Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9160
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFigueiredo, Luciana Duarte de
dc.date.accessioned2023-12-21T18:35:52Z-
dc.date.available2023-12-21T18:35:52Z-
dc.date.issued2014-06-09
dc.identifier.citationFIGUEIREDO, Luciana Duarte de. Emissões acústicas de baleia-de-Bryde (Balaenoptera edeni) e de golfinho-comum (Delphinus sp.) na região do Cabo Frio, RJ. 2014. 71 f. Tese (Doutorado em Biologia Animal) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, 2014.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9160-
dc.description.abstractQuantificar o repertório acústico de uma espécie é etapa essencial para posterior definição de variação geográfica, funcionalidade e relevância comportamental de tais sinais. Para muitas espécies de cetáceos que frequentam a costa brasileira, essa é uma etapa ainda a ser cumprida. Tal é o caso da baleia-de-Bryde (Balenoptera edeni) e do golfinho-comum (Delphinus sp.) cujas vocalizações são conhecidas apenas para algumas regiões dos oceanos Pacífico e Atlântico Norte. O presente estudo objetiva descrever qualitativa e quantitativamente as vocalizações dessas duas espécies, a partir de gravações sonoras obtidas durante 96 saídas de campo realizadas na região do Cabo Frio, RJ. Um total de 143 min de gravação sonoras foi obtido na presença de baleia-de-Bryde e cinco tipos de vocalizações foram encontrados, após análise espectrográfica das gravações. Um tipo composto por uma série de pulsos discretos foi registrado na presença de um par mãe-filhote e possivelmente está ligada ao comportamento de interação adulto-filhote. Outros quatro tipos de vocalizações tonais foram registrados na presença de baleias solitárias, incluindo tipos com possível bifonação. Todas as vocalizações registradas apresentaram frequências abaixo de 1 kHz e duração inferior a 2 s, exceto a série de pulsos, cuja duração máxima ultrapassou os 7 s. Um total de 67 min de gravação foram obtidos na presença de um grupo de Delphinus sp.. Desta gravação foram selecionados 473 assovios, através da análise espectrográfica. Esses assovios foram analisados e classificados em 10 categorias e 75 tipos, baseado na forma de seus contornos. Também foi quantificada a presença de feições não lineares, tais como pulos de frequência, sub-harmônico, bifonação e caos determinístico, nesses assovios. A duração média observada nos assovios foi de 0,71 s (de 0,04 a 3,67 s) e as frequências variaram entre 3,05 e 28,04 kHz, com a maioria dos assovios ocorrendo entre 4 e 19,3 kHz. Comparando-se com os repertórios anteriormente descritos para o golfinho-comum, os assovios estudados ocupam uma faixa de frequência mais ampla e apresentam maior modulação de frequência. As feições não lineares foram observadas em 38,4% dos assovios analisados. Todos os quatro tipos de feições foram observados, porém pulos de frequência foram a mais frequente, estando presente em 29,75% dos assovios. Os resultados do presente estudo são uma primeira amostra das vocalizações de baleia-de-Bryde e de golfinho-comum em águas brasileiras e sugerem que as vocalizações dessas populações apresentam variações geográficas em relação às outras populações já estudadas. Também fornece mais uma evidencia de que as feições não lineares estão presentes nas vocalizações dos cetáceos, podendo, especialmente para os assovios, ser parte importante dessas vocalizações e possivelmente apresentar alguma significância na comunicação acústica desses animais.por
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico - CNPQpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectBioacústicapor
dc.subjectBaleia-de-Brydepor
dc.subjectgolfinho-comumpor
dc.subjectnão linearidadespor
dc.subjectCabo Friopor
dc.subjectcetacean communicationeng
dc.subjectBryde’s whaleeng
dc.subjectcommon-dolphineng
dc.subjectnonlinearitieseng
dc.titleEmissões acústicas de baleia-de-Bryde (Balaenoptera edeni) e de golfinho-comum (Delphinus sp.) na região do Cabo Frio, RJpor
dc.title.alternativeVocalizations of Bryde’s whale (Balaenoptera edeni) and common-dolphin (Delphinus sp.) from Cabo Frio region, Rio de Janeiro stateeng
dc.typeTesepor
dc.description.abstractOtherQuantifying the vocal repertoire of a species is an essential step for subsequent analysis of signal functionality, geographic variation, and social relevance. For many cetacean species that are seen on Brazilian coast, this still has to be fulfilled. This is true for Bryde’s whale (Balaenoptera edeni) and common-dolphin (Delphinus sp.), whose vocalizations are known only in some regions of Pacific and North Atlantic Oceans. The present study aim is to present a qualitative and quantitative analysis of these species vocalizations characteristics undertake on the Brazilian waters. Acoustics recordings were collected during 96 surveys in Cabo Frio region, Rio de Janeiro State. A total of 143 min of recordings taken during Bryde’s whale observation was analyzed and five different call types were found. One call type consisted of a series of discrete pulses was detected during the observation of a mother-calf pair and is likely linked to calf-adult interactions. Other four types of tone calls were recorded from solitary whales, including possible biphonation call types. All recorded calls present frequency ranges below 1 kHz, and were short (<2 s), with the exception of the series of pulses (>7 s). A total of 67 min of recordings were taken during a common-dolphin group observation. From this recording, 473 whistles were selected, analyzed and classified in ten categories and 75 types, according their contour shape. In these whistles, the presence of nonlinear features, such as frequency jumps, subharmonics, biphonation, and deterministic chaos, also was quantified. The mean whistle duration was 0.71 s (from 0.04 to 3.67 s) and frequency spanned from 3.05 to 29.75 kHz, with most whistles occurring between 4 and 19.3 kHz. Overall, the whistles spread off for a wider frequency range and show more frequency modulation than the previous reported repertoires to the common-dolphin. Nonlinear features were noted in 38.4% of analyzed whistles. All four nonlinear features were present, however frequency jumps were the most common feature observed, been present in 29.75% of whistles. The results of this study offer a first insight into the vocalization characteristics of Bryde’s whale and common-dolphin in Brazilian waters and suggest that there are geographic variations between these populations and the ones previous studied. Also provide another evidence that nonlinear features are common in the vocalizations of cetacean species, possibly being, especially for the whistles, an important part of them and likely having some significance on their acoustics communications.eng
dc.contributor.advisor1Simão, Sheila Marino
dc.contributor.advisor1ID69510814768por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1704946542749907por
dc.contributor.referee1Savi, Marcelo Amorim
dc.contributor.referee2Gonzaga, Luiz Antonio Pedreira
dc.contributor.referee3Viola , Flavio Maggessi
dc.contributor.referee4Lodi, Liliane
dc.creator.ID03250450707por
dc.creator.Latteshttp://lattes.cnpq.br/7282026982412557por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Biologia Animalpor
dc.relation.referencesANDRIOLLO, A. et al. Distribution and relative abundance of large whales in a former whaling ground off eastern South America. Zoologia, v. 27, p. 741-750. 2010. ANSMANN, I. C. et al. Variation in the whistle characteristics of short-beaked common dolphins, Delphinus delphis, at two locations around the British Isles. Journal of the Marine Biological Association of the United Kingdom, v. 87, p. 19–26. 2007. AU, W. W. L. Hearing in whales and dolphins: An overview. In: AU, W. L. A.; POPPER, A. N.; FAY, R. R. (Eds.). Hearing by Whales and Dolphins. New York: Springer, 2000, p. 1-42. AU, W. W. L.; HASTINGS, M. C. Principles of Marine Bioacoustics. New York: Springer. 2008. 679 p. AUBIN, T.; JOUVENTIN, P.; HILDEBRAND, C. Penguins use the two-voice system to recognize each other. Proceedings of the Royal Society B, v. 267, p. 1081-1087. 2000. BAZÚA-DURÁN, M. C.; AU, W. W. L. Geographic variations in the whistles of spinner dolphins (Stenella longirostris) of the main Hawaiian Islands. The Journal of Acoustical Society of America, v. 116, n.6, p. 3757–3769. 2004. BENKO, T. P.; PERC, M. Singing of Neoconocephalus robustus as an example of deterministic chaos in insects. Journal of Biosciences, v. 32, n. 4, p. 797–804, 2007. BLUMSTEIN, D. T. et al. The structure, meaning and function of yellow-bellied marmot pup screams. Animal Behaviour, v. 76, p. 1055-1064. 2008. BLUMSTEIN, D.T.; RÉCAPET, C. The sound of arousal: the addition of novel non-linearities increases responsiveness in marmot alarm calls. Ethology, v. 115, p. 1074–1081. 2009. BOISSEAU, O. Quantifying the acoustic repertoire of a population: The vocalizations of free-ranging bottlenose dolphins in Fiordland, New Zealand. The Journal of Acoustical Society of America, v. 117, n. 4, p. 2318–2329. 2005. BROWN, C. et al. Laryngeal biomechanics and vocal communication in the squirrel monkey (Saimiri boliviensis). The Journal of Acoustical Society of America, v. 113, n. 4, p. 2114–2126. 2003. CALDWELL, M. C.; CALDWELL, D. K. Vocalization of naïve captive dolphins in small groups. Science, v. 159, p. 1121-1123. 1968. CARBONEL, C. Modelling of upwelling in the coastal area of Cabo Frio (Rio de Janeiro – Brazil). Revista Brasileira de Oceanografia, v. 46, n. 1, p. 1-17. 1998. 66 CARNEIRO, A. D. V. N. Ocorrência e uso de habitat da baleia-de-Bryde (Balaenoptera edeni Anderson, 1878) (Mammalia: Cetacea, Balaenopteridae) na região de ressurgência de Cabo Frio, RJ. Dissertação (Mestrado em Zoologia)- Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2005, 68p. CLARK, C. W.; BORSANI, J. F.; NOTARBARTOLO-DI-SCIARA, G. Vocal activity of fin whales, Balaenoptera physalus, in the Ligurian Sea. Marine Mammal Science, v. 18, n.1, p. 286-295. 2002. COOK, M. L. H. et al. Signature-whistle production in undisturbed free-ranging bottlenose dolphins (Tursiops truncatus). Proceedings of the Royal Society B, v. 271, p. 1043–1049. 2004. CORKERON, P. J.; VAN PARIJS, S. M. Vocalizations of eastern Australian Risso’s dolphins, Grampus griseus. Canadian Journal of Zoology, v. 79, p. 160–164. 2001. CRANFORD, T. W. In search of impulse sound sources in odontocetes. In: AU, W. W. L.; POPPER, A. N.; FAY, R. R. (Eds.). Hearing by Whales and Dolphins. New York: Springer, 2000, p. 109–155. CRANFORD, T. W. et al. Observation and analysis of sonar signal generation in the bottlenose dolphin (Tursiops truncatus): Evidence for two sonar sources. Journal of Experimental Marine Biology and Ecology, v. 407, p. 81–96. 2011. CUMMINGS, W. C.; THOMPSON, P. O.; HA, S. J. Sounds from Bryde, Balaenoptera edeni, and finback, B. physalus, whales in the Gulf of California. Fishery Bulletin, v. 84, p. 359–370. 1986. DE LEO, F. C.; PIRES-VANIN, A. M. S. Benthic megafauna communities under influence of the SACW (South Atlantic Central Water) intrusion onto the Brazilian Southeastern shelf: a comparison between an upwelling and a non-upwelling ecosystem. Journal of Marine Systems, v. 60, p. 268-284. 2006. DE PAULA, A.; SAVI, M. A.; PEREIRA-PINTO, F. H. I. Chaos and transient chaos in an experimental nonlinear pendulum. Journal of Sound and Vibration, v. 294, n.3, p. 585-595. 2006. DOS SANTOS, M. E. et al. Whistles of bottlenose dolphins (Tursiops truncatus) in the Sado Estuary, Portugal: characteristics, production rates, and long-term contour stability. Aquatic Mammals, v. 31, n. 4, p. 453–462. 2005. EDDS, P.; ODELL, P. K.; TERSHY, D. B. R. Calls of a captive juvenile and ree-ranging adult-calf pairs of Bryde’s whales, Balaenoptera edeni. Marine Mammal Science, v. 9, n. 3, p. 269-284. 1993. EDOH, K.; HUGHES, D.; KATZ. R.. Nonlinearity in cicada sound signals. Journal of Biological Systems, v. 21, n. 1, p.1350004. 2013. 67 FACCHINI, A.; S. et al. Characterization of chaotic dynamics in the vocalization of Cervus elaphus corsicanus. The Journal of the Acoustical Society of America, v. 114, n.6, p. 3040–3043. 2003. FACCHINI, A.; KANTZ, H.; TIEZZI, E. Recurrence plot analysis of nonstationary data: The understanding of curved patterns. Physical Review E, v. 72, p. 021915. 2005. FEE, M. S. et al. The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird. Nature, v. 395, p. 67–71. 1998. FENG, A. S. et al. Diversity of the vocal signals of concave-eared torrent frogs (Odorrana tormota): evidence for individual signatures. Ethology, v. 115, p. 1015–1028. 2009. FERNANDES, T. Ocorrência e monitoramento de cetáceos na região de Arraial do Cabo, RJ. Monografia (Bacharelado em Zoologia)- Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2001. 46 f. FIGUEIREDO, L. D.; SIMÃO, S. M. Possible occurrence of signature whistles in a population of Sotalia guianensis (Cetacea, Delphinidae) living in Sepetiba Bay, Brazil. The Journal of the Acoustical Society of America, v. 126, n. 3, p.1563–1569. 2009. FIGUEIREDO, L. D., et al. (no prelo). Site fidelity of Bryde’s whales (Balaenoptera edeni) in Cabo Frio region, southeastern Brazil, through photoidentification technique. Brazilian Journal of Aquatic Science and Technology. FILATOVA, O. A. et al. Usage of monophonic and biphonic calls by free-ranging resident killer whales (Orcinus orca) in Kamchatka, Russian Far East. Acta Ethologica, v. 12, p. 37- 44. 2009. FITCH, W. T., NEUBAUER, J.; HERZEL, H. Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production. Animal Behaviour, v. 63, p. 407-418. 2002. GEDAMKE, J.; COSTA, D. P.; DUSTAN, A. Localization and visual verification of a complex minke whale vocalization. The Journal of the Acoustical Society of America, v. 109, n. 6, p. 3038-3047. 2001. HEGGER, R.; KANTZ, H.; SCHREIBER, T. Practical implementation of nonlinear time series methods: The TISEAN package. Chaos, v. 9, p. 413–435. 1999. HEIMLICH, S. L. et al. Types, distribution, and seasonal occurrence of sounds attributed to Bryde’s whales (Balaenoptera edeni) recorded in the eastern tropical Pacific, 1999–2001. The Journal of the Acoustical Society of America, v. 118, n. 3, p. 1830-1837. 2005. HERZING, D. L. Acoustics and social behavior of wild dolphins: Implications for a sound society. In: AU, W. L. A.; POPPER, A. N.; FAY, R.R. (Eds.) Hearing by Whales and Dolphins. New York: Springer, 2000, p. 225-272. 68 HEYNING, J. E.; PERRIN, W. F. Evidence for two species of common dolphins (genus Delphinus) from the eastern North Pacific. Contributions in Science, v. 442, p. 1-35. 1994. JACKSON, E. A. Perspectives of nonlinear dynamics. Vol.1, Cambrige: University Press, 1991, 496 p. KANTZ, H. A robust method to estimate the maximal Lyapunov exponent of a time series. Physics Letters A, v. 185, p. 77-87. 1994. KANTZ, H.; SCHREIBER, T. Nonlinear Time Series Analysis, 2. ed., Cambridge: Cambridge University Press, 2004, p. 369. KATO, H.; PERRIN, W. F. Bryde’s Whale. In: PERRIN, W. F.; WÜRSIG, B.; THEWISSEN, J. G. M. (Eds.). Encyclopedia of Marine Mammals. 2. ed., San Diego: Academic Press, 2009, p. 158-162. KENNEL, M. B.; BROWN, R.; ABARBANEL, H. D. I. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A, v. 45, 3403-3411. 1992. KERSHENBAUM, A.; SAYIGH, L. S.; JANIK, V. M. The encoding of individual identity in dolphin signature whistles: how much information is needed? Plos One, v. 8, n. 10, p. e77671. 2013. LIMA, I. M. S. et al. Characteristics of whistles from rough-toothed dolphins (Steno bredanensis) in Rio de Janeiro coast, southeastern Brazil. The Journal of the Acoustical Society of America, v. 131, n. 5, p. 4173-4181. 2012. LAIOLO, P. The emerging significance of bioacoustics in animal species conservation. Biological Conservation, v. 143, n. 7, p. 1635-1645. 2010. MANN, D. A.; O’SHEA, T. J.; NOWACEK, D. P. Nonlinear dynamics in manatee vocalizations. Marine Mammal Science, v. 22, n. 3, p. 548–555. 2006. MATROSOVA, V. A. et al. Species-specific and shared features in vocal repertoires of three Eurasian ground squirrels (genus Spermophilus). Acta Theriologica, v. 57, n. 1, p. 65–78, 2012. MCDONALD, M. A. An acoustic survey of baleen whales off Great Barrier Island, New Zealand. New Zealand Journal of Marine and Freshwater Research, v. 40, p. 519–529. 2006. MELLINGER, D. K.; CARSON, C. D.; CLARK, C. W. Characteristics of minke whale Balaenoptera acutorostrata, pulse trains recorded near Puerto Rico. Marine Mammal Science, v. 16, n. 4, p. 739–756. 2000. 69 MELLINGER, D. K.; BARLOW, J. Future directions for acoustic marine mammal surveys: Stock assessment and habitat use. NOAA OAR, NOAA/PMEL Contribution 2557, p. 1–37. 2003. MELO, C. L. C. et al. Feeding habits of delphinids (Mammalia: Cetacea) from Rio de Janeiro State, Brazil. Journal of the Marine Biological Association of the United Kingdom, v. 90, n. 8, p. 1509-1515. 2010. MERCADO, E. et al. Sound production by singing humpback whales. The Journal of the Acoustical Society of America, v. 127, n. 4, p. 2678–2691, 2010. MERGELL, P.; HERZEL, H. Modelling biphonation: the role of the vocal tract. Speech Communication, v. 22, p. 141–154. 1997. MILLER, P. J. O.; SAMARRA, F. I. P.; PERTHUISON, D. A. Caller sex and orientation influence spectral characteristics of “two-voice” stereotyped calls produced by free-ranging killer whales. The Journal of the Acoustical Society of America, v. 121, n. 6, p. 3932-3937. 2007. MOORE, S. E.; RIDGWAY, S. H. Whistles produced by common dolphins from the Southern California bight. Aquatic Mammals, v. 21, n. 1, p. 55–63. 1995. MORISAKA, T. at al. Geographic variation in the whistles among three Indo Pacific bottlenose dolphin Tursiops aduncus populations in Japan. Fisheries Science, v. 71, p. 568–576. 2005. OLESON, E. M. et al. Low frequency calls of Bryde's whales. Marine Mammal Science, v. 19, n. 2, p. 407-419. 2003. OSWALD, J. N.; BARLOW, J.; NORRIS, T. F. Acoustic identification of nine delphinid species in the eastern tropical Pacific ocean. Marine Mammal Science, v. 19, n. 1, p. 20–37. 2003. OSWALD, J. N.; RANKIN, S.; BARLOW, J. The effect of the recording and analysis bandwidth on acoustic identification of delphinid whistles. The Journal of the Acoustical Society of America, v. 116, p. 3178-3185. 2004. PERRIN, W. F. Common dolphins. In: PERRIN, W. F.; WÜRSIG, B.; THEWISSEN, J. G. M. (Eds.). Encyclopedia of Marine Mammals, 2. ed., San Diego: Academic Press, 2009, p. 255–259. PETTITT, B.A.; BOURNE, G. R.; BEE, M. A. Quantitative acoustic analysis of the vocal repertoire of the golden rocket frog (Anomaloglossus beebei). The Journal of the Acoustical Society of America, v. 131, n. 6, p. 4811-4820. 2012. PETRELLA, V. et al. Whistle characteristics of common dolphins (Delphinus sp.) in the Hauraki Gulf, New Zealand. Marine Mammal Science, v. 28, n. 3, p. 479–496. 2012. 70 RIEDE, T.; OWREN, M. J.; ARCADI, A. C. Nonlinear acoustics in pant hoots of common chimpanzees Pan troglodytes: Frequency jumps, subharmonics, biphonation, and deterministic chaos. American Journal of Primatology, v. 64, p. 277–291. 2004. RIVERS, J. A. Blue whale, Balaenoptera musculus, vocalization from waters off central California. Marine Mammal Science, v. 13, n.2, p. 186-195. 1997. ROSSI-SANTOS, M. R.; PODOS, J. Latitudinal variation in whistle structure of the estuarine dolphin Sotalia fluviatilis. Behaviour, v. 143, p. 347–364. 2006. SANO, M.; SAWADA, Y. Measurement of the Lyapunov spectrum from a chaotic time series. Physical Review Letters, v. 55, p. 1082–1085, 1985. SAVI, M. A. Dinâmica não-linear e caos. Rio de Janeiro: E-papers, 2006, 304 p. SICILIANO, S. et al. Age and growth of some delphinids in south-eastern Brazil. Journal of the Marine Biological Association of the United Kingdom, v. 87, p. 293–303. 2007. SMITH, S. W. The Scientist and Engineer’s Guide to Digital Signal Processing. San Diego: California Technical Publishing, 1997, 629 p. TAVARES, et al. Biogeography of common dolphins (genus Delphinus) in the Southwestern Atlantic Ocean. Mammal Review. v. 40, n. 1, p. 40–64. 2010. TERVO, O. M., et al. Evidence for simultaneous sound production in the bowhead whale (Balaena mysticetus). The Journal of the Acoustical Society of America, v. 130, p. 2257-2262. 2011. TOKUDA, I. et al. Nonlinear analysis of irregular animal vocalizations. The Journal of the Acoustical Society of America, v. 111, n. 6, p. 2908–2919. 2002. TYSON, R. B.; NOWACEK, D. P.; MILLER, P. J. O. Nonlinear phenomena in the vocalizations of North Atlantic right whales (Eubalaena glacialis) and killer whales (Orcinus orca). The Journal of the Acoustical Society of America, v. 122, p. 1367–1373. 2007. VOLODINA, E. V. et al. Biphonation may function to enhance individual recognition in the dhole, Cuon alpines. Ethology, v. 112, p. 815–825. 2006. WANG, D.; WÜRSIG, B.; EVANS, W. E. Whistles of bottlenose dolphins: comparisons among populations. Aquatic Mammals, v. 21, p. 65–77. 1995. WILDEN, I. et al. Subharmonics, biphonation, and deterministic chaos in mammal vocalization. Bioacoustics, v. 9, p. 171–196. 1998. ZERBINI, A. N. et al. A review of the occurrence and distribution of whales of the Genus Balaenoptera along the Brazilian coast. Reports of the International Whaling Commission, v. 47, p. 407-417. 1997. 71 ZOLLINGER, S. A.; RIEDE, T.; SUTHERS; R. A. Two-voice complexity from a single side of the northern mockingbird Mimus polyglottos vocalizations. The Journal of Experimental Biology, v. 211, p. 1978–1991. 2008.por
dc.subject.cnpqBiologia Geralpor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/11224/2014%20-%20Luciana%20Duarte%20de%20Figueiredo.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/16760/2014%20-%20Luciana%20Duarte%20de%20Figueiredo.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/23082/2014%20-%20Luciana%20Duarte%20de%20Figueiredo.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/29462/2014%20-%20Luciana%20Duarte%20de%20Figueiredo.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/35838/2014%20-%20Luciana%20Duarte%20de%20Figueiredo.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/42236/2014%20-%20Luciana%20Duarte%20de%20Figueiredo.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/48616/2014%20-%20Luciana%20Duarte%20de%20Figueiredo.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/55066/2014%20-%20Luciana%20Duarte%20de%20Figueiredo.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/3042
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2019-11-05T18:37:26Z No. of bitstreams: 1 2014 - Luciana Duarte de Figueiredo.pdf: 1837052 bytes, checksum: c8fdb85b92522e080b5c49d6e04ee863 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2019-11-05T18:37:26Z (GMT). No. of bitstreams: 1 2014 - Luciana Duarte de Figueiredo.pdf: 1837052 bytes, checksum: c8fdb85b92522e080b5c49d6e04ee863 (MD5) Previous issue date: 2014-06-09eng
Appears in Collections:Doutorado em Biologia Animal

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2014 - Luciana Duarte de Figueiredo.pdfLuciana Duarte de Figueiredo1.79 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.