshness indicators of gilthead sea bream (Sparus aurata). Food Science and Technology International, v. 7, n. 1, p. 23-30, 2001. ISSN 1082-0132. HUIJUAN, Z. et al. High-pressure effects on the mechanism of accumulated inosine 5′-monophosphate. Innovative Food Science & Emerging Technologies, v. 45, p. 330-334, 2018. ISSN 1466-8564. Disponível em: < http://www.sciencedirect.com/science/article/pii/S1466856417310238 >. HUSS, H. H. Quality and quality changes in fresh fish. Food & Agriculture Org., 1995. ISBN 9251035075. JONES, N. Hypoxanthine and other purine-containing fractions in fish muscle as indices of freshness. The technology of fish utilization, p. 179-183, 1965. KAWASHIMA, K.; YAMANAKA, H. Effects of storage temperatures on the post-mortem biochemical changes in scallop [Patinopecten yessoensis] adductor muscle. Bulletin of the Japanese Society of Scientific Fisheries (Japan), 1992. ISSN 0021-5392. KHAN, M. A.; PARRISH, C. C.; SHAHIDI, F. Quality indicators of cultured Newfoundland blue mussels (Mytilus edulis) during storage on ice: microbial growth, pH, lipid oxidation, chemical composition characteristics, and microbial fatty acid contents. Journal of agricultural and food chemistry, v. 53, n. 18, p. 7067-7073, 2005. ISSN 0021-8561. LAKSHMANAN, R.; MISKIN, D.; PIGGOTT, J. Quality of vacuum packed cold-smoked salmon affected by high-pressure processing during refrigerated storage. Journal of the Science of Food and Agriculture, v. 85, p. 655-661, 2005. LI, D. et al. Degradation of adenosine triphosphate, water loss and textural changes in frozen common carp (Cyprinus carpio) fillets during storage at different temperatures. International Journal of Refrigeration, v. 98, p. 294-301, 2019. ISSN 0140-7007. Disponível em: < http://www.sciencedirect.com/science/article/pii/S014070071830447X >. LI, D. et al. The role of microorganisms in the degradation of adenosine triphosphate (ATP) in chill-stored common carp (Cyprinus carpio) fillets. Food Chemistry, v. 224, p. 347-352, 2017. ISSN 0308-8146. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0308814616320829 >. LI, T. et al. Quality enhancement in refrigerated red drum (Sciaenops ocellatus) fillets using chitosan coatings containing natural preservatives. Food Chemistry, v. 138, n. 2, p. 821-826, 2013. ISSN 0308-8146. Disponível em: < http://www.sciencedirect.com/science/article/pii/S030881461201833X >. 65 LINTON, M.; MC CLEMENTS, J.; PATTERSON, M. Changes in the microbiological quality of shellfish, brought about by treatment with high hydrostatic pressure. International journal of food science & technology, v. 38, n. 6, p. 713-727, 2003. ISSN 0950-5423. LLANOS, J. et al. Atypical bacteria accompanying the scallop Argopecten purpuratus. Investigaciones Marinas, v. 30, p. 57-59, 2002. MASSA, A.; PAREDI, M.; CRUPKIN, M. A chemical assessment of freshness in stored adductor muscle from scallops. Brazilian Journal of Chemical Engineering, v. 20, n. 2, p. 147-152, 2003. ISSN 0104-6632. MASSA, A. E.; PAREDI, M. E.; CRUPKIN, M. Nucleotide catabolism in cold stored adductor muscle of scallop (Zygochlamys patagonica). Journal of food biochemistry, v. 26, n. 4, p. 295-305, 2002. ISSN 0145-8884. MEDINA-MEZA, I. G.; BARNABA, C.; BARBOSA-CÁNOVAS, G. V. Effects of high pressure processing on lipid oxidation: A review. Innovative Food Science & Emerging Technologies, v. 22, p. 1-10, 2014/04/01/ 2014. ISSN 1466-8564. Disponível em: < http://www.sciencedirect.com/science/article/pii/S1466856413001653 >. MENDES, R.; QUINTA, R.; NUNES, M. L. Changes in baseline levels of nucleotides during ice storage of fish and crustaceans from the Portuguese coast. European Food Research and Technology, v. 212, n. 2, p. 141-146, 2001. ISSN 1438-2377. OCAÑO‐HIGUERA, V. M. et al. Postmortem biochemical and textural changes in the adductor muscle of catarina scallop stored at 0C. Journal of Food Biochemistry, v. 30, n. 4, p. 373-389, 2006. ISSN 0145-8884. ODEYEMI, O. A. et al. Seafood spoilage microbiota and associated volatile organic compounds at different storage temperatures and packaging conditions. International Journal of Food Microbiology, v. 280, p. 87-99, 2018. ISSN 0168-1605. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0168160517305603 >. OGAWA, M.; MAIA, E. L. Manual de pesca: ciência e tecnologia do pescado. São Paulo: Varela, v. 1, p. 430, 1999. PACHECO-AGUILAR, R. et al. Postmortem changes in the adductor muscle of Pacific lions-paw scallop (Nodipecten subnodosus) during ice storage. Food chemistry, v. 106, n. 1, p. 253-259, 2008. ISSN 0308-8146. PÉREZ-WON, M.; TABILO-MUNIZAGA, G.; BARBOSA-CÁNOVAS, G. V. Effects of ultra high pressure on bay scallop (Aequipecten irradians) adductor muscles. Food science and technology international, v. 11, n. 6, p. 477-484, 2005. ISSN 1082-0132. PONCE-DÍAZ, G. et al. Nodipecten spp. como recurso pesquero. Biología y cultivo de los pectínidos del género Nodipecten. Limusa, Mexico DF, p. 11-26, 2011. QIU, W.-Q. et al. Analysis of 10 nucleotides and related compounds in Litopenaeus vannamei during chilled storage by HPLC-DAD. LWT - Food Science and Technology, v. 67, p. 187- 66 193, 2016. ISSN 0023-6438. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0023643815303388 >. RENDUELES, E. et al. Microbiological food safety assessment of high hydrostatic pressure processing: A review. LWT - Food Science and Technology, v. 44, n. 5, p. 1251-1260, 2011. ISSN 0023-6438. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0023643810003786 >. RONG, C. et al. Characterization of microbial community in high-pressure treated oysters by high-throughput sequencing technology. Innovative Food Science & Emerging Technologies, v. 45, p. 241-248, 2018. ISSN 1466-8564. Disponível em: < http://www.sciencedirect.com/science/article/pii/S1466856417305659 >. RUIZ-CAPILLAS, C.; HORNER, W.; GILLYON, C. Effect of packaging on the spoilage of king scallop (Pecten maximus) during chilled storage. European Food Research and Technology, v. 213, n. 2, p. 95-98, 2001. ISSN 1438-2377. SAITO, T. A new method for estimating the freshness of fish. Nippon Suisan Gakkaishi, v. 24, p. 749-750, 1959. SHAO, Y. et al. Effect of ultra-high pressure treatment on shucking and meat properties of red swamp crayfish (Procambarus clarkia). LWT-Food Science and Technology, v. 87, p. 234-240, 2018. ISSN 0023-6438. STOCCHI, V. et al. Simultaneous extraction and reverse-phase high-performance liquid chromatographic determination of adenine and pyridine nucleotides in human red blood cells. Analytical biochemistry, v. 146, n. 1, p. 118-124, 1985. ISSN 0003-2697. SWANSON, K.; PETRAN, R.; HANLIN, J. Culture methods for enumeration of microorganisms. Compendium of methods for the microbiological examination of foods, v. 4, p. 53-62, 2001. TEIXEIRA, B. et al. Effect of high pressure processing in the quality of sea bass (Dicentrarchus labrax) fillets: Pressurization rate, pressure level and holding time. Innovative Food Science & Emerging Technologies, v. 22, p. 31-39, 2014. ISSN 1466-8564. Disponível em: < http://www.sciencedirect.com/science/article/pii/S1466856413002038 >. VAL, Adalberto L. et al. Effects of experimental anaemia on intra‐erythrocytic phosphate levels in rainbow trout, Oncorhynchus mykiss. Journal of fish biology, v. 45, n. 2, p. 269-277, 1994. VARLIK, C. et al. Sensory evaluation and determination of some physical and chemical characteristics of shrimp during gold storage. Turkish Journal of Veterinary and Animal Sciences, v. 24, n. 3, p. 181-186, 2000. ISSN 1300-0128. VAZQUEZ-ORTIZ, F. et al. Application of the freshness quality index (K value) for fresh fish to canned sardines from Northwestern Mexico. Journal of Food Composition and Analysis, v. 10, n. 2, p. 158-165, 1997. ISSN 0889-1575. 67 YI, J. et al. Shucking of bay scallop (Argopecten irradians) using high hydrostatic pressure and its effect on microbiological and physical quality of adductor muscle. Innovative Food Science & Emerging Technologies, v. 18, p. 57-64, 2013. ISSN 1466-8564. YIN, M. et al. α‐Tocopherol and ascorbate delay oxymyoglobin and phospholipid oxidation in vitro. Journal of Food Science, v. 58, n. 6, p. 1273-1276, 1993. ISSN 0022-1147.por
dc.subject.cnpqCiência e Tecnologia de Alimentospor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/67788/2019%20-%20Rosiane%20Costa%20Bonfim.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5294
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2021-12-27T12:09:42Z No. of bitstreams: 1 2019 - Rosiane Costa Bonfim.pdf: 1476261 bytes, checksum: e5043dc608fa9a7426c6f6f1d66817f9 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-12-27T12:09:43Z (GMT). No. of bitstreams: 1 2019 - Rosiane Costa Bonfim.pdf: 1476261 bytes, checksum: e5043dc608fa9a7426c6f6f1d66817f9 (MD5) Previous issue date: 2019-02-26eng
Appears in Collections:Doutorado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2019 - Rosiane Costa Bonfim.pdf2019 - Rosiane Costa Bonfim1.44 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.