Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9272
Full metadata record
DC FieldValueLanguage
dc.contributor.authorValadão, Romulo Cardoso
dc.date.accessioned2023-12-21T18:37:04Z-
dc.date.available2023-12-21T18:37:04Z-
dc.date.issued2014-12-19
dc.identifier.citationVALADÃO, Romulo Cardoso. Produção de transglutaminase microbiana e aplicação em pão sem-glúten. 2014. 78 f. Tese (Doutorado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2014.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9272-
dc.description.abstractAs transglutaminases (EC 2.3.2.13) são transferases capazes de catalisar reações do tipo acil-transferência entre grupos γ-carboxiamida de resíduos de glutamina e grupos amina. As transglutaminases microbianas (MTGases) têm uma grande importância na indústria alimentícia, pelo fato de causarem efeito polimerizante em alimentos ricos em proteína, originando mudanças físicas na estrutura destes e portanto, aumentando consideravelmente o seu valor agregado. Este trabalho consistiu em produzir MTGase, a partir de uma linhagem microbiana selecionada utilizando coprodutos agroindustriais, em fermentação submersa (FS) e no estado sólido (FES). Adicionalmente, a enzima foi concentrada, caracterizada e aplicada na elaboração de pão sem glúten. Dentre 116 linhagens testadas, a selecionada foi identificada como Streptosporangium roseum V02 (ATCC 12428), pois produziu a enzima com maior atividade. Foram avaliadas as influências de componentes do meio de cultivo e de condições de processo, como: amido, peptona, extrato de levedura, farinha de arroz, água de maceração de milho (AMM), pH e concentração de inóculo na FS, e concentração de inóculo, relação água/farelo de trigo, AMM, KH2PO4 e MgSO4 para FES. Na FS foi proposto meio de cultivo contendo (g/L): farinha de arroz (40,0), peptona (30,0), K2HPO4 (2,0), KH2PO4 (2,0) e MgSO4 (1,0), pH 7,0 e a concentração de inóculo de 107 UFC/mL. A maior produção de MTGase foi 0,2 U/mL, em 4 dias de fermentação. Na FES foi proposto meio de cultivo contendo: água/farelo de trigo (80 mL/100 g), KH2PO4 (0,1 %) e MgSO4 (0,1 %) e micronutrientes, pH 7,0 e concentração de inóculo de 106 UFC/g, sendo que a maior produção da enzima foi 0,8 U/gms, em 8 dias de fermentação. O extrato enzimático produzido por FES foi concentrado por liofilização, utilizando como agente crioprotetor sacarose a 5 % (m/m). A temperatura e pH ótimos da enzima foram de 45 °C e 6,6, respectivamente. A enzima apresentou estabilidade a 35 °C, embora tenha apresentado estabilidade moderada a 50 °C, a qual levou um período de 30 min para perder 50 % de sua atividade. A 60 e 70 °C, a enzima perdeu quase totalmente sua atividade após período de 30 e 10 min, respectivamente. A adição de MTGase à massa de pão sem glúten influenciou no aumento do volume específico e na dureza do pão sem glúten. Foi possível observar que, com uma dosagem de 0,2 U/100 g (base farinha) de MTGase S. roseum V02, houve aumento de 13 % e 62 % no volume específico e na dureza do pão, respectivamente. Ao aumentar a concentração da enzima MTGase S. roseum V02 para 2,0 U/100 g (base farinha), o volume específico do pão aumentou apenas 6 % e a dureza aumentou 70 %, em relação ao controle (sem MTGase). Ao aplicar a enzima comercial, a adição de 0,2 U/100 g (base farinha) não resultou em aumento significativo no volume e na dureza da massa em relação ao controle, enquanto que, a aplicação de 0,2 U/ 100 g (base farinha) resultou em aumento de 11 % e 46 % no volume específico e na dureza, respectivamente. Os resultados da aplicação em massa de pão sem-glúten mostraram que a enzima MTGase S. roseum V02 é promissora, apresentando resultados melhores que a comercial quando aplicada à massa a 0,2 U/100 g (base farinha).por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectTransglutaminasepor
dc.subjectStreptosporangium roseumpor
dc.subjectpão sem glútenpor
dc.subjectfree-gluten breadeng
dc.titleProdução de transglutaminase microbiana e aplicação em pão sem-glútenpor
dc.title.alternativeMicrobial transglutaminase production and gluten-free bread applicationeng
dc.typeTesepor
dc.description.abstractOtherThe transglutaminases (EC 2.3.2.13) are transferase enzymes capable of catalyzing reactions such as acyl transfer between γ-carboxamide groups of glutamine residues and amino groups. Microbial transglutaminases (MTGases) have a great importance in food industry, because they polymerize foods rich in protein, leading to physical changes in their structure and consequently increasing their value considerably. The aim of this work was to produce MTGase from selected microbial strain using agro-industrial residues by Submerged Fermentation (SF) and by Solid State Fermentation (SSF). Additionally, the crude enzyme was concentrated, characterized and used in gluten-free bread preparation. 116 strains were tested. The strain Streptosporangium roseum V02 was selected because it produced higher enzyme activities. Furthermore, the influence of growth medium components and process conditions, such as soluble starch, peptone, yeast extract, rice flour, corn steep liquor (CSL), pH and inoculum concentration by SF, and inoculum concentration, water/wheat bran, CSL, KH2PO4 and MgSO4 by SSF was evaluated. for the SF experiments, the proposed medium (pH 7.0), in g·L-1, consisted of 40.0 rice flour, 30.0 peptone, 2.0 K2HPO4, 2.0 KH2PO4 and 1.0 MgSO4, and inoculum concentration of 107 CFU/mL-1. The MTGase highest production was 0.2 U/mL on 4 days of fermentation by SF. For the SSF experiments, the proposed medium composition (pH 7.0) consisted of 80 mL/100 g water/wheat bran, 0.1 % KH2PO4, 0.1 % MgSO4 and micronutrients, and an inoculum concentration of 106 CFU·g-1. The highest enzyme production was 0.8 U/gms on 8 days of fermentation. The crude enzyme produced by SSF was lyophilized using sucrose (5% w/w) as a lyoprotectant. The optimum temperature and pH of the enzyme were 45 °C and 6.6, respectively. The enzyme was stable at 35 °C, although it has shown mild stability at 50 °C, temperature, which the enzyme had lost 50 % of its activity in a period of 30 min. At 60 and 70 °C, the enzyme lost its activity almost completely after a period of 30 and 10 min, respectively. The addition of MTGase in the gluten-free bread dough increased specific volume and hardness. It was observed that 0.2 U/100 g (MTGase S. roseum V02 activity on flour basis) increased the specific volume and hardness in 13 % and 62 %, respectively. Increasing the concentration of the enzyme MTGase S. roseum V02 to 2.0 U/100 g (flour basis), the specific volume and hardness increased 6 % and 70 %, respectively, when compared to the control sample. A commercial enzyme was used in a concentration of 0.2 U/100 g (flour basis) and it was not observed a significant increase on the specific volume and hardness of the dough, when compared to the control. On the other hand, a higher concentration resulted in a significant increase on the specific volume and hardness to 11 % and 46 %, respectively. The application of 0.2 U/100g MTGase S. roseum V02 in a flour basis showed better results comparing to the commercial enzyme in the gluten-free bread dough preparationeng
dc.contributor.advisor1Damaso, Monica Caramez Triches
dc.contributor.advisor1ID02149972786por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1882458050626580por
dc.contributor.advisor-co1Santos, Lucielen Oliveira dos
dc.contributor.advisor-co1ID93228333000por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/6271055569087816por
dc.contributor.referee1Silva, Lucinéia Gomes da
dc.contributor.referee2Couri, Sonia
dc.contributor.referee3Luchese, Rosa Helena
dc.contributor.referee4Saldanha, Tatiana
dc.creator.ID07244767765por
dc.creator.Latteshttp://lattes.cnpq.br/4333132041093499por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospor
dc.relation.referencesABIP - Associação Brasileira da Indústria da Panificação e Confeitaria – Disponível em: < http://www.abip.org.br/noticias_internas.aspx?cod=164 > Acesso: 20 de outubro de 2014. AGGELOPOULOS, T.; KATSIERIS, K.; BEKATOROU, A.; PANDEY, A.; BANAT, I. M.; KOUTINAS, A. A. Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chemistry, v. 145, p. 710–716, 2014. ANDO, H.; ADACHI, M.; UMEDA, K.; MATSUURA, A. NONAKA, M. UCHIO, R.; TANAKA, H.; MOTOKI, M. Purification and characteristics of a novel transglutaminase derived from microorganisms. Agricultural and Biological Chemistry, v. 53, n. 10, p. 2613-2617, 1989. ANISHA, G.S.; ROJAN, P.J.; NICEMOL, J.; NILADEVI, K.N.; PREMA, P. Production and characterization of partially purified thermostable a-galactosidases from Streptomyces griseoloalbus for food industrial applications. Food Chemistry, v. 111, p. 631–635, 2008. ANVISA. “Regulamento Técnico sobre Enzimas e Preparações Enzimáticas para Uso na Produção de Alimentos Destinados ao Consumo Humano”. Resolução RDC n.º 205, de 14 novembro de 2006. Disponível em: http://www.anvisa.gov.br. Acesso: 01/10/2014. ARRIZUBIETA, M. J. Transglutaminase. In: POLAINA, J.; MacCABE, A. P. Industrial Enzymes – Structure, Functions and Applications. Ed. Springer, 2007. Chapter 32. p. 567-581. ASSOCIATION OF OFFICIAL AGRICULTURAL CHEMISTS (AOAC). Official Methods of Analysis of the Association of Official Agriculture Chemists. Washington, 2005. AWAD, G. E.A.; HELAL, M. M. I.; DANIAL, E. N.; ESAWY, M. A. Optimization of phytase production by Penicillium purpurogenum GE1 under solid state fermentation by using Box–Behnken design. Saudi Journal of Biological Sciences, v. 21, n. 1, p. 81-88, 2014. BAGAGLI, M. P.; SATO, H. H. Two-staged temperature and agitation strategy for the production of transglutaminase from a Streptomyces sp. isolated from Brazilian soils. Applied Biochemistry and Biotechnology, v. 170, n. 5, p. 1057-1065, 2013. BARRIOS-GONZÁLEZ, J. Solid-state fermentation: Physiology of solid medium, its molecular basis and applications. Process Biochemistry, v. 47, p. 175–185, 2012. Bergey's Manual of Systematic Bacteriology. v. 4, 2nd edition, Published by Williams & Wilkins, USA, 1989, 440p. BINOD, P.; PALKHIWALA, P.; GAIKAIWARI, R.; NAMPOOTHIRI, K. M.; DUGGAL, A.; DEY, K.; PANDEY, A. Industrial Enzymes – Present status and future perspectives for India. Journal of Scientific and Industrial Research, v. 72, p. 271-286, 2013. 68 BORZANI, W.; SCHMIDELL, W.; LIMA, U. A.; AQUARONE, E. Biotecnologia Industrial – Fundamentos v. 1, São Paulo: Editora Edgard Blücher Ltda. 2ª Reimpressão. 2007, 254p. BOUDJELLAA, H.; BOUTIA, K.; ZITOUNIA, A.; MATHIEUB, F.; LEBRIHIB, A.; SABAOU, N. Taxonomy and chemical characterization of antibiotics of Streptosporangium Sg 10 isolated from a Saharan soil. Microbiological Research, v. 161, p. 288-298, 2006. BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, v. 72, p. 248–254, 1976. CAUVAIN, S. P.; YOUNG, L. S. Tecnologia da panificação. 2ª edição. Tradução de: Carlos David Szlak. Barueri, SP: Manole, 2009. 418p. CHARNEY, J.; TOMARELLI, R. M.; A colorimetric method for the determination of the proteolytic activity of duodenal juice. Journal Biological Chemistry, v. 170, n. 23, p.501-505, 1947. CHEN, H. Z.; Advances in solid-state fermentation. Research and Application of Microbiology, v. 3, p. 7–10, 1992. CHEN, H.; ZHAO, Z.; LI, H. The effect of gas double-dynamic on mass distribution in solid-state fermentation. Enzyme and Microbial Technology, v. 58–59, p. 14–21, 2014. COUSSONS P.J., PRICE N.C., KELLY S.M., SMITH B., SAWYER L. Factors that govern the specificity of transglutaminase-catalysed modification of proteins and peptides. Biochemistry Journal, v. 282, p. 929–930, 1992. COUTO, S. R.; SANROMAN, M. A. Application of solid-state fermentation to food industry - A review. Journal of Food Engineering, v. 76, p. 291–302, 2006. CUI, L.; DU, G.; ZHANG, D.; LIU, H.; CHEN, J. Purification and Characterization of Transglutaminase from a Newly Isolated Streptomyces hygroscopicus. Food Chemistry, v. 105, p. 612–618, 2007. DAMASO, M. C. T.; VALADÃO, R. C; COURI, S.; VERMELHO, A. B. Assay Method for Transglutaminase Activity. In: VERMELHO, A. B., COURI, S. Methods to Determine Enzymatic Activity. Ed. Bentham Science Publishers, 2013. Chapter 9. p. 208-225. DAMODARAN, S.; AGYARE, K. K. Effect of microbial transglutaminase treatment on thermal stability and pH-solubility of heat-shocked whey protein isolate. Food Hydrocolloids. v. 30, p. 12-18, 2013. DATE, M.; YOKOYAMA, K.; UMEZAWA, Y.; MATSUI, H.; KIKUCHI, Y. High level expression of Streptomyces mobaraensis transglutaminase in Corynebacterium glutamicum using a chimeric pro-region from Streptomyces cinnamoneus transglutaminase. Journal of Biotechnology, v. 110, p. 219-224, 2004. 69 DONDERO, M.; FIGUEROA, V.; MORALES, X.; CUROTTO, E. Transglutaminase effects on gelation capacity of thermally induced beef protein gels, Food Chemistry, v. 99, p. 546-554, 2006. FACCHIANO, A.; FACCHIANO, F. Transglutaminases and their substrates in biology and human diseases: 50 years of growing. Amino Acids, v. 36, p. 599–614, 2009. GASPAR, A. L. C.; GÓES-FAVONI, S. P. Action of microbial transglutaminase (MTGase) in the modification of food proteins: A review. Food Chemistry. v. 171, p. 315–322, 2015. GERBER, U.; JUCKNISCHKE, U.; PUTZIEN, S.; FUCHSBAUER, H-L. A rapid and simple method for the purification of transglutaminase from Streptoverticillium mobaraense. Biochemistry Journal, v. 299, p. 825-829, 1994. GILISSEN, L. J. W. J.; van deer VAN DER MEER, I. M.; SMULDERS, M. J. M. Reducing the incidence of allergy and intolerance to cereals. Journal of Cereal Science. v. 59, p.337-353, 2014. GOMES, C. A. O. Produção de enzimas despolimerizantes por fermentação em meio semi-sólido por Aspergillus niger 3T5B8. Dissertação de Mestrado, Departamento de Tecnologia de Alimentos, Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brasil, 78 p, 1995. GROSSOWICZ, N.; WAINFAN, E.; BOREK, E.; WAELSCH, H. The enzymatic formation of hydroxamic acids from glutamine and asparagine. Journal of Biological Chemistry, v. 187, p. 111-125, 1950. GUERRA-RODRÍGUEZ, E.; VÁZQUEZ, M. Evaluation of a novel low-cost culture medium containing exclusively milk, potato and glycerol for microbial transglutaminase production by Streptomyces mobaraensis. Chemical Engineering Research and Design, v. 92, p. 784–791, 2014. GUJRAL, H. S.; ROSELL, C. M. Functionality of rice flour modified with a microbial transglutaminase. Journal of Cereal Science, v. 39, n. 2, p. 225-230, 2004. GUO, J.; ZHANG, Y.; YANG, X. A novel enzyme cross-linked gelation method for preparing food globular protein-based transparent hydrogel. Food Hydrocolloids. v. 26, p. 277-285, 2012. HERNÁNDEZ-ALMANZA, A.; MONTAÑEZ-SÁENZ, J.; MARTÍNEZ-ÁVILA, C.; RODRÍGUEZ-HERRERA, R.; AGUILAR, C. N. Carotenoid production by Rhodotorula glutinis YB-252 in solid-state fermentation. Food Bioscience, v. 7, p. 31–36, 2014. IUBMB - International Union of Biochemistry and Molecular Biology – Disponível em: < http://www.enzyme-database.org/query.php?name=transglutaminase > Acesso: 08 de outubro de 2014. JAROS, D.; PARTSCHEFELD, C.; HENLE, T.; ROHM, H. Transglutaminase in dairy products: chemistry, physics, applications. Journal of Texture Studies, v. 37, n. 2, p. 113-155, 2006. 70 JIANG, X.; CHEN, D.; HONG, S.; WANG, W.; CHEN, S.; ZOU, S. Identification, characterization and functional analysis of a GH-18 chitinase from Streptomyces roseolus. Carbohydrate Polymers, v. 87, p. 2409 – 2415, 2012. JING, D. Improving the simultaneous production of laccase and lignin peroxidase from Streptomyces lavendulae by medium optimization. Bioresource Technology, v. 101, p. 7592–7597, 2010. JUNQUA, M.; DURAN, R.; GANCET, C.; GOULAS, P. Optimization of microbial transglutaminase production using experimental designs. Applied Microbiology and Biotechnology, v. 48, p.730-734, 1997. KASPER, J. C.; WINTER, G.; FRIESS, W. Recent advances and further challenges in lyophilization. European Journal of Pharmaceutics and Biopharmaceutics, v. 85 p. 162–169, 2013. KOBAYASHI, K.; SUZUKI, S.; IZAWA, Y.; YOKOZEKI, K.; MIWA, K.; YAMANAKA, S. Transglutaminase in sporulating cells of Bacillus subtilis. Journal of General Applied Microbiology, v. 44, p. 85-91, 1998. LEHNINGER, A. L.; NELSON, D. L.; COX, M.M. Princípios de Bioquímica. 4ª edição, São Paulo:Sarvier, 2006. 1202p. LIMA, A. L. G.; NASCIMENTO, R. P., BOM, E. P. S.; COELHO, R. R. R. Streptomyces drozdowiczii cellulase production using agro-industrial by products and its potential use in the detergent and textile industries. Enzyme and Microbial Technology, v. 37, p. 272-277, 2005. LIN, S.; HSIEH, Y.; LAI, L.; CHAO, M.; CHU, W. Characterization and Large-scale Production of Recombinant Streptoverticillium platensis Transglutaminase. Journal of Industrial Microbiology and Biotechnology, v. 35, p.981–990, 2008. LIN, Y.; CHAO, M.; LIU, C.; TSENG, M.; CHU, W. Cloning of the gene coding for transglutaminase from Streptomyces platensis and its expression in Streptomyces lividans, Process Biochemistry, v. 41, p. 519-524, 2006. LINDFORS, K.; LÄHDEAHO, M. L.; KALLIOKOSKI, S.; KURPPA, K.; COLLIN, P.; MÄKI, M.; KAUKINEN, K. Future treatment strategies for celiac disease. Expert Opinion Therapeutic Targets, v. 16, p. 665-675, 2012. LORAND, L. Transglutaminase - Remembering Heinrich Waelsch. Neurochemistry International, v. 40, p. 7–12, 2002. LORENZEN, P. C.; NEVE, H.; MAUTNER, A.; SCHLIMME, E. Effect of enzymatic cross-linking of milk proteins on functional properties of set-style yoghurt. International Journal of Dairy Technology, v. 55, n. 3, p. 152-157, 2002. LU, S.; ZHOU, N.; TIAN, Y.; LI, H.; CHEN, J. Purification and properties of transglutaminase from Streptoverticillium mobaraense. Journal of Food Biochemistry, v. 27, p. 109–125, 2003. 71 MACEDO, J. A.; SETTE, L. D.; SATO, H. H. Optimization of medium composition for transglutaminase production by a Brazilian soil Streptomyces sp. Electronic Journal of Biotechnology, v. 10, n.(4, p. 618-626, 2007. MAHMOOD, W. A. Production of Transglutaminase by a Local Streptomyces Isolate Using Wheat Bran. Jordan Journal of Agricultural Sciences, v. 9, n. 1, p. 33-42, 2013. MEIYING, Z.; GUOCHENG, D.; JIAN, C. pH control strategy of batch microbial transglutaminase production with Streptoverticillium mobaraense. Enzyme and Microbial Technology, v. 31,p. 477–481, 2002. MOTOKI, M; SEGURO, K. Transglutaminase and its use for food processing. Trends in Food Science & Technology, v. 9, p. 204-210, 1998. NAGY, V.; SZAKACS, G. Production of transglutaminase by Streptomyces isolates in solid-state fermentation. Letters in Applied Microbiology, v. 47, p.122–127, 2008. NEVES, M. C. P.; GAVA, C. A. T. Actinomicetos no solo. Portal do Agronegócio. Disponível em: <http://www.portaldoagronegocio.com.br/conteudo.php?id=12352. Acesso: 10 de maio de 2010. NIELSEN, P. M. Reactions and potential industrial applications of transglutaminase. Review of literature and patents. Food Biotechnology, v. 9, n.3, p. 119-156, 1995. NIGAM, P. S.; PANDEY, A. Biotechnology for Agro-Industrial Residues Utilization. Utilization of Agro-Residues. Springer Science+Business Media B.V. ISBN 978-1-4020-9941-0, e-ISBN 978-1-4020-9942-7, 466p, 2009. NOLAN, M.; SIKORSKI, J.; JANDO, M.; LUCAS, S.; LAPIDUS, A.; DEL RIO, T. G.; CHEN, F.; TICE, H.; PITLUCK, S.; CHENG, J.; CHERTKOV, O.; SIMS, D.; MEINCKE, L.; BRETTIN, T.; HAN, C.; DETTER, J. C.; BRUCE, D.; GOODWIN, L.; LAND, M.; HAUSER, L.; CHANG, Y.; JEFFRIES, C. D.; IVANOVA, N.; MAVROMATIS, K.; MIKHAILOVA, N.; CHEN, M.; PALA-NIAPPAN, K.; CHAIN, P.; ROHDE, M.; GÖKER, M.; BRISTOW, J.; EI-SEN, J. A.; MARKOWITZ, V.; HUGENHOLTZ, P.; KYRPIDES, N. C.; KLENK, H. Complete genome sequence of Streptosporangium roseum type strain (NI 9100T). Standards in Genomic Sciences, v. 2, p. 29-37, 2010. OLIVEIRA, E. A.; MAUGERI, F. Effects of lyophilization on catalytic properties of immobilized fructosyltransferase from Rhodotorula sp. LEB-V10. Food and Bioproducts Processing, v. 91, p. 609–616, 2013. PAYNE, T. Propriedades Básicas da Transglutaminase. In: Ajinomoto corporation Folder. 2000. PFEFFERLE, C.; THEOBALD, U.; GURTLER, H.; FIEDLER, H. Improved secondary metabolite production in the genus Streptosporangium by optimization of the fermentation conditions. Journal of Biotechnology, v. 80, p. 135–142, 2000. 72 PIPER J.L., GRAY G.M., KHOSLA C. High selectivity of human tissue transglutaminase for immunoactive gliadin peptides: implications for celiac sprue. Biochemistry, v. 41(1), p.386–393, 2002. PLATAS, G.; PELÁEZ, F.; COLLADO, J.; MARTINEZ, H.; DiEZ, M. T. Nutritional preferences of a group of Streptosporangium soil isolates. Journal of Bioscience and Bioengineering, v. 88, n. 3, p. 269-275, 1999. PONGJARUVAT, W.; METHACANON, P.; SEETAPAN, N.; FUONGFUCHAT, A.; GAMONPILAS, C. Influence of pregelatinised tapioca starch and transglutaminase on dough rheology and quality of gluten-free jasmine rice breads. Food Hydrocolloids, v. 36, p. 143-150, 2014. PORTILLA-RIVERA, O. M., TÉLLEZ-LUIS, S. J., LEÓN, J. A. R. Production of Microbial Transglutaminase on Media Made from Sugar Cane Molasses and Glycerol. Food Technology Biotechnology. v. 47, n. 1, p. 19–26, 2009. QUEIROZ, M; LOPES, J. D. S. Curso básico de panificação. Viçosa, MG: CPT – Centro de Produções Técnicas, 2008, 194p. RAMOS, P. S. R. Influência de Emulsificantes e da Enzima Transglutaminase no Desenvolvimento de Pães Modeláveis Sem Glúten. Mestrado Profissional em Ciência e Tecnologia de Alimentos do Programa de Ciência e Tecnologia de Alimentos (PCTA-IFRJ), RJ, 78p, 2013. RENZETTI, S.; BEHR, J.; VOGEL, R. F.; BARBIROLI, A.; IAMETTI, S; BONOMI, F.; ARENDT, E. K. Transglutaminase treatment of brown rice flour: A chromatographic, electrophoretic and spectroscopic study of protein modifications. Food Chemistry v. 131,p. 1076–1085, 2012. RENZETTI, S.; BEHR, J.; VOGEL, R.; ARENDT, E. K. Transglutaminase polymerisation of buckwheat (Fagopyrum esculentum Moench) proteins. Journal of Cereal Science, v. 48, p.747–754, 2008. RIBOTTA, P. D.; COLOMBO, A.; ROSELL, C. M. Enzymatic modifications of pea protein and its application in protein cassava and corn starch gels. Food Hydrocolloids. v. 27, p. 185-190, 2012. RODRIGUES, M. I.; IEMMA, A. F. Planejamento de Experimentos e Otimização de Processos. 2ª. Ed. Campinas, SP: Casa do Espírito Amigo Fraternidade Fé e Amor, 2009, 618p. SALGADO, J. M.; MAX, B.; RODRÍGUEZ-SOLANA, R.; DOMÍNGUEZ, J. M. Purification of ferulic acid solubilized from agroindustrial wastes and further conversion into 4-vinyl guaiacol by Streptomyces setonii using solid state fermentation. Industrial Crops and Products, v. 39, p. 52– 61, 2012. SANTOS, T. C.; GOMES, D. P. P.; BONOMO, R. C. F.; FRANCO, M. Optimization of solid state fermentation of potato peel for the production of cellulolytic enzymes. Food Chemistry, v. 133, p. 1299–1304, 2012. 73 SARITHA, M.; ARORA, A.; SINGH, S.; NAIN, L. Streptomyces griseorubens mediated delignification of paddy straw for improved enzymatic saccharification yields. Bioresource Technology, v. 135, p. 12–17, 2013. SCHIMIDELL, W., LIMA, U. A., AQUARONE, E., BORZANI, W. Biotecnologia Industrial – Engenharia Bioquímica. v. 2, São Paulo: Edgar Blucher, 2007, 541p. SEBESS, P. Técnicas de padaria profissional. Tradução de: Renato Freire. Rio de Janeiro, RJ: Senac Nacional, 320p, 2010. SHIRLING, E. B.; GOTTLIEB, D. Methods for characterization of Streptomyces species. International Journal Systematic Bacteriology, v. 16, n. 3, p. 313-340, 1966. SOARES, P. A. G.; VAZ, A. F. M.; CORREIAS, M. T. S.; PESSOA JR., A.; CUNHA, M. G. C. Purification of bromelain from pineapple wastes by ethanol precipitation. Separation and Purification Technology, v. 98, p. 389–395, 2012. SOMOGYI, M. Notes on sugar determination, Journal of Biological Chemistry, v.195, p. 267-272, 1952. SOUZA, C. F. D.; FLORES, S. H.; AYUB, M. A. Z. Optimization of medium composition for the production of transglutaminase by Bacillus circulans BL32 using statistical experimental methods. Process Biochemistry, v. 41, n.5, p. 1186-1192, 2006. SOUZA, C. F. V.; MATOS, G. S.; FLORES, S. H.; AYUB, M. A. Environmental effects on transglutaminase production and cell sporulation in submerged cultivation of Bacillus circulans. Applied Biochemistry and Biotechnology, v. 158, p. 302–312, 2009b. SOUZA, C. F. V.; RODRIGUES, R. C.; AYUB, M. A. Effects of Oxygen Volumetric Mass Transfer Coefficient on Transglutaminase Production by Bacillus circulans BL32, Biotechnology and Bioprocess Engineering, v. 14, p. 571-576, 2009a. SOUZA, C. F. V.; RODRIGUES, R. C.; HECK, J. X.; AYUB, M. A. Optimization of transglutaminase extraction produced by Bacillus circulans BL32 on solid-state cultivation. Journal of Chemical Technology and Biotechnology, v. 83, p. 1306–1313, 2008. SOUZA, C. F. V.; VENZKE, J. G.; FLORES, S. H.; AYUB, M. A. Z. Enzymatic Properties of Transglutaminase Produced by a New Strain of Bacillus circulans BL32 and its Action Over Food Proteins. LWT-Food Science and Technology, v. 44, n.2, p. 443-450, 2011. STEFFOLANI, M. E.; RIBOTTA, P. D.; PEREZ, G. T.; PUPPO, M. C.; LEÓN, A. E. Use of Enzymes to Minimize Dough Freezing Damage. Food Bioprocess Technology, v. 5, p. 2242-2255, 2012. STORCK, C. R.; PEREIRA, J. M.; PEREIRA, G. W.; RODRIGUES, A. O.; GULARTE, M. A.; DIAS, A. R. G. Características tecnológicas de pães elaborados com farinha de arroz e transglutaminase. Brazilian Journal of Food Technology, II SSA, janeiro, p. 71-77, 2009. 74 STORCK, C. R.; ZAVAREZE, E. R.; GULARTE, M. A.; ELIAS, M. C.; ROSELL, C. M.; DIAS, A. R. G. Protein enrichment and its effects on gluten-free bread characteristics. LWT - Food Science and Technology, v. 53, p. 346-354, 2013. SUZUKI, S.; IZAWA, Y.; KOBAYASHI, K.; ETO, Y.; YAMANAKA, S.; KUBOTA, K.; YOKOZEKI, K. Purification and Characterization of Novel Transglutaminase from Bacillus subtilis Spores. Bioscience, Biotechnology, and Biochemistry, v. 64, n.11, p. 2344-51, 2000. THOMAS, L.; LARROCHE, C.; PANDEY, A. Current developments in solid-state fermentation. Biochemical Engineering Journal, v. 81, p. 146– 161, 2013. TORTORA, G. J.; FUNKE, B. R.; CASE, C. L. Microbiologia. 6ª edição, Editora Artes Médicas Sul, Porto Alegre, 2000, 827p. WASKMAN, S. A. Species concept among the actinomycetes with special reference to the genus Streptomyces. Bacteriology Review, v. 21, p. 1-29, 1957. XIAO, Y.; XING, G.; RUI, X.; LI, W.; CHEN, X.; JIANG, M.; DONG, M. Enhancement of the antioxidant capacity of chickpeas by solid state fermentation with Cordyceps militaris SN-18. Journal of Functional Foods, v. 10, p. 210-222, 2014. YAN, G.; DU, G.; LI, Y.; CHEN, J.; ZHONG, J. Enhancement of microbial transglutaminase production by Streptoverticillium mobaraense: application of a two-stage agitation speed control strategy. Process Biochemistry, v. 40, p. 963-968, 2005. YANG KIM, JUN ILL KEE, SUYONG LEE, SANG-HO YOO. Quality improvement of rice noodle restructured with rice protein isolate and transglutaminase. Food Chemistry, v. 145, 409–416, 2014. ZHANG, L.; HAN, X.; DU, M.; ZHANG, Y.; FENG, Z.; YI, H. Enhancement of transglutaminase production in Streptomyces mobaraensis as achieved by treatment with excessive MgCl2. Applied Microbiology and Biotechnology, v. 93, n.6, p. 2335-2343, 2012. ZHU, Y.; RINZEMA, A.; TRAMPER, J.; BOL, J. Microbial trasglutaminase – a review of its production and application in food processing. Applied Microbiologycal Biotecnology, v. 44, p. 277-282, 1995.por
dc.subject.cnpqCiência e Tecnologia de Alimentospor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/14769/2014%20-%20Romulo%20Cardoso%20Valad%c3%a3o.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/17388/2014%20-%20Romulo%20Cardoso%20Valad%c3%a3o.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/23716/2014%20-%20Romulo%20Cardoso%20Valad%c3%a3o.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/30064/2014%20-%20Romulo%20Cardoso%20Valad%c3%a3o.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/36450/2014%20-%20Romulo%20Cardoso%20Valad%c3%a3o.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/42840/2014%20-%20Romulo%20Cardoso%20Valad%c3%a3o.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/49230/2014%20-%20Romulo%20Cardoso%20Valad%c3%a3o.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/55650/2014%20-%20Romulo%20Cardoso%20Valad%c3%a3o.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/3343
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2020-02-20T17:23:47Z No. of bitstreams: 1 2014 - Romulo Cardoso Valadão.pdf: 1786960 bytes, checksum: c34a565e89d07163cbd8cc053ce84ec0 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-02-20T17:23:47Z (GMT). No. of bitstreams: 1 2014 - Romulo Cardoso Valadão.pdf: 1786960 bytes, checksum: c34a565e89d07163cbd8cc053ce84ec0 (MD5) Previous issue date: 2014-12-19eng
Appears in Collections:Doutorado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2014 - Romulo Cardoso Valadão.pdf1.75 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.