Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/15959
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHerran Ramirez, Olga Lucia-
dc.date.accessioned2024-02-23T15:27:52Z-
dc.date.available2024-02-23T15:27:52Z-
dc.date.issued2022-04-18-
dc.identifier.citationHERRÁN, Olga Lucia Ramírez. Estudo soroepidemiológico, molecular e espacial de espécies do gênero Brucella da região leiteira do Norte da Antioquia, Colômbia. 2022. 146 f. Tese (Doutorado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/15959-
dc.description.abstractNa Colômbia, a brucelose bovina é uma doença endêmica, mas foi observado um aumento no número de bovinos soropositivos na região leiteira de Antioquia, considerada a principal área responsável pela produção de leite. O alarmante aumento do número de casos fez com que o Instituto Colombiano de Agricultura (ICA) declarasse quarentena na região desde 2018. O objetivo deste trabalho foi determinar a prevalência sorológica e molecular de brucelose em bovinos na principal região leiteira da Colômbia, identificando a presença de anticorpos, do material genético do agente etiológico e dos fatores individuais e de rebanho associados à ocorrência da doença. Foi realizado um estudo epidemiológico do tipo transversal, a traves de um questionário epidemiológico conduzido por entrevistadores treinados, com informações epidemiológicas para identificar fatores associados a presencia de bruceloses bovina na região. Um total de 656 amostras de sangue total e soro sanguíneo foram obtidas de vacas ≥ 2 anos de idade, de 40 rebanhos, em quatro municípios do norte de Antioquia. O Teste Rosa de Bengala (RBT) foi usado como teste de triagem. Amostras RBT positivas foram confirmadas pelo Ensaio de Polarização de Fluorescência (FPA) e ELISA competitiva (cELISA) no Laboratório Nacional de Diagnóstico Veterinário do ICA. A detecção molecular foi realizada por ensaio de PCR em tempo real baseado em sonda, usando a amplificação do gene bcsp31. As Brucella-DNA cepas de campo e as cepas vacinais, foram genotipadas mediante um ensaio baseado em marcadores SNP. O geoprocessamento QGIS foi usado para obter a georreferenciamento dos rebanhos positivos. Os fatores associados a presença de Brucella-DNA foram avaliados por meio de modelos de regressão logística. O ensaio qPCR detectou 9,5% (n=62/656; IC 95%: 7,3, 12,0) dos animais com presença de Brucella-DNA, enquanto o teste sorológico detectou 6,6% (n=43/656; IC: 4,8, 8,7). Foi observado que 62,5% (n=25/40; IC 95%: 45,8, 77,3) dos casos positivos foram detectados no rebanho pela qPCR, enquanto apenas 27,5% (n=11/40; IC 95%: 14,6, 43,9) foram detectados pelo teste sorológico. O teste Cohen´s Kappa determinou uma fraca concordância entre os métodos sorológicos e moleculares. O ensaio qPCR, apresentou uma eficiência de 92,35%, e teve uma duração de 32 min. A acurácia diagnóstica da qPCR pela área sob a Curva Receptor-Operador (ROC) teve desempenho igual a 0,75 (IC 95%: 0,65, 0,84). Toda as amostras positivas pela qPCR foram genotipadas como cepas de campo empregando o ensaio SNP. Nos modelos de regressão logística, foi observado que as práticas associadas à reprodução, assim como a presença de espécies silvestres, e a proximidade dos rebanhos das estradas, oferecem condições favoráveis para o processo de disseminação da Brucella spp. A introdução de técnicas moleculares, a partir de amostras clínicas coletadas a campo, atuam como ferramentas para complementar o diagnóstico sorológico de bruceloses bovina, melhorando a acurácia dos resultados, e permitindo uma detecção precoce de Brucella spp. circulantes. As prevalências sorológicas e moleculares estiverem de acordo com a declaração de quarentena na região, sendo a prevalência molecular muito maior. Por fim, as técnicas moleculares permitem reconhecer fatores epidemiológicos associados à presença do agente etiológico no animal e não associados apenas à presença de anticorpos, possibilitando direcionar ações de prevenção e controle ajustadas ao nível local e detectadas a partir de fases de infecção de difícil diagnostico, como aquelas iniciais ou crônicas.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectBrucelosespt_BR
dc.subjectbovinospt_BR
dc.subjectPCRpt_BR
dc.subjectepidemiologia molecularpt_BR
dc.subjectBrucellosispt_BR
dc.subjectcattlept_BR
dc.subjectmolecular epidemiologypt_BR
dc.titleEstudo soroepidemiológico, molecular e espacial de espécies do gênero Brucella da região leiteira do Norte da Antioquia, Colômbiapt_BR
dc.title.alternativeSeroepidemiological, a molecular and spatial study of species of the Brucella genus from the northern region of Antioquia, Colombiaen
dc.typeTesept_BR
dc.description.abstractOtherIn Colombia, bovine brucellosis is an endemic disease, but an unusual increase in the number of seropositive cases in a leading dairy region, given raised an alarm and caused the Colombian Institute of Agriculture to quarantine for brucellosis in the Antioquia region in 2018. This epidemiological study was conducted to determine the seroprevalence and molecular prevalence of bovine brucellosis in the leading dairy region of Colombia that was declared quarantined for brucellosis, and to evaluate the factors associated with the presence of antibodies against Brucella spp, as well as the presence of Brucella-DNA at the animal and the herd level. A cross-sectional epidemiological study was carried out, using an epidemiological questionnaire, conducted by previously trained interviewers, with epidemiological information to identify factors associated with the presence of bovine brucellosis in the study region. A total of 656 serum and whole blood samples from ≥2-year-old cows in 40 herds were used screened The Rose Bengal Test (RBT) was used as the screening test. Positives RBT samples were confirmed by the Fluorescence Polarization Assay (FPA) and c ELISA at the National Veterinary Diagnostic Laboratory of the Colombian Agricultural Institute (ICA). Molecular detection was performed by Probe-based Real-time PCR (Probe-qPCR) assay, using the bcsp31 gene amplification. Brucella-DNA field strains and vaccine strains were genotyped employing SNP. The geoprocessing tool QGIS was used to obtain the georeferencing of positive herds. Factors associated with the presence of Brucella-DNA were evaluated using logistic regression models. The qPCR assay detected 9.5% (n=62/656; 95% CI: 7.3, 12.0) of the animals with Brucella-DNA presence, while the serological test detected a 6.6% (n=43/656; CI: 4.8, 8.7). 62.5% (n=25/40; 95% CI: 45.8, 77.3) of positive cases were detected at the herd-level by the qPCR, while only 27.5% (n=11/40; 95% CI: 14.6, 43.9) were detected by the serological test. The Cohen´s Kappa test determined a weak agreement between methods. The qPCR assay was accomplished in 32 min and had an efficiency of 92.35%. The diagnostic accuracy of the qPCR by the area under the Receiver-Operator Curve (ROC), had performance equal to 0.75 (95% CI: 0.65, 0.84). All positive herds by serology tests were also positive by the qPCR. However, not all positive herds by the qPCR were positive on the serology test. All positive samples were identified as field Brucella abortus strains employing the SNP-based assay. In logistic regression models, it was observed that management practices, mainly associated with reproduction, presence of wild species and the proximity of herds to the roads, offer favorable conditions for the process of dissemination of Brucella spp. among animals and in herds. This research concluded that the introduction of molecular techniques from clinical samples collected in the field act as tools to complement the diagnosis of bovine brucellosis. Molecular techniques also provide an improvement in the confidence of the results, when compared with serological techniques, and allow for early detection of Brucella spp. circulating in the animal. The serological and molecular prevalence were in accordance with the declaration of quarantine in the region, with the molecular prevalence being much higher. Lastly, molecular techniques allow the researcher to recognize epidemiological factors associated with the presence of the etiological agent in the animal and not associated only with the presence of antibodies, making it possible to direct prevention and control actions adjusted at the local level and detected from difficult-to-diagnose infection phases, such as initial or chronic ones.pt_BR
dc.contributor.advisor1Angelo, Isabele da Costa-
dc.contributor.advisor1ID090.347.797-18pt_BR
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-3698-8340pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5028095543336052pt_BR
dc.contributor.advisor-co1Azevedo Santos, Huarrisson-
dc.contributor.advisor-co1ID983.833.295-04pt_BR
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0002-8218-3626pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/3751609492049306pt_BR
dc.contributor.referee1Gitti, Clayton Bernardinelli-
dc.contributor.referee1IDhttps://orcid.org/0000-0001-7435-7561pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/5897009513689002pt_BR
dc.contributor.referee2Santos, Huarrisson Azevedo-
dc.contributor.referee2ID983.833.295-04pt_BR
dc.contributor.referee2IDhttps://orcid.org/0000-0002-8218-3626pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/3751609492049306pt_BR
dc.contributor.referee3Tassinari, Wagner de Souza-
dc.contributor.referee3IDhttps://orcid.org/0000-0002-3799-1261pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3648148709641027pt_BR
dc.contributor.referee4Marlow, Mariel Asbury-
dc.contributor.referee4Latteshttp://lattes.cnpq.br/8743996288190462pt_BR
dc.contributor.referee5Romero Penuela, Marlyn-
dc.contributor.referee5Lattes-pt_BR
dc.creator.IDhttps://orcid.org/0000-0002-4783-0269pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/1714942700049688pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Veterináriapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciências Veterináriaspt_BR
dc.relation.referencesABO-SHEHADA, M.N. Seroprevalence of Brucella species in equids in Jordan. 2009. https://doi.org/10.1136/vr.165.9.267 ACHA, P.N., SZYFRES, B. Zoonosis y enfermedades transmisibles comunes al hombre. Rev. Esp. Salud Publica 79, 423–42, 2005. https://doi.org/10.1590/s1135-57272005000300012 ADONE, R., MUSCILLO, M., LA ROSA, G., FRANCIA, M., TARANTINO, M. Antigenic, Immunologic and Genetic Characterization of Rough Strains B. abortus RB51, B. melitensis B115 and B. melitensis B18. PLoS One 6, e24073, 2011. https://doi.org/10.1371/journal.pone.0024073 AHASAN, M.S., RAHMAN, M.S., RAHMAN, A.K.M.A., BERKVENS, D. Bovine and Caprine Brucellosis in Bangladesh: Bayesian evaluation of four serological tests, true prevalence, and associated risk factors in household animals. Trop. Anim. Health Prod. 49, 1–11, 2017. https://doi.org/10.1007/s11250-016-1151-1 AKHTAR, S., MIRZA, M.A. Rates of seroconversion in the progeny of Brucella abortus seropositive and seronegative cattle and buffalo. Rev. Sci. Tech. 14, 711–718, 1995. https://doi.org/10.20506/rst.14.3.861 AL-AJLAN, H.H., IBRAHIM, A.S.S., AL-SALAMAH, A.A. Comparison of different PCR methods for detection of Brucella spp. in human blood samples. Polish J. Microbiol. 60, 27–33, 2011. https://doi.org/10.33073/pjm-2011-004 AL DAHOUK, S., HOFER, E., TOMASO, H., VERGNAUD, G., LE FLÈCHE, P., CLOECKAERT, A., MS, K., AM, W., K, N., HC, S. Intraspecies biodiversity of the genetically homologous species Brucella microti. Appl. Environ. Microbiol. 78, 1534–1543, 2012. https://doi.org/10.1128/AEM.06351-11 AL DAHOUK, S., KÖHLER, S., OCCHIALINI, A., PILAR JIMÉNEZ DE BAGÜÉS, M., HAMMERL, J.A., EISENBERG, T., VERGNAUD, G., CLOECKAERT, A., ZYGMUNT, M.S., WHATMORE, A.M., MELZER, F., DREES, K.P., FOSTER, J.T., WATTAM, A.R., HOLGER, &, SCHOLZ, C. Brucella spp. of amphibians comprise genomically diverse motile strains competent for replication in macrophages and survival in mammalian hosts. Nat. Publ. Gr, 2017. https://doi.org/10.1038/srep44420 AL DAHOUK, S., NÖCKLER, K.,. Implications of laboratory diagnosis on brucellosis 105 therapy. Expert Rev. Anti. Infect. Ther, 2011. https://doi.org/10.1586/eri.11.55 AL DAHOUK, S., NÖCKLER, K., SCHOLZ, H.C., PFEFFER, M., NEUBAUER, H., TOMASO, H. Evaluation of genus-specific and species-specific real-time PCR assays for the identification of Brucella spp. Clin. Chem. Lab. Med. 45, 1464–1470, 2007. https://doi.org/10.1515/CCLM.2007.305 AL DAHOUK, S., SPRAGUE, L.D., NEUBAUER, H. New developments in the diagnostic procedures for zoonotic brucellosis in humans. OIE Rev. Sci. Tech. 32, 177–188, 2013. https://doi.org/10.20506/rst.32.1.2204 ALI, S., AKHTER, S., NEUBAUER, H., MELZER, F., KHAN, I., ABATIH, E.N., EL-ADAWY, H., IRFAN, M., MUHAMMAD, A., AKBAR, M.W., UMAR, S., ALI, Q., IQBAL, M.N., MAHMOOD, A., AHMED, H. Seroprevalence and risk factors associated with bovine brucellosis in the Potohar Plateau, Pakistan. BMC Res. Notes 10, 2017. https://doi.org/10.1186/s13104-017-2394-2 ARELLANO-REYNOSO, B., LAPAQUE, N., SALCEDO, S., BRIONES, G., CIOCCHINI, A.E., UGALDE, R., MORENO, E., MORIYÓN, I., GORVEL, J.P. Cyclic β-1,2-glucan is a brucella virulence factor required for intracellular survival. Nat. Immunol. 6, 618–625, 2005. https://doi.org/10.1038/ni1202 ARENAS, N., MORENO, V. Estudio económico de la infección por Brucella abortus en ganado bovino en la región del Sumapaz, Cundinamarca. Rev. la Fac. Med. Vet. y Zootec. 63, 2016. https://doi.org/10.15446/rfmvz.v63n3.62751 ARIF, S., HELLER, J., HERNANDEZ-JOVER, M., MCGILL, D.M., THOMSON, P.C. Evaluation of three serological tests for diagnosis of bovine brucellosis in smallholder farms in Pakistan by estimating sensitivity and specificity using Bayesian latent class analysis. Prev. Vet. Med. 149, 21–28, 2018. https://doi.org/10.1016/j.prevetmed.2017.11.002 ARIF, S., THOMSON, P.C., HERNANDEZ-JOVER, M., MCGILL, D.M., WARRIACH, H.M., HAYAT, K., HELLER, J. Bovine brucellosis in Pakistan; an analysis of engagement with risk factors in smallholder farmer settings. Vet. Med. Sci, 2019. https://doi.org/10.1002/vms3.165 ARROYO CARRERA, I., LÓPEZ RODRÍGUEZ, M.J., SAPIÑA, A.M., LÓPEZ LAFUENTE, A., SACRISTÁN, A.R.B. Probable transmission of brucellosis by breast 106 milk. J. Trop. Pediatr. 52, 380–1, 2006. https://doi.org/10.1093/tropej/fml029 ASHFORD, R., MUCHOWSKI, J., KOYLASS, M., SCHOLZ, H., WHATMORE, A. Application of Whole Genome Sequencing and Pan-Family Multi-Locus Sequence Analysis to Characterize Relationships Within the Family Brucellaceae. Front. Microbiol. 11, 2020. https://doi.org/10.3389/fmicb.2020.01329 ATLURI, V.L., XAVIER, M.N., DE JONG, M.F., DEN HARTIGH, A.B., TSOLIS, R.M. Interactions of the human pathogenic Brucella species with their hosts. Annu. Rev. Microbiol, 2011. https://doi.org/10.1146/annurev-micro-090110-102905 AUNE, K., RHYAN, J.C., RUSSELL, R., ROFFE, T.J., CORSO, B. Environmental persistence of Brucella abortus in the Greater Yellowstone Area. J. Wildl. Manage. 76, 253–261, 2012. https://doi.org/10.1002/jwmg.274 AVILA-GRANADOS, L.M., GARCIA-GONZALEZ, D.G., ZAMBRANO-VARON, J.L., ARENAS-GAMBOA, A.M. Brucellosis in colombia: Current status and challenges in the control of an endemic disease. Front. Vet. Sci, 2019. https://doi.org/10.3389/fvets.2019.00321 BADDOUR, M.M., ALKHALIFA, D.H. Evaluation of three polymerase chain reaction techniques for detection of Brucella DNA in peripheral human blood. Can. J. Microbiol. 54, 352–357, 2008. https://doi.org/10.1139/W08-017 BAILY, G.G., KRAHN, J.B., DRASAR, B.S., STOKER, N.G. Detection of Brucella melitensis and Brucella abortus by DNA amplification. J. Trop. Med. Hyg, 1992. BAOSHAN, L., YINBO, Y., JINGBO, Z., YI, Z., JIANGHUA, Y., DAWEI, C., CHI, M., DONGHAI, Y., BOHAN, Y., RONGNIAN, Z., SHENG, F., JUN, Z., HAN, X., CHEN, Z. Combined nucleic acid assays for diagnosis of A19 vaccine-caused human brucellosis. Transbound. Emerg. Dis. 68, 368–374, 2021. https://doi.org/10.1111/TBED.13685 BARRIONUEVO, P., GIAMBARTOLOMEI, G.H. Inhibition of antigen presentation by Brucella: many more than many ways. Microbes Infect, 2019. https://doi.org/10.1016/j.micinf.2018.12.004 BECKETT, F.W., MACDIARMID, S.C. The effect of reduced-dose Brucella abortus strain 19 vaccination in accredited dairy herds. Br. Vet. J. 141, 507–514, 1985. https://doi.org/10.1016/0007-1935(85)90046-6 107 BEDOYA, O.D.M., CASSOLI, L.D., ÁNGEL, M.O., CERÓN MUÑOZ, M.F. Characterization of dairy farms with mechanical milking in Antioquia, Colombia. Livest. Res. Rural Dev. 30, 2018. BERCOVICH, Z. Maintenance of Brucella abortus-free herds: A review with emphasis on the epidemiology and the problems in diagnosing brucellosis in areas of low prevalence. Vet. Q. 20, 81–88, 1998. https://doi.org/10.1080/01652176.1998.9694845 BERCOVICH, Z., HAAGSMA, J., TER LAAK, E.A. Use of delayed-type hypersensitivity test to diagnose brucellosis in calves born to infected dams. Vet. Q. 12, 231–237, 1990. https://doi.org/10.1080/01652176.1990.9694270 BOERI, E.J., WANKE, M.M., MADARIAGA, M.J., TEIJEIRO, M.L., ELENA, S.A., TRANGONI, M.D. Comparison of four polymerase chain reaction assays for the detection of Brucella spp. in clinical samples from dogs. Vet. World 11, 201, 2018. https://doi.org/10.14202/VETWORLD.2018.201-208 BOSCHIROLI, M.L., OUAHRANI-BETTACHE, S., FOULONGNE, V., MICHAUX-CHARACHON, S., BOURG, G., ALLARDET-SERVENT, A., CAZEVIEILLE, C., LAVIGNE, J.P., LIAUTARD, J.P., RAMUZ, M., O’CALLAGHAN, D. Type IV secretion and Brucella virulence. Vet. Microbiol. 90, 341–348, 2002a. https://doi.org/10.1016/S0378-1135(02)00219-5 BOSCHIROLI, M.L., OUAHRANI-BETTACHE, S., FOULONGNE, V., MICHAUX-CHARACHON, S., BOURG, G., ALLARDET-SERVENT, A., CAZEVIEILLE, C., LIAUTARD, J.P., RAMUZ, M., O’CALLAGHAN, D. The Brucella suis virB operon is induced intracellularly in macrophages. Proc. Natl. Acad. Sci. U. S. A. 99, 1544–1549, 2002b. https://doi.org/10.1073/pnas.032514299 BREW, S.D., PERRETT, L.L., STACK, J.A., MACMILLAN, A.P., STAUNTON, N.J. Human exposure to Brucella recovered from a sea mammal [1]. Vet. Rec, 1999. BRICKER, B.J., TABATABAI, L.B., DEYOE, B.L., MAYFIELD, J.E. Conservation of antigenicity in a 31-kDa Brucella protein. Vet. Microbiol. 18, 313–325, 1988. https://doi.org/10.1016/0378-1135(88)90096-X BRONNER, A., HÉNAUX, V., FORTANÉ, N., HENDRIKX, P., CALAVAS, D. Why do farmers and veterinarians not report all bovine abortions, as requested by the clinical brucellosis surveillance system in France? BMC Vet. Res. 10, 93, 2014. 108 https://doi.org/10.1186/1746-6148-10-93 BUDDLE, M.B. Studies on Brucella ovis (n.sp.), a cause of genital disease of sheep in new zealand and australia. J. Hyg. (Lond). 54, 351–364, 1956. https://doi.org/10.1017/S0022172400044612 BUGEZA, J., MUWONGE, A., MUNYEME, M., LASUBA, P., GODFROID, J., KANKYA, C. Seroprevalence of bovine brucellosis and associated risk factors in Nakasongola district, Uganda. Trop. Anim. Health Prod. 51, 2073–2076, 2019. https://doi.org/10.1007/s11250-018-1631-6 CÁRDENAS, L., AWADA, L., TIZZANI, P., CÁCERES, P., CASAL, J. Characterization and evolution of countries affected by bovine brucellosis (1996–2014). Transbound. Emerg. Dis. 66, 1280–1290, 2019a. https://doi.org/10.1111/tbed.13144 CÁRDENAS, L., PEÑA, M., MELO, O., CASAL, J. Risk factors for new bovine brucellosis infections in Colombian herds. BMC Vet. Res. 15, 81, 2019b. https://doi.org/10.1186/s12917-019-1825-9 CARDOSO, P.G., MACEDO, G.C., AZEVEDO, V., OLIVEIRA, S.C. Brucella spp noncanonical LPS: Structure, biosynthesis, and interaction with host immune system. Microb. Cell Fact, 2006. https://doi.org/10.1186/1475-2859-5-13 CARMICHAEL, L.E., BRUNER, D.W. Characteristics of a newly-recognized species of Brucella responsible for infectious canine abortions. Cornell Vet. 48, 579–92, 1968. CASAÑAS, M.C., QUEIPO-ORTUÑO, M.I., RODRIGUEZ-TORRES, A., ORDUÑA, A., COLMENERO, J.D., MORATA, P. Specificity of a polymerase chain reaction assay of a target sequence on the 31-kilodalton Brucella antigen DNA used to diagnose human brucellosis. Eur. J. Clin. Microbiol. Infect. Dis. 20, 127–31, 2001. https://doi.org/10.1007/pl00011242 CENTER FOR FOOD SECURITY AND PUBLIC HEALTH. Brucelosis. Cent. Food Secur. Public Heal, 2018. URL http://www.cfsph.iastate.edu/DiseaseInfo/disease.php?name=brucellosis-human&lang=en (accessed 2.5.20). CENTERS FOR DISEASE CONTROL AND PREVENTION. Third Case of Rifampin/Penicillin-Resistant Strain of RB51 Brucella from Consuming Raw Milk. CDC, 2019. URL https://stacks.cdc.gov/view/cdc/62370 (accessed 4.25.20). 109 CENTERS FOR DISEASE CONTROL AND PREVENTION. Brucellosis Reference Guide: Exposures, Testing and Prevention. 1–35, 2017. CHAIN, P.S.G., COMERCI, D.J., TOLMASKY, M.E., LARIMER, F.W., MALFATTI, S.A., VERGEZ, L.M., AGUERO, F., LAND, M.L., UGALDE, R.A., GARCIA, E.,. Whole-genome analyses of speciation events in pathogenic brucellae. Infect. Immun. 73, 8353–8361, 2005. https://doi.org/10.1128/IAI.73.12.8353-8361.2005 CLOECKAERT, A., VIZCAÍNO, N., PAQUET, J.Y., BOWDEN, R.A., ELZER, P.H. Major outer membrane proteins of Brucella spp.: Past, present and future. Vet. Microbiol. 90, 229–247, 2002a. https://doi.org/10.1016/S0378-1135(02)00211-0 CLOECKAERT, A., ZYGMUNT, M.S., GUILLOTEAU, L.A. Brucella abortus vaccine strain RB51 produces low levels of M-like O-antigen. Vaccine 20, 1820–2, 2002b. https://doi.org/10.1016/s0264-410x(02)00035-x COELHO, A.C., DÍEZ, J.G., COELHO, A.M. Risk Factors for Brucella spp. in Domestic and Wild Animals. IntechOpen. InTech, 2015. https://doi.org/10.5772/61325 COLOMA-RIVERO, R.F., GÓMEZ, L., ALVAREZ, F., SAITZ, W., DEL CANTO, F., CÉSPEDES, S., VIDAL, R., OÑATE, A.A. The Role of the Flagellar Protein FlgJ in the Virulence of Brucella abortus. Front. Cell. Infect. Microbiol. 10, 178, 2020. https://doi.org/10.3389/fcimb.2020.00178 CONTEXTO GANADERO. Fedegán participa en III Foro Internacional Lácteo de Alpina. 2015. URL https://www.contextoganadero.com/regiones/fedegan-participa-en-iii-foro-internacional-lacteo-de-alpina (accessed 2.13.20). CORBEL, M. Brucellosis in humans and animals Food and Agriculture Organization of the United Nations, 2006. CORBEL, M.J. Brucellosis: An Overview. Emerg. Infect. Dis, 1997. https://doi.org/10.3201/eid0302.970219 CORBEL, M.J., BRINLEY, M.W.J. Clasificación del género Brucella: situación presente(**). Rev. sci. tech. Off. int. Epiz, 1982. COSSABOOM, C.M., KHAROD, G.A., SALZER, J.S., TILLER, R. V., CAMPBELL, L.P., WU, K., NEGRÓN, M.E., AYALA, N., EVERT, M.N., RADOWICZ, J., SHUFORD, J., STONECIPHER, S. Brucella abortus vaccine strain RB51 infection and exposures 110 associated with raw milk consumption — Wise County, Texas, 2017. Morb. Mortal. Wkly. Rep. 67, 286–287, 2018. https://doi.org/10.15585/mmwr.mm6709a4 CROSS, P.C., EDWARDS, W.H., SCURLOCK, B.M., MAICHAK, E.J., ROGERSON, J.D. Effects of management and climate on elk brucellosis in the Greater Yellowstone Ecosystem. Ecol. Appl. 17, 957–964, 2007. https://doi.org/10.1890/06-1603 CROSS, P.C., HEISEY, D.M., SCURLOCK, B.M., EDWARDS, W.H., EBINGER, M.R., BRENNAN, A. Mapping brucellosis increases relative to elk density using hierarchical bayesian models. PLoS One 5, 2010. https://doi.org/10.1371/journal.pone.0010322 CROSS, P.C., MAICHAK, E.J., BRENNAN, A., SCURLOCK, B.M., HENNINGSEN, J., LUIKART, G.,. An ecological perspective on Brucella abortus in the western United States. OIE Rev. Sci. Tech. 32, 79–87, 2013. https://doi.org/10.20506/rst.32.1.2184 D’ANASTASIO, R., STANISCIA, T., MILIA, M.L., MANZOLI, L., CAPASSO, L. Origin, evolution and paleoepidemiology of brucellosis. Epidemiol. Infect. 139, 149–156, 2011. https://doi.org/10.1017/S095026881000097X DADAR, M., SHAHALI, Y., WHATMORE, A.M. Human brucellosis caused by raw dairy products: A review on the occurrence, major risk factors and prevention. Int. J. Food Microbiol, 2019. https://doi.org/10.1016/j.ijfoodmicro.2018.12.009 DAWSON, C.E., PERRETT, L.L., STUBBERFIELD, E.J., STACK, J.A., FARRELLY, S.S.J., COOLEY, W.A., DAVISON, N.J., QUINNEY, S. Isolation and characterization of Brucella from the lungworms of a harbor porpoise (Phocoena phocoena). J. Wildl. Dis. 44, 237–246, 2008. https://doi.org/10.7589/0090-3558-44.2.237 DE, B.K., STAUFFER, L., KOYLASS, M.S., SHARP, S.E., GEE, J.E., HELSEL, L.O., STEIGERWALT, A.G., VEGA, R., CLARK, T.A., DANESHVAR, M.I., WILKINS, P.P., WHATMORE, A.M. Novel Brucella strain (BO1) associated with a prosthetic breast implant infection. J. Clin. Microbiol. 46, 43–49, 2008. https://doi.org/10.1128/JCM.01494-07 DE FIGUEIREDO, P., FICHT, T.A., RICE-FICHT, A., ROSSETTI, C.A., ADAMS, L.G., ADAMS, G. Infectious Disease Theme Issue REVIEW Pathogenesis and Immunobiology of Brucellosis Review of Brucellae Host Interactions. Am. J. Pathol. 185, 2015. https://doi.org/10.1016/j.ajpath.2015.03.003 DIAS, R.A., GONÇALVES, V.S.P., FIGUEIREDO, V.C.F., LÔBO, J.R., LIMA, Z.M.B., 111 PAULIN, L.M.S., GUNNEWIEK, M.F.K., AMAKU, M., FERREIRA NETO, J.S., FERREIRA, F. Situação epidemiológica da brucelose bovina no Estado de São Paulo. Arq. Bras. Med. Vet. e Zootec. 61, 118–125, 2009. https://doi.org/10.1590/S0102-09352009000700015 DIAZ-APARICIO, E., ARAGON, V., MARIN, C., ALONSO, B., FONT, M., MORENO, E., PEREZ- ORTIZ, S., BLASCO, J.M., DIAZ, R., MORIYON, I. Comparative analysis of Brucella serotype A and M and Yersinia enterocolitica O:9 polysaccharides for serological diagnosis of brucellosis in cattle, sheep, and goats. J. Clin. Microbiol. 31, 3136–3141, 1993. https://doi.org/10.1128/jcm.31.12.3136-3141.1993 DÍAZ, R., CASANOVA, A., ARIZA, J., MORIYÓN, I. The rose Bengal test in human brucellosis: A neglected test for the diagnosis of a neglected disease. PLoS Negl. Trop. Dis. 5, 2011. https://doi.org/10.1371/journal.pntd.0000950 DOHOO, I.R., MARTIN, S.W., STRYHN, H. Veterinary epidemiologic research. VER, Inc., 2009. DORNELES, E., TEIXEIRA-CARVALHO, A., ARAÚJO, M.S.S.., LIMA, G.K., MARTINS-FILHO, O.A.., SRIRANGANATHAN, N., LAGE, A.P. T lymphocytes subsets and cytokine pattern induced by vaccination against bovine brucellosis employing S19 calfhood vaccination and adult RB51 revaccination. Vaccine 32, 6034–6038, 2014. https://doi.org/10.1016/j.vaccine.2014.08.060 DORNELES, E.M.S., SANTANA, J.A., ALVES, T.M., PAULETTI, R.B., MOL, J.P.D.S., HEINEMANN, M.B., LAGE, A.P. Genetic stability of Brucella abortus isolates from an outbreak by multiple-locus variable-number tandem repeat analysis (MLVA16). BMC Microbiol. 14, 2014. https://doi.org/10.1186/1471-2180-14-186 DORNELES, E.M.S., SRIRANGANATHAN, N., LAGE, A.P. Recent advances in Brucella abortus vaccines. Vet. Res., 2015. https://doi.org/10.1186/s13567-015-0199-7 DORNELES, J.V., TEIXEIRA, L.A. Mapeamento epistemológico do campo científico da Ciência da Informação no Brasil: publicações indexadas na base de dados SciELO Citation Index no período de 2014 à 2018. XI EDICI, 2018. https://doi.org/10.5822/978-1-59726-228-6_3_WATER DUCROTOY, M.J., BARDOSH, K.L. How do you get the Rose Bengal Test at the point-of-care to diagnose brucellosis in Africa? The importance of a systems approach. Acta Trop. 112 165, 33–39, 2017. https://doi.org/10.1016/j.actatropica.2016.10.004 DUCROTOY, M.J., CONDE-ÁLVAREZ, R., BLASCO, J.M., MORIYÓN, I. A review of the basis of the immunological diagnosis of ruminant brucellosis. Vet. Immunol. Immunopathol, 2016. https://doi.org/10.1016/j.vetimm.2016.02.002 EDAO, B.M., HAILEGEBREAL, G., BERG, S., ZEWUDE, A., ZELEKE, Y., SORI, T., ALMAW, G., WHATMORE, A.M., AMENI, G., WOOD, J.L.N. Brucellosis in the Addis Ababa dairy cattle: the myths and the realities. BMC Vet. Res. 14, 396, 2018. https://doi.org/10.1186/s12917-018-1709-4 EISENBERG, T., HAMANN, H.P., KAIM, U., SCHLEZ, K., SEEGER, H., SCHAUERTE, N., MELZER, F., TOMASO, H., SCHOLZ, H.C., KOYLASS, M.S., WHATMORE, A.M., ZSCHÖCK, M. Isolation of potentially novel Brucella spp. From frogs. Appl. Environ. Microbiol. 78, 3753–3755, 2012. https://doi.org/10.1128/AEM.07509-11 EL-SAYED, A., AWAD, W. Brucellosis: Evolution and expected comeback. Int. J. Vet. Sci. Med, 2018.. https://doi.org/10.1016/j.ijvsm.2018.01.008 EL-TRAS, W.F., TAYEL, A.A., ELTHOLTH, M.M., GUITIAN, J. Brucella infection in fresh water fish: Evidence for natural infection of Nile catfish, Clarias gariepinus, with Brucella melitensis. Vet. Microbiol. 141, 321–325, 2010. https://doi.org/10.1016/j.vetmic.2009.09.017 EMBRAPA. Identificação de Brucella spp. em bovinos com lesões sugestivas de brucelose. Bol. Pesqui. e Desenvolv. N. 43 Ministério da Agric. Pecuária e Abast. 34, 2019. EWALT, D.R., PAYEUR, J.B., MARTIN, B.M., CUMMINS, D.R., MILLER, W.G. Characteristics of a Brucella species from a bottlenose dolphin (Tursiops truncatus). J. Vet. Diagn. Invest. 6, 448–52, 1994. https://doi.org/10.1177/104063879400600408 EWALT, D.R., PAYEUR, J.B., RHYAN, J.C., GEER, P.L. Brucella suis biovar 1 in naturally infected cattle: A bacteriological, serological, and histological study. J. Vet. Diagnostic Investig. 9, 417–420, 1997. https://doi.org/10.1177/104063879700900414 FAO/WHO/OIE. Electronic Conference on Veterinary Public Health and Control of Zoonoses in Developing Countries, 2001. FERNANDEZ-PRADA, C.M., NIKOLICH, M., VEMULAPALLI, R., SRIRANGANATHAN, N., BOYLE, S.M., SCHURIG, G.G., HADFIELD, T.L., 113 HOOVER, D.L. Deletion of wboA enhances activation of the lectin pathway of complement in Brucella abortus and Brucella melitensis. Infect. Immun. 69, 4407–4416, 2001. https://doi.org/10.1128/IAI.69.7.4407-4416.2001 FICHT, T. Brucella taxonomy and evolution. Futur. Microbiol 5, 859–866, 2010. https://doi.org/10.2217/fmb.10.52 FISCHER, D., LORENZ, N., HEUSER, W., KÄMPFER, P., SCHOLZ, H.C., LIERZ, M.,. Abscesses associated with a Brucella inopinata –like bacterium in a big-eyed tree frog (Leptopelis vermiculatus). J. Zoo Wildl. Med. 43, 625–628, 2012. https://doi.org/10.1638/2011-0005r2.1 FONDO NACIONAL DEL GANADO. Programa de Prevención, Control y Erradicación de la Brucelosis Bovina | Fedegan, 2012. URL https://www.fedegan.org.co/programas/programa-de-prevencion-control-y-erradicacion-de-la-brucelosis-bovina (accessed 5.30.21). FONTANA, C., CONDE-ÁLVAREZ, R., STÅHLE, J., HOLST, O., IRIARTE, M., ZHAO, Y., ARCE-GORVEL, V., HANNIFFY, S., GORVEL, J.P., MORIYÓN, I., WIDMALM, G. Structural studies of lipopolysaccharide-defective mutants from Brucella melitensis identify a core oligosaccharide critical in virulence. J. Biol. Chem. 291, 7727–7741, 2016. https://doi.org/10.1074/jbc.M115.701540 FOSTER, G., JAHANS, K.L., REID, R.J., ROSS, H.M. Isolation of Brucella species from cetaceans, seals and an otter. Vet. Rec. 138, 583–586, 1996. https://doi.org/10.1136/vr.138.24.583 FOSTER, J.T., BECKSTROM-STERNBERG, S.M., PEARSON, T., BECKSTROM-STERNBERG, J.S., CHAIN, P.S.G., ROBERTO, F.F., HNATH, J., BRETTIN, T., KEIM, P. Whole-genome-based phylogeny and divergence of the genus Brucella. J. Bacteriol. 191, 2864–2870, 2009. https://doi.org/10.1128/JB.01581-08 FRETIN, D., FAUCONNIER, A., KÖHLER, S., HALLING, S., LÉONARD, S., NIJSKENS, C., FEROOZ, J., LESTRATE, P., DELRUE, R.-M., DANESE, I., VANDENHAUTE, J., TIBOR, A., DEBOLLE, X., LETESSON, J.-J. The sheathed flagellum of Brucella melitensis is involved in persistence in a murine model of infection. Cell. Microbiol. 7, 687–698, 2005. https://doi.org/10.1111/j.1462-5822.2005.00502.x FUGIER, E., PAPPAS, G., GORVEL, J.P. Virulence factors in brucellosis: Implications for 114 aetiopathogenesis and treatment. Expert Rev. Mol. Med, 2007. https://doi.org/10.1017/S1462399407000543 GALL, D., NIELSEN, K. Serological diagnosis of bovine brucellosis: A review of test performance and cost comparison. OIE Rev. Sci. Tech, 2004. https://doi.org/10.20506/rst.23.3.1545 GARNER, M.M., LAMBOURN, D.M., JEFFRIES, S.J., HALL, P.B., RHYAN, J.C., EWALT, D.R., POLZIN, L.M., CHEVILLE, N.F. Evidence of Brucella infection in Parafilaroides lungworms in a Pacific harbor seal (Phoca vitulina richardsi). J. Vet. Diagnostic Investig. 9, 298–303, 1997. https://doi.org/10.1177/104063879700900311 GŁOWACKA, P., ZAKOWSKA, D., NAYLOR, K., NIEMCEWICZ, M., BIELAWSKA-DRÓZD, A. Brucella – Virulence factors, pathogenesis and treatment. Polish J. Microbiol, 2018. https://doi.org/10.21307/pjm-2018-029 GODFROID, J. Brucella spp. at the wildlife-livestock interface: An evolutionary trajectory through a livestock-to-wildlife “host jump”? Vet. Sci. 5, 2018. https://doi.org/10.3390/vetsci5030081 GODFROID, J., SAEGERMAN, C., WELLEMANS, V., WALRAVENS, K., LETESSON, J.J., TIBOR, A., MC MILLAN, A., SPENCER, S., SANNA, M., BAKKER, D., POUILLOT, R., GARIN-BASTUJI, B. How to substantiate eradication of bovine brucellosis when aspecific serological reactions occur in the course of brucellosis testing. Vet. Microbiol. 90, 461–477, 2002. https://doi.org/10.1016/S0378-1135(02)00230-4 GONZÁLEZ, D., GRILLÓ, M.J., DE MIGUEL, M.J., ALI, T., ARCE-GORVEL, V., DELRUE, R.M., CONDE-ÁLVAREZ, R., MUÑOZ, P., LÓPEZ-GOÑI, I., IRIARTE, M., MARÍN, C.M., WEINTRAUB, A., WIDMALM, G., ZYGMUNT, M., LETESSON, J.J., GORVEL, J.P., BLASCO, J.M., MORIYÓN, I. Brucellosis vaccines: Assessment of Brucella melitensis lipopolysaccharide rough mutants defective in core and O-polysaccharide synthesis and export. PLoS One 3, 2008. https://doi.org/10.1371/journal.pone.0002760 GOPAUL, K.K., KOYLASS, M.S., SMITH, C.J., WHATMORE, A.M. Rapid identification of Brucella isolates to the species level by real time PCR based single nucleotide polymorphism (SNP) analysis. BMC Microbiol. 8, 1–14, 2008. https://doi.org/10.1186/1471-2180-8-86/FIGURES/6 115 GOPAUL, K.K., SELLS, J., BRICKER, B.J., CRASTA, O.R., WHATMORE, A.M. Rapid and reliable single nucleotide polymorphism-based differentiation of brucella live vaccine strains from field strains. J. Clin. Microbiol. 48, 1461–1464, 2010. https://doi.org/10.1128/JCM.02193-09 GORVEL, J.P., MORENO, E. Brucella intracellular life: From invasion to intracellular replication. Vet. Microbiol. 90, 281–297, 2002. https://doi.org/10.1016/S0378-1135(02)00214-6 GREENFIELD, R.A., DREVETS, D.A., MACHADO, L.J., VOSKUHL, G.W., CORNEA, P., BRONZE, M.S. Bacterial pathogens as biological weapons and agents of bioterrorism. Am. J. Med. Sci. 323, 299–315, 2002. https://doi.org/10.1097/00000441-200206000-00003 GRILLÓ, M.J., BLASCO, J.M., GORVEL, J.P., MORIYÁN, I., MORENO, E. What have we learned from brucellosis in the mouse model? Vet. Res, 2012. https://doi.org/10.1186/1297-9716-43-29 GUDOSHNIK, A.N. Role of pasture ticks and rodents in dissemination of Brucella. Zh. Mikrobiol. Epidemiol. Immunobiol. 29, 113–7, 1958. GUSI, A.M., BERTU, W.J., JESÚS DE MIGUEL, M., DIESTE-PÉREZ, L., SMITS, H.L., OCHOLI, R.A., BLASCO, J.M., MORIYÓN, I., MUÑOZ, P.M. Comparative performance of lateral flow immunochromatography, iELISA and rose Bengal tests for the diagnosis of cattle, sheep, goat and swine brucellosis. PLoS Negl. Trop. Dis. 13, 2019. https://doi.org/10.1371/journal.pntd.0007509 GWIDA, M., EL-ASHKER, M., MELZER, F., EL-DIASTY, M., EL-BESKAWY, M., NEUBAUER, H. Use of serology and real time PCR to control an outbreak of bovine brucellosis at a dairy cattle farm in the Nile Delta region, Egypt. Ir. Vet. J. 69, 3, 2016. https://doi.org/10.1186/s13620-016-0062-9 HAAG, A.F., MYKA, K.K., ARNOLD, M.F.F., CARO-HERNÁNDEZ, P., FERGUSON, G.P. Importance of lipopolysaccharide and cyclic β-1,2-glucans in Brucella-mammalian infections. Int. J. Microbiol, 2010. https://doi.org/10.1155/2010/124509 HAILESELASSIE, M., KALAYOU, S., KYULE, M., ASFAHA, M., BELIHU, K. Effect of Brucella infection on reproduction conditions of female breeding cattle and its public health significance in Western Tigray, Northern Ethiopia. Vet. Med. Int, 2011. 116 https://doi.org/10.4061/2011/354943 HALLING, S.M. On the presence and organization of open reading frames of the nonmotile pathogen Brucella abortus similar to class II, III, and IV flagellar genes and to LcrD virulence superfamily. Microb. Comp. Genomics 3, 21–29, 1998. https://doi.org/10.1089/omi.1.1998.3.21 HALLING, S.M., PETERSON-BURCH, B.D., BRICKER, B.J., ZUERNER, R.L., QING, Z., LI, L.L., KAPUR, V., ALT, D.P., OLSEN, S.C. Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis. J. Bacteriol, 2005. https://doi.org/10.1128/JB.187.8.2715-2726.2005 HAMDY, M.E.R., AMIN, A.S. Detection of Brucella species in the milk of infected cattle, sheep, goats and camels by PCR. Vet. J. 163, 299–305, 2002. https://doi.org/10.1053/tvjl.2001.0681 HAMMERL, J.A., GÖLLNER, C., JÄCKEL, C., SCHOLZ, H.C., NÖCKLER, K., REETZ, J., AL DAHOUK, S., HERTWIG, S. Genetic Diversity of Brucella Reference and Non-reference Phages and Its Impact on Brucella-Typing. Front. Microbiol. 8, 408, 2017. https://doi.org/10.3389/fmicb.2017.00408 HASSOUNEH, L., QUADRI, S., RETO, P.P., CHAISAVANEEYAKORN, S., CUTRELL, J.B., WETZEL, D.M., NIJHAWAN, A.E. An Outbreak of Brucellosis: An Adult and Pediatric Case Series. Open Forum Infect. Dis. 6, ofz384–ofz384, 2019. https://doi.org/10.1093/OFID/OFZ384 HATCHER, S.M., SHIH, D., HOLDERMAN, J., COSSABOOM, C., LEMAN, R., DEBESS, E. Adverse event associated with unintentional exposure to the Brucella abortus rb51 vaccine — Oregon, december 2017. Morb. Mortal. Wkly. Rep, 2018. https://doi.org/10.15585/mmwr.mm6726a4 HOLT, H.R., ELTHOLTH, M.M., HEGAZY, Y.M., EL-TRAS, W.F., TAYEL, A.A., GUITIAN, J. Brucella spp. infection in large ruminants in an endemic area of Egypt: cross-sectional study investigating seroprevalence, risk factors and livestock owner’s knowledge, attitudes and practices (KAPs). BMC Public Health 11, 341, 2011. https://doi.org/10.1186/1471-2458-11-341 HOSSEINI-CHEGENI, A., TAVAKOLI, M., TELMADARRAIY, Z., SEDAGHAT, M.M., FAGHIHI, F. Detection of a Brucella-like (Alphaproteobacteria) Bacterium in Boophilus 117 spp. (Acari: Ixodidae) from Iran. J. Med. Microbiol. Infect. Dis. 5, 66–68, 2017. https://doi.org/10.29252/jommid.5.3.4.66 HOYER, B.H., MCCULLOUGH, N.B. Polynucleotide Homologies of Brucella Deoxyribonucleic Acids. J. Bacteriol. 95, 444, 1968. HUBÁLEK, Z., SCHOLZ, H.C., SEDLÁČEK, I., MELZER, F., SANOGO, Y.O., NESVADBOVÁ, J. Brucellosis of the Common Vole (Microtus arvalis). Vector-Borne Zoonotic Dis. 7, 679–688, 2007. https://doi.org/10.1089/vbz.2007.0143 HULL, N., MILLER, J., BERRY, D., LAEGREID, W., SMITH, A., KLINGHAGEN, C., SCHUMAKERA, B. Optimization of Brucella abortus protocols for downstream molecular applications. J. Clin. Microbiol. 56, 2018. https://doi.org/10.1128/JCM.01894-17 HULL, N.C., SCHUMAKER, B.A. Comparisons of brucellosis between human and veterinary medicine. Infect. Ecol. Epidemiol, 2018. https://doi.org/10.1080/20008686.2018.1500846 INSTITUTO COLOMBIANO AGROPECUARIO. Resolución No. 075495 de 2020. “Por medio de la cual se establecen las medidas sanitarias para la prevención y control de la Brucella Abortus en las especies bovina, bufalina, ovina, caprina, porcina y équida dentro del territorio nacional.” Inst. Colomb. Agropecu, 2020a. INSTITUTO COLOMBIANO AGROPECUARIO. Muestreo Nacional de Prevalencia de la Brucelosis Bovina y Zonificación, 2020b. [Manuscrito no publicado]. INSTITUTO COLOMBIANO AGROPECUARIO. Resolución ICA No. 7781 de 2019. Inst. Colomb. Agropecu, 2019. INSTITUTO COLOMBIANO AGROPECUARIO. Resolución ICA No. 30392 de 2018. Inst. Colomb. Agropecu, 2018a. INSTITUTO COLOMBIANO AGROPECUARIO. Instituto Colombiano Agropecuario - ICA, 2018b. URL https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2017.aspx (accessed 3.24.20). INSTITUTO COLOMBIANO AGROPECUARIO. Resolución 7231 de 2017. Inst. Colomb. Agropecu, 2017. INSTITUTO COLOMBIANO AGROPECUARIO. Boletin-Sanidad-Animal- ICA 2016. URL 118 https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/bol/epi/boletines-anuales (accessed 2.6.20). INSTITUTO COLOMBIANO AGROPECUARIO. Resoluciòn No. 00550 de 2006 [WWW Document]. Inst. Colomb. Agropecu, 2006. INSTITUTO COLOMBIANO AGROPECUARIO,. Resolución ICA 0700 de 2002. Inst. Colomb. Agropecu, 2002. URL http://normograma.invima.gov.co/docs/resolucion_ica_0700_2002.htm (accessed 2.6.20). IQBAL, Z. Role of ixodid ticks in transmission of bacterial diseases in cattle and buffaloes in Pakistan. Pak. J. Agri. Sci 34, 86–88, 1997. ISLAM, M.S., ISLAM, M.A., KHATUN, M.M., SAHA, S., BASIR, M.S., HASAN, M.-M. Molecular Detection of Brucella spp. from Milk of Seronegative Cows from Some Selected Area in Bangladesh. J. Pathog. 2018, 1–7, 2018. https://doi.org/10.1155/2018/9378976 JAÝ, M., GIRAULT, G., PERROT, L., TAUNAY, B., VUILMET, T., ROSSIGNOL, F., PITEL, P.-H., PICARD, E., PONSART, C., MICK, V. Phenotypic and Molecular Characterization of Brucella microti-Like Bacteria From a Domestic Marsh Frog (Pelophylax ridibundus). Front. Vet. Sci. 5, 283, 2018. https://doi.org/10.3389/fvets.2018.00283 JIM QUIGLEY. Calf feeding programs and control. DeLaval Milkproduction.com, 2005. JIMÉNEZ DE BAGÜÉS, M.P., OUAHRANI‐BETTACHE, S., QUINTANA, J.F., MITJANA, O., HANNA, N., BESSOLES, S., SANCHEZ, F., SCHOLZ, H.C., LAFONT, V., KÖHLER, S., OCCHIALINI, A. The New Species Brucella microti Replicates in Macrophages and Causes Death in Murine Models of Infection. J. Infect. Dis. 202, 3–10, 2010. https://doi.org/10.1086/653084 JUNQUEIRA JUNIOR, D.G., LIMA, A.M.C., ROSINHA, G.M.S., CARVALHO, C.E.G., OLIVEIRA, C.E., SANCHES, C.C. Detection of Brucella abortus B19 strain DNA in seminal plasma by polymerase chain reaction in Brazil. Transbound. Emerg. Dis. 65, 476–479, 2018. https://doi.org/10.1111/tbed.12727 KADEN, R., FERRARI, S., JINNEROT, T., LINDBERG, M., WAHAB, T., LAVANDER, M. Brucella abortus determination of survival times and evaluation of methods detection 119 in several matrices. BMC Infect. Dis. 18, 259, 2018. https://doi.org/10.1186/s12879-018-3134-5 KARTHIK, K., RATHORE, R., THOMAS, P., ELAMURUGAN, A., ARUN, T.R., DHAMA, K. Serological and molecular detection of Brucella abortus from cattle by RBPT, STAT and PCR and sample suitability of whole blood for PCR. Asian J. Anim. Vet. Adv. 9, 262–269, 2014. https://doi.org/10.3923/ajava.2014.262.269 KATO, Y., MASUDA, G., ITODA, I., IMAMURA, A., AJISAWA, A., NEGISHI, M. Brucellosis in a returned traveler and his wife: Probable person-to-person transmission of Brucella melitensis. J. Travel Med. 14, 343–345, 2007. https://doi.org/10.1111/j.1708-8305.2007.00139.x KIMURA, M., UNE, Y., SUZUKI, M., PARKEUN-SIL, IMAOKA, K., MORIKAWA, S. Isolation of Brucella inopinata-Like Bacteria from White’s and Denny’s Tree Frogs. https://home.liebertpub.com/vbz 17, 297–302, 2017. https://doi.org/10.1089/VBZ.2016.2027 KÖHLER, S., FOULONGNE, V., OUAHRANI-BETTACHE, S., BOURG, G., TEYSSIER, J., RAMUZ, M., LIAUTARD, J.P. The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc. Natl. Acad. Sci. U. S. A. 99, 15711–15716, 2002. https://doi.org/10.1073/pnas.232454299 KÖHLER, S., MICHAUX-CHARACHON, S., PORTE, F., RAMUZ, M., LIAUTARD, J.P. What is the nature of the replicative niche of a stealthy bug named Brucella? Trends Microbiol, 2003. https://doi.org/10.1016/S0966-842X(03)00078-7 LAMONTAGNE, J., FOREST, A., MARAZZO, E., DENIS, F., BUTLER, H., MICHAUD, J.F., BOUCHER, L., PEDRO, I., VILLENEUVE, A., SITNIKOV, D., TRUDEL, K., NASSIF, N., BOUDJELTI, D., TOMAKI, F., CHAVES-OLARTE, E., GUZMÁN-VERRI, C., BRUNET, S., CÔTÉ-MARTIN, A., HUNTER, J., MORENO, E., PARAMITHIOTIS, E. Intracellular adaptation of Brucella abortus. J. Proteome Res. 8, 1594–1609, 2009. https://doi.org/10.1021/pr800978p LANGWIG, K.E., GOMES, M.G.M., CLARK, M.D., KWITNY, M., YAMADA, S., WARGO, A.R., LIPSITCH, M. Limited available evidence supports theoretical predictions of reduced vaccine efficacy at higher exposure dose. Sci. Rep. 9, 1–6, 2019. 120 https://doi.org/10.1038/s41598-019-39698-x LAPAQUE, N., MORIYON, I., MORENO, E., GORVEL, J.P. Brucella lipopolysaccharide acts as a virulence factor. Curr. Opin. Microbiol, 2005. https://doi.org/10.1016/j.mib.2004.12.003 LEAL-KLEVEZAS, D.S., MARTINEZ-VAZQUEZ, I.O., LOPEZ-MERINO, A., MARTINEZ-SORIANO, J.P. Single-step PCR for detection of Brucella spp. from blood and milk of infected animals. J. Clin. Microbiol. 33, 3087–3090, 1995. https://doi.org/10.1128/jcm.33.12.3087-3090.1995 LECLERCQ, S., CLOECKAERT, A., ZYGMUNT, M.S. Taxonomic Organization of the Family Brucellaceae Based on a Phylogenomic Approach. Front. Microbiol. 10, 3083, 2019. https://doi.org/10.3389/FMICB.2019.03083 LÉONARD, S., FEROOZ, J., HAINE, V., DANESE, I., FRETIN, D., TIBOR, A., DE WALQUE, S., DE BOLLE, X., LETESSON, J.J. FtcR is a new master regulator of the flagellar system of Brucella melitensis 16M with homologs in Rhizobiaceae. J. Bacteriol. 189, 131–141, 2007. https://doi.org/10.1128/JB.00712-06 LETESSON, J.J., BARBIER, T., ZÚÑIGA-RIPA, A., GODFROID, J., DE BOLLE, X., MORIYÓN, I. Brucella genital tropism: What’s on the menu. Front. Microbiol, 2017. https://doi.org/10.3389/fmicb.2017.00506 LETESSON, J.J., LESTRATE, P., DELRUE, R.M., DANESE, I., BELLEFONTAINE, F., FRETIN, D., TAMINIAU, B., TIBOR, A., DRICOT, A., DESCHAMPS, C., HAINE, V., LEONARD, S., LAURENT, T., MERTENS, P., VANDENHAUTE, J., DE BOLLE, X. Fun stories about Brucella: The “furtive nasty bug.” Vet. Microbiol. 90, 317–328, 2002. https://doi.org/10.1016/S0378-1135(02)00208-0 LONDOÑO, J.L. Metodologia de la invertigación epidemiologica 4ª ed.. Bogotá: Ed.El Manual Moderno, 2010. 432 p.; 23 cm. Bibliografia: p. 395-409. ISBN 978-958-9446-33-1. LOPARDO, H.A., GARRAHAN, J.P., PROFESOR, ", PREDARI, S.C., VAY, C. Manual de microbiología clínica de la asociación Argentina de microbiología volumen I Bacterias de Importancia Clínica. Editores, 2017. LÓPEZ-GOÑI, I., MORIYÓN, I. Brucella: Molecular and Cellular Biology. 2004. 121 LOPEZ, A., HITOS, F., PEREZ, A., NAVARRO-FIERRO, R.R. Lung lesions in bovine fetuses aborted by Brucella abortus. Can. J. Comp. Med. 48, 275–277, 1984. LOVERA, R., FERNÁNDEZ, M.S., JACOB, J., LUCERO, N., MORICI, G., BRIHUEGA, B., FARACE, M.I., CARACOSTANTOGOLO, J., CAVIA, R. Intrinsic and extrinsic factors related to pathogen infection in wild small mammals in intensive milk cattle and swine production systems. PLoS Negl. Trop. Dis. 11, e0005722, 2017. https://doi.org/10.1371/journal.pntd.0005722 LUCERO, N.E., AYALA, S.M., ESCOBAR, G.J., JACOB, N.R. Brucella isolated in humans and animals in Latin America from 1968 to 2006. Epidemiol. Infect. 136, 496–503, 2008. https://doi.org/10.1017/S0950268807008795 MABLESON, H.E., OKELLO, A., PICOZZI, K., WELBURN, S.C. Neglected Zoonotic Diseases-The Long and Winding Road to Advocacy. PLoS Negl. Trop. Dis. 8, 2014. https://doi.org/10.1371/journal.pntd.0002800 MAICHAK, E.J., SCURLOCK, B.M., ROGERSON, J.D., MEADOWS, L.L., BARBKNECHT, A.E., EDWARDS, W.H., CROSS, P.C.,. Effects of management, behavior, and scavenging on risk of brucellosis transmission in elk of western wyoming. J. Wildl. Dis. 45, 398–410, 2009. https://doi.org/10.7589/0090-3558-45.2.398 MANCILLA, M. Smooth to Rough Dissociation in Brucella: The Missing Link to Virulence. Front. Cell. Infect. Microbiol. 5, 98, 2015. https://doi.org/10.3389/fcimb.2015.00098 MARSTON, J. Report on Malta Fever. Army Med. Dep. Med. Rep. 3, 520–521, 1863. https://doi.org/10.1136/jramc-111-01-34 MARTIROSYAN, A., MORENO, E., GORVEL, J.-P. An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunol. Rev. 240, 211–234, 2011. https://doi.org/10.1111/J.1600-065X.2010.00982.X MATOPE, G., BHEBHE, E., MUMA, J.B., LUND, A., SKJERVE, E. Herd-level factors for Brucella seropositivity in cattle reared in smallholder dairy farms of Zimbabwe. Prev. Vet. Med. 94, 213–221, 2010. https://doi.org/10.1016/j.prevetmed.2010.01.003 MAYFIELD, J.E., BRICKER, B.J., GODFREY, H., CROSBY, R.M., KNIGHT, D.J., HAILING, S.M., BALINSKY, D., TABATABAI, L.B. The cloning, expression, and nucleotide sequence of a gene coding for an immunogenic Brucella abortus protein. Gene 63, 1–9, 1988. https://doi.org/10.1016/0378-1119(88)90540-9 122 MCDONALD, W.L., JAMALUDIN, R., MACKERETH, G., HANSEN, M., HUMPHREY, S., SHORT, P., TAYLOR, T., SWINGLER, J., DAWSON, C.E., WHATMORE, A.M., STUBBERFIELD, E., PERRETT, L.L., SIMMONS, G. Characterization of a Brucella sp. strain as a marine-mammal type despite isolation from a patient with spinal osteomyelitis in New Zealand. J. Clin. Microbiol. 44, 4363–4370, 2006. https://doi.org/10.1128/JCM.00680-06 MCQUISTON, J.R., VEMULAPALLI, R., INZANA, T.J., SCHURIG, G.G., SRIRANGANATHAN, N., FRITZINGER, D., HADFIELD, T.L., WARREN, R.A., SNELLINGS, N., HOOVER, D., HALLING, S.M., BOYLE, S.M. Genetic characterization of a Tn5-disrupted glycosyltransferase gene homolog in Brucella abortus and its effect on lipopolysaccharide composition and virulence. Infect. Immun. 67, 3830–3835, 1999. https://doi.org/10.1128/iai.67.8.3830-3835.1999 MILILLO, M.A. Estudio de los mecanismos y componentes de Brucella abortus involucrados en la disminución de MHC-I y la respuesta T CD8+ citotóxica. Tesis presentada para optar al título de Doctora de la Universidad de Buenos Aires Área de investigación: Farmacia y Bioquímica Subárea de investigación: Ciencias de la Salud Lic. Bioquímica, Buenos Aires, 2018. MILIONIS, H., CHRISTOU, L., ELISAF, M. Cutaneous manifestations in brucellosis: Case report and review of the literature. Infection 28, 124–126, 2000. https://doi.org/10.1007/s150100050062 MILLER, S.A., DYKES, D.D., POLESKY, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16, 1215, 1988. https://doi.org/10.1093/nar/16.3.1215 MIRANDA, K.L., POESTER, F.P., DORNELES, E.M.S., RESENDE, T.M., VAZ, A.K., FERRAZ, S.M., LAGE, A.P. Brucella abortus RB51 in milk of vaccinated adult cattle. Acta Trop. 160, 58–61, 2016. https://doi.org/10.1016/j.actatropica.2016.04.012 MITKA, S., ANETAKIS, C., SOULIOU, E., DIZA, E., KANSOUZIDOU, A. Evaluation of different PCR assays for early detection of acute and relapsing brucellosis in humans in comparison with conventional methods. J. Clin. Microbiol. 45, 1211–1218, 2007. https://doi.org/10.1128/JCM.00010-06 MOGOLLÓN, D., RINCÓN, J., VILLALOBOS, R., BOHÓRQUEZ, C., MOSSOS 123 CAMPOS, N., ARBELÁEZ RENDÓN, G., JAIRO NAVARRO BAHAMÓN, J. Instrucciones generales para el usuario de los servicios oficiales de diagnóstico veterinario en Colombia. Instituto Colombiano Agropecuario, 2003. MOLLOY, S. Circular virulence for Brucella. Nat. Rev. Microbiol, 2005. https://doi.org/10.1038/nrmicro1201 MONDRAGÓN-LENIS, I.M., VÉLEZ-LONDOÑO, J.D., CALLE, D., SÁNCHEZ-JIMÉNEZ, M., CARDONA-CASTRO, N. First confirmed case of human brucellosis by Brucella melitensis, a zoonosis present in Colombia. Infectio 24, 259–261, 2020. https://doi.org/10.22354/in.v24i4.886 MONREAL, D., GRILLÓ, M., GONZÁLEZ, D., MARÍN, C.M., DE MIGUEL, M., LÓPEZ-GOÑI, I., BLASCO, J., CLOECKAERT, A., MORIYÓN, I. Characterization of Brucella abortus O-polysaccharide and core lipopolysaccharide mutants and demonstration that a complete core is required for rough vaccines to be efficient against Brucella abortus and Brucella ovis in the mouse model. Infect. Immun. 71, 3261–3271, 2003. https://doi.org/10.1128/IAI.71.6.3261-3271.2003 MORALES-ESTRADA, A.I., HERNÁNDEZ-CASTRO, R., LÓPEZ-MERINO, A., SINGH-BEDI, J., CONTRERAS-RODRÍGUEZ, A. Isolation, identification, and antimicrobial susceptibility of Brucella spp. cultured from cows and goats manure in Mexico. Arch. Med. Vet. 48, 231–235, 2016. https://doi.org/10.4067/S0301-732X2016000200014 MORATA, P., QUEIPO-ORTUÑO, M.I., DE DIOS COLMENERO, J. Strategy for optimizing DNA amplification in a peripheral blood PCR assay used for diagnosis of human brucellosis. J. Clin. Microbiol. 36, 2443–6, 1998. MORENO, E. The one hundred year journey of the genus Brucella (Mayer and Shaw 1920). FEMS Microbiol. Ver, 2020. https://doi.org/10.1093/femsre/fuaa045 MORENO, E. Retrospective and prospective perspectives on zoonotic brucellosis. Front. Microbiol, 2014. https://doi.org/10.3389/fmicb.2014.00213 MORENO, E. Brucellosis in Central America. Vet. Microbiol. 90, 31–38, 2002. https://doi.org/10.1016/S0378-1135(02)00242-0 MORENO, E., MORIYÓN, I. Brucella melitensis: A nasty bug with hidden credentials for virulence. Proc. Natl. Acad. Sci. U. S. A, 2002. https://doi.org/10.1073/pnas.022622699 124 MORIYÓN, I., GRILLÓ, M.J., MONREAL, D., GONZÁLEZ, D., MARÍN, C., LÓPEZ-GOÑI, I., MAINAR-JAIME, R.C., MORENO, E., BLASCO, J.M. Rough vaccines in animal brucellosis: Structural and genetic basis and present status. Vet. Res, 2004. https://doi.org/10.1051/vetres:2003037 MUKHERJEE, F. Optimization and Validation of a Diagnostic Real-Time PCR for Bovine Brucellosis. Adv. Anim. Vet. Sci. 3, 577–587, 2015. https://doi.org/10.14737/journal.aavs/2015/3.11.577.587 MUKHERJEE, F., JAIN, E., PATEL, V., NAIR, M. Multiple genus-specific markers in PCR assays improve the specificity and sensitivity of diagnosis of brucellosis in field animals. J. Med. Microbiol. 56, 1309–1316, 2007. https://doi.org/10.1099/jmm.0.47160-0 MUMA, J.B., SAMUI, K.L., OLOYA, J., MUNYEME, M., SKJERVE, E. Risk factors for brucellosis in indigenous cattle reared in livestock-wildlife interface areas of Zambia. Prev. Vet. Med. 80, 306–317, 2007. https://doi.org/10.1016/j.prevetmed.2007.03.003 MUÑOZ, P.M., BLASCO, J.M., ENGEL, B., DE MIGUEL, M.J., MARÍN, C.M., DIESTE, L., MAINAR-JAIME, R.C. Assessment of performance of selected serological tests for diagnosing brucellosis in pigs. Vet. Immunol. Immunopathol. 146, 150–158, 2012. https://doi.org/10.1016/J.VETIMM.2012.02.012 MUTNAL, M.B., PURWAR, S., METGUD, S.C., NAGMOTI, M.B., PATIL, C.S. PCR confirmation of cutaneous manifestation due to Brucella melitensis. J. Med. Microbiol. 56, 283–285, 2007. https://doi.org/10.1099/jmm.0.46927-0 NATIONAL COUNCIL OF STATE LEGISLATURES. Brucella abortus Strain RB51 Vaccine Licensed for Use in Cattle. State milk laws, 2018. https://doi.org/10.1128/CVI.00326-10 NAVARRO, E., ESCRIBANO, J., FERNÁNDEZ, J.., SOLERA, J. Comparison of three different PCR methods for detection of Brucella spp. in human blood samples. FEMS Immunol. Med. Microbiol. 34, 147–151, 2002. https://doi.org/10.1111/j.1574-695X.2002.tb00616.x NDENGU, M., MATOPE, G., DE GARINE-WICHATITSKY, M., TIVAPASI, M., SCACCHIA, M., BONFINI, B., PFUKENYI, D.M. Seroprevalence of brucellosis in cattle and selected wildlife species at selected livestock/wildlife interface areas of the Gonarezhou National Park, Zimbabwe. Prev. Vet. Med. 146, 158–165, 2017. 125 https://doi.org/10.1016/j.prevetmed.2017.08.004 NEGRÓN, M.E., KHAROD, G.A., BOWER, W.A., WALKE, H. Notes from the Field: Human Brucella abortus RB51 Infections Caused by Consumption of Unpasteurized Domestic Dairy Products — United States, 2017–2019. MMWR. Morb. Mortal. Wkly. Rep. 68, 185, 2019. https://doi.org/10.15585/mmwr.mm6807a6 NICOLETTI, P. A short history of brucellosis. Vet. Microbiol. 90, 5–9, 2002. https://doi.org/10.1016/S0378-1135(02)00209-2 NIE, J., SUN, G.Q., SUN, X.D., ZHANG, J., WANG, N., WANG, Y.M., SHEN, C.J., HUANG, B.X., JIN, Z. Modeling the transmission dynamics of dairy cattle brucellosis in Jilin province, China. J. Biol. Syst. 22, 533–554, 2014. https://doi.org/10.1142/S021833901450020X NIELSEN, K. Diagnosis of brucellosis by serology. Vet. Microbiol. 90, 447–459, 2002. https://doi.org/10.1016/S0378-1135(02)00229-8 NIELSEN, K. Brucelosis en las américas: perspectivas de diagnóstico y de control mediante la utilización de nuevas vacunas. pp. 229–237, 2000. NIELSEN, K., SMITH, P., WIDDISON, J., GALL, D., KELLY, L., KELLY, W., NICOLETTI, P. Serological relationship between cattle exposed to Brucella abortus, Yersinia enterocolitica O:9 and Escherichia coli O157:H7. Vet. Microbiol. 100, 25–30, 2004. https://doi.org/10.1016/j.vetmic.2003.12.010 NOVIELLO, S., GALLO, R., KELLY, M., LIMBERGER, R.J., DEANGELIS, K., CAIN, L., WALLACE, B., DUMAS, N. Laboratory-acquired brucellosis. Emerg. Infect. Dis. 10, 1848–1850, 2004. https://doi.org/10.3201/eid1010.040076 O’GRADY, D., KENNY, K., POWER, S., EGAN, J., RYAN, F. Detection of Yersinia enterocolitica serotype O:9 in the faeces of cattle with false positive reactions in serological tests for brucellosis in Ireland. Vet. J. 216, 133–135, 2016. https://doi.org/10.1016/j.tvjl.2016.07.016 O’LEARY, S., SHEAHAN, M., SWEENEY, T. Brucella abortus detection by PCR assay in blood, milk and lymph tissue of serologically positive cows. Res. Vet. Sci. 81, 170–176, 2006. https://doi.org/10.1016/j.rvsc.2005.12.001 ÖGREDICI, Ö., ERB, S., LANGER, I., PILO, P., KERNER, A., HAACK, H.G., 126 CATHOMAS, G., DANUSER, J., PAPPAS, G., TARR, P.E. Brucellosis reactivation after 28 years. Emerg. Infect. Dis, 2010. https://doi.org/10.3201/eid1612.100678 OLSEN, S.C., BOGGIATTO, P., WHITE, D.M., MCNUNN, T. Biosafety Concerns Related to Brucella and Its Potential Use as a Bioweapon. Appl. Biosaf. 23, 77–90, 2018. https://doi.org/10.1177/1535676018771983 OLSEN, S.C., PALMER, M. V. Advancement of Knowledge of Brucella Over the Past 50 Years. Vet. Pathol. 51, 1076–1089, 2014. https://doi.org/10.1177/0300985814540545 ONUNKWO, J.I., NJOGA, E.O., NJOGA, U.J., EZEOKAFOR, E., OKEZIE EKERE, S. Brucella seropositivity in chicken and risk factors for Brucella infection at the animal-human interface in Anambra State, Nigeria. Int. J. One Heal. Available 4, 28–34, 2018. https://doi.org/10.14202/IJOH.2018.28-34 ORGANIZACIÓN MUNDIAL DE SANIDAD ANIMAL. Acceso en línea: OIE - World Organisation for Animal Health. Código Sanit. para los Anim. Acuáticos, 2019. URL https://www.oie.int/es/normas/codigo-terrestre/acceso-en-linea/ (accessed 4.8.20). ORTIZ, Á.J. Análisis de Seropositividad de Brucelosis Bovina Mediante Elisa Competitiva y Fluorescencia Polarizada, entre El 1 de Septiembre de 2014 Y 13 de Febrero de 2015 en el Laboratorio de Diagnóstico Veterinario del Instituto Colombiano Agropecuario (ICA) Secci, 2015. ORTIZ, L.F., MUSKUS, C., SÁNCHEZ, M.M., OLIVERA, M. Identification of Brucella canis Group 2 in colombian kennels. Rev. Colomb. Ciencias Pecu. 25, 615–619, 2012. OSTERMAN, B., MORIYÓN, I. International Committee on Systematics of Prokaryotes; Subcommittee on the taxonomy of Brucella: Minutes of the meeting, 17 September 2003, Pamplona, Spain. Int. J. Syst. Evol. Microbiol. 56, 1173–1175, 2006. https://doi.org/10.1099/IJS.0.64349-0 OUAHRANI-BETTACHE, S., JIMÉNEZ DE BAGÜÉS, M.P., DE LA GARZA, J., FREDDI, L., BUESO, J.P., LYONNAIS, S., AL DAHOUK, S., DE BIASE, D., KÖHLER, S., OCCHIALINI, A. Lethality of Brucella microti in a murine model of infection depends on the wbkE gene involved in O-polysaccharide synthesis. Virulence, 2019. https://doi.org/10.1080/21505594.2019.1682762 OVIEDO-PASTRANA, M., BRUNAL-TACHACK, E., DORIA-RAMOS, M., OVIEDO-SOCARRAS, T. Analysis of epidemiological indicators: Bovine brucellosis on the 127 Atlantic coast and Antioquia - Colombia, 2005-2013. Rev. MVZ Córdoba 22, 6034–6043, 2017. https://doi.org/10.21897/rmvz.1073 PACHECO-MONTEALEGRE, M., PATIÑO, R.E., TORRES, L., JIMÉNEZ, S., RODRÍGUEZ, J.L., CARO-QUINTERO, A. The draft genome of Brucella abortus strain Ba col-B012, isolated from a dairy farm in Nariño, Colombia, bring new insights into the epidemiology of biovar 4 strains. Stand. Genomic Sci. 12, 89, 2017. https://doi.org/10.1186/s40793-017-0299-2 PACHECO, M. Detecção molecular de DNA de Brucella abortus em sêmen bovino in natura. Minas Gerais, MG: Universidade Federal de Uberlândia, 2014. PACHECO, W.A. Excreção de Brucella abortus, estirpe B19 pelo leite e urina de fêmeas bovinas de diferentes faixas etárias vacinadas contra a brucelose e sua relação com o ciclo reprodutivo. São Paulo, SP: Dissertação de Mestrado em Epidemiologia Experimental e Aplicada as Zoonoses da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo, 2007. PADILLA POESTER, F., NIELSEN, K., ERNESTO SAMARTINO, L., LING YU, W. Diagnosis of Brucellosis. The Open Veterinary Science Journal, 2010. PAPPAS, G., PANAGOPOULOU, P., CHRISTOU, L., AKRITIDIS, N. Brucella as a biological weapon. Cell. Mol. Life Sci. 63, 2229–2236, 2006. https://doi.org/10.1007/s00018-006-6311-4 PAULSEN, I.T., SESHADRI, R., NELSON, K.E., EISEN, J.A., HEIDELBERG, J.F., READ, T.D., DODSON, R.J., UMAYAM, L., BRINKAC, L.M., BEANAN, M.J., DAUGHERTY, S.C., DEBOY, R.T., DURKIN, A.S., KOLONAY, J.F., MADUPU, R., NELSON, W.C., AYODEJI, B., KRAUL, M., SHETTY, J., MALEK, J., VAN AKEN, S.E., RIEDMULLER, S., TETTELIN, H., GILL, S.R., WHITE, O., SALZBERG, S.L., HOOVER, D.L., LINDLER, L.E., HALLING, S.M., BOYLE, S.M., FRASER, C.M. The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc. Natl. Acad. Sci. U. S. A. 99, 13148–13153, 2002. https://doi.org/10.1073/pnas.192319099 PEI, J., KAHL-MCDONAGH, M., FICHT, T.A. Brucella dissociation is essential for macrophage egress and bacterial dissemination. Front. Cell. Infect. Microbiol. 5, 2014. https://doi.org/10.3389/fcimb.2014.00023 128 PEREIRA, C.R., COTRIM DE ALMEIDA, J.V.F., CARDOSO DE OLIVEIRA, I.R., FARIA DE OLIVEIRA, L., PEREIRA, L.J., ZANGERÔNIMO, M.G., LAGE, A.P., DORNELES, E.M.S. Occupational exposure to Brucella spp.: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 14, e0008164, 2020. https://doi.org/10.1371/journal.pntd.0008164 PÉREZ FRANCO, J.J. Aislamiento de Brucella suis de cabras. 1972. PÉREZ SANCHO, M. Aplicación de nuevas estrategias en el diagnóstico y profilaxis de la brucelosis producida por “Brucella melitensis” en rumiantes domésticos. Universidad Complutense de Madrid, 2014. PETERSEN, E., CHAUDHURI, P., GOURLEY, C., HARMS, J., SPLITTER, G. Brucella melitensis cyclic di-GMP phosphodiesterase BpdA controls expression of flagellar genes. J. Bacteriol. 193, 5683–5691, 2011. https://doi.org/10.1128/JB.00428-11 PIZARRO-CERDÁ, J., MORENO, E., GORVEL, J.P. Invasion and intracellular trafficking of Brucella abortus in nonphagocytic cells. Microbes Infect, 2000. https://doi.org/10.1016/S1286-4579(00)90368-X PLOMMET, M., FENSTERBANK, R., RENOUX, G., GESTIN, J., PHILIPPON, A., BORDE, R., MARLY, J., DUFRENOY, J., RENSEIGNÉ, N., BARRAULT, F., PLOMMET FENSTERBANK, M.R., RENOUX GESTIN A PHILIPPON R BORDE, G.J., PLOMMET G BEZARD, A.M. Brucellose bovine expérimentale. XII.-Persistance A L’Âge adulte de L’Infection congénitale de la génisse, 1973. POESTER, F.P., SAMARTINO, L.E., SANTOS, R.L. Pathogenesis and pathobiology of brucellosis in livestock. Rev. sci. tech. Off. int. Epiz, 2013. PORTE, F., NAROENI, A., OUAHRANI-BETTACHE, S., LIAUTARD, J.P. Role of the Brucella suis lipopolysaccharide O antigen in phagosomal genesis and in inhibition of phagosome-lysosome fusion in murine macrophages. Infect. Immun. 71, 1481–1490, 2003. https://doi.org/10.1128/IAI.71.3.1481-1490.2003 PREVENTING WITH EXPERTS DISEASES SUCH AS BRUCELLOSIS FOR A HEALTHIER WORLD, n.d. URL https://www.preventingwithexperts.com/en/ (accessed 11.15.21). QUEIPO-ORTUNO, M.I., COLMENERO, J.D., BAEZA, G., MORATA, P. Comparison between Light Cycler Real-Time Polymerase Chain Reaction (PCR) Assay with Serum 129 and PCR-Enzyme-Linked Immunosorbent Assay with Whole Blood Samples for the Diagnosis of Human Brucellosis. Clin. Infect. Dis. 40, 260–264, 2005. https://doi.org/10.1086/426818 QUEIPO-ORTUÑO, M.I., MORATA, P., OCÓN, P., MANCHADO, P., COLMENERO, J.D. Rapid diagnosis of human brucellosis by peripheral-blood PCR assay. J. Clin. Microbiol. 35, 2927–30, 1997. RAHMAN, A.K.M.A., SMIT, S., DEVLEESSCHAUWER, B., KOSTOULAS, P., ABATIH, E., SAEGERMAN, C., SHAMSUDDIN, M., BERKVENS, D., DHAND, N.K., WARD, M.P. Bayesian evaluation of three serological tests for the diagnosis of bovine brucellosis in bangladesh. Epidemiol. Infect. 147, 2019. https://doi.org/10.1017/S0950268818003503 RHYAN, J.C., NOL, P., QUANCE, C., GERTONSON, A., BELFRAGE, J., HARRIS, L., STRAKA, K., ROBBE-AUSTERMAN, S. Transmission of brucellosis from elk to cattle and bison, Greater Yellowstone Area, USA, 2002-2012. Emerg. Infect. Dis. 19, 1992–1995, 2013. https://doi.org/10.3201/eid1912.130167 RICHARDSON, J., BARKLEY, W.E., RICHMOND, D.J., MCKINNEY, R.W. Biosafety in Microbiological and Biomedical Laboratories, 2009. ROBINSON, A. Guidelines for coordinated human and animal brucellosis surveillance. FAO Animal Production and Animal Health paper 156. Emergency Prevention System, Food and Agriculture Organization of the United Nations, 2003a. ROBINSON, A. Guidelines for coordinated human and animal brucellosis surveillance. Food Agric. Organ, 2003b. ROCHA-GRACIA, R. DEL C., CASTAÑEDA-ROLDÁN, E.I., GIONO-CEREZO, S., GIRÓN, J.A. Brucella sp. bind to sialic acid residues on human and animal red blood cells. FEMS Microbiol. Lett. 213, 219–224, 2002. https://doi.org/10.1111/J.1574-6968.2002.TB11309.X RODRÍGUEZ, M.C., VIADAS, C., SEOANE, A., SANGARI, F.J., LÓPEZ-GOÑI, I., GARCÍA-LOBO, J.M. Evaluation of the Effects of Erythritol on Gene Expression in Brucella abortus. PLoS One 7, e50876, 2012. https://doi.org/10.1371/journal.pone.0050876 ROMERO, C., GAMAZO, C., PARDO, M., LOPEZ-GONI, I. Specific detection of Brucella 130 DNA by PCR. J. Clin. Microbiol. 33, 615–617, 1995. https://doi.org/10.1128/jcm.33.3.615-617.1995 ROSS, H.M., FOSTER, G., REID, R.J., JAHANS, K.L., MACMILLAN, A.P. Brucella species infection in sea-mammals. Vet. Rec, 1994. https://doi.org/10.1136/vr.134.14.359-b ROSSETTI, C.A., DRAKE, K.L., SIDDAVATAM, P., LAWHON, S.D., NUNES, J.E.S., GULL, T., KHARE, S., EVERTS, R.E., LEWIN, H.A., ADAMS, L.G. Systems Biology Analysis of Brucella Infected Peyer’s Patch Reveals Rapid Invasion with Modest Transient Perturbations of the Host Transcriptome. PLoS One 8, e81719, 2013. https://doi.org/10.1371/journal.pone.0081719 ROTH, F., ZINSSTAG, J., ORKHON, D., CHIMED-OCHIR, G., HUTTON, G., COSIVI, O., CARRIN, G., OTTE, J. Human health benefits from livestock vaccination for brucellosis: case study. Bulletin of the World Health Organization, 2003. ROVID SPICKLER, A. Brucellosis in Marine Mammals, 2007. SAADAT, S., MARDANEH, J., AHOURAN, M., MOHAMMADZADEH, A., ARDEBILI, A., YOUSEFI, M., MANSOURI, M. Diagnosis of cattle brucellosis by PCR and serological methods: Comparison of diagnostic tests. Biomed. Pharmacol. J. 10, 881–888, 2017. https://doi.org/10.13005/bpj/1181 SALEEM, M.Z. Role of ticks in transmission of brucellosis and skin/hide damage in small and large ruminants. Diss. University of Veterinary and Animal Sciences, Lahore., 2019. SALVADOR-BESCÓS, M., GIL-RAMÍREZ, Y., ZÚÑIGA-RIPA, A., MARTÍNEZ-GÓMEZ, E., DE MIGUEL, M.J., MUÑOZ, P.M., CLOECKAERT, A., ZYGMUNT, M.S., MORIYÓN, I., IRIARTE, M., CONDE-ÁLVAREZ, R. WadD, a New Brucella Lipopolysaccharide Core Glycosyltransferase Identified by Genomic Search and Phenotypic Characterization. Front. Microbiol. 9, 2293, 2018. https://doi.org/10.3389/fmicb.2018.02293 SAMARTINO, L., EDDI, C. Zoonosis en los sistemas de producción animal de las áreas urbanas y periurbanas de América Latina. Language (Baltim). 27, 1–7, 2010. SAMARTINO, L.E., FORT, M., GREGORET, R., SCHURIG, G.G. Use of Brucella abortus vaccine strain RB51 in pregnant cows after calfhood vaccination with strain 19 in Argentina. Prev. Vet. Med. 45, 193–199, 2000. https://doi.org/10.1016/S0167- 131 5877(00)00130-6 SANGER, F., NICKLEN, S., COULSON, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U. S. A. 74, 5463–5467, 1977. https://doi.org/10.1073/PNAS.74.12.5463 SANKARASUBRAMANIAN, J., VISHNU, U.S., DINAKARAN, V., SRIDHAR, J., GUNASEKARAN, P., RAJENDHRAN, J. Computational prediction of secretion systems and secretomes of Brucella: identification of novel type IV effectors and their interaction with the host. Mol. Biosyst. 12, 178–190, 2015. https://doi.org/10.1039/c5mb00607d SAADAT, S., MARDANEH, J., AHOURAN, M., MOHAMMADZADEH, A., ARDEBILI, A., & YOUSEFI, M.. Diagnosis of Cattle brucellosis by PCR and serological methods: comparison of diagnostic tests. Biomed. Pharmacol. J, 14.2, 881-888, 2017. https://doi.org/https://dx.doi.org/10.13005/bpj/1181 SCHLABRITZ-LOUTSEVITCH, N.E., WHATMORE, A.M., QUANCE, C.R., KOYLASS, M.S., CUMMINS, L.B., DICK JR, E.J., SNIDER, C.L., CAPPELLI, D., EBERSOLE, J.L., NATHANIELSZ, P.W., HUBBARD, G.B. A novel Brucella isolate in association with two cases of stillbirth in non-human primates - first report. J. Med. Primatol. 38, 70–73, 2009. https://doi.org/10.1111/j.1600-0684.2008.00314.x SCHOLZ, H.C., BANAI, M., CLOECKAERT, A., KÄMPFER, P., WHATMORE, A.M. Brucella, in: Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Ltd, Chichester, UK, pp. 1–38, 2018. https://doi.org/10.1002/9781118960608.gbm00807.pub2 SCHOLZ, H.C., HOFER, E., VERGNAUD, G., FLECHE, P. LE, WHATMORE, A.M., DAHOUK, S. AL, PFEFFER, M., KRÜGER, M., CLOECKAERT, A., TOMASO, H. Isolation of Brucella microti from mandibular lymph nodes of red Foxes, vulpes vulpes, in Lower Austria. Vector-Borne Zoonotic Dis. 9, 153–155, 2009. https://doi.org/10.1089/vbz.2008.0036 SCHOLZ, H.C., HUBALEK, Z., NESVADBOVA, J., TOMASO, H., VERGNAUD, G., FLÈCHE, P. LE, WHATMORE, A.M., AL DAHOUK, S., KRÜGER, M., LODRI, C., PFEFFER, M. Isolation of Brucella microti from soil. Emerg. Infect. Dis, 2008a. https://doi.org/10.3201/eid1408.080286 132 SCHOLZ, H.C., HUBALEK, Z., SEDLÁČEK, I., VERGNAUD, G., TOMASO, H., AL DAHOUK, S., MELZER, F., KÄMPFER, P., HEUBAUER, H., CLOECKAERT, A., MAQUART, M., ZYGMUNT, M.S., WHATMORE, A.M., FALSEN, E., BAHN, P., GÖLLNER, C., PFEFFER, M., HUBER, B., BUSSE, H.J., NÖCKLER, K. Brucella microti sp. nov., isolated from the common vole Microtus arvalis. Int. J. Syst. Evol. Microbiol. 58, 375–382, 2008b. https://doi.org/10.1099/ijs.0.65356-0 SCHOLZ, H.C., NÖCKLER, K., LLNER, C.G., BAHN, P., VERGNAUD, G., TOMASO, H., AL DAHOUK, S., KÄMPFER, P., CLOECKAERT, A., MAQUART, M., ZYGMUNT, M.S., WHATMORE, A.M., PFEFFER, M., HUBER, B., BUSSE, H.J., DE, B.K. Brucella inopinata sp. nov., isolated from a breast implant infection. Int. J. Syst. Evol. Microbiol. 60, 801–808, 2010. https://doi.org/10.1099/ijs.0.011148-0 SCHOLZ, H.C., REVILLA-FERNÁNDEZ, S., DAHOUK, S. AL, HAMMERL, J.A., ZYGMUNT, M.S., CLOECKAERT, A., KOYLASS, M., WHATMORE, A.M., BLOM, J., VERGNAUD, G., WITTE, A., AISTLEITNER, K., HOFER, E. Brucella vulpis sp. Nov., isolated from mandibular lymph nodes of red foxes (Vulpes vulpes). Int. J. Syst. Evol. Microbiol. 66, 2090–2098, 2016. https://doi.org/10.1099/ijsem.0.000998 SCHURIG, G.G., ROOP, R.M., BAGCHI, T., BOYLE, S., BUHRMAN, D., SRIRANGANATHAN, N. Biological properties of RB51; a stable rough strain of Brucella abortus. Vet. Microbiol. 28, 171–188, 1991. https://doi.org/10.1016/0378-1135(91)90091-S SELIM, A., ATTIA, K., RAMADAN, E., HAFEZ, Y.M., SALMAN, A. Seroprevalence and molecular characterization of Brucella species in naturally infected cattle and sheep. Prev. Vet. Med. 171, 2019. https://doi.org/10.1016/j.prevetmed.2019.104756 SIEIRA, R., COMERCI, D.J., SANCHEZ, D.O., UGALDE, R.A. A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication. J. Bacteriol. 182, 4849–4855, 2000. https://doi.org/10.1128/JB.182.17.4849-4855.2000 SILVA, T.I.B. DA, MORAES, R.S. DE, SANTOS, P. DE S., RECKZIEGEL, G.H., GOMES, Y.A., MELCHIOR, L.A.K., FERNANDES, A.C. DE C., BAPTISTA FILHO, L.C.F., SILVA, D.D. DA, REVOREDO, R.G., MELO, L.E.H. DE. Analysis of the risk factors for bovine brucellosis in dairy herds of the Rio Branco microregion, Acre, Brazil. Arq. Inst. Biol. (Sao. Paulo). 86, 2019. https://doi.org/10.1590/1808-1657000792018 133 SMIRNOVA, E.A., VASIN, A. V., SANDYBAEV, N.T., KLOTCHENKO, S.A., PLOTNIKOVA, M.A., CHERVYAKOVA, O. V., SANSYZBAY, A.R., KISELEV, O.I. Current Methods of Human and Animal Brucellosis Diagnostics. Adv. Infect. Dis. 03, 177–184, 2013. https://doi.org/10.4236/aid.2013.33026 SOHN, A.H., PROBERT, W.S., GLASER, C.A., GUPTA, N., BOLLEN, A.W., WONG, J.D., GRACE, E.M., MCDONALD, W.C. Human neurobrucellosis with intracerebral granuloma caused by a marine mammal Brucella spp. Emerg. Infect. Dis. 9, 485–488, 2003. https://doi.org/10.3201/eid0904.020576 SOLER-LLORÉNS, P.F., QUANCE, C.R., LAWHON, S.D., STUBER, T.P., EDWARDS, J.F., FICHT, T.A., ROBBE-AUSTERMAN, S., O’CALLAGHAN, D., KERIEL, A.. A Brucella spp. isolate from a Pac-Man frog (Ceratophrys ornata) reveals characteristics departing from classical brucellae. Front. Cell. Infect. Microbiol. 6, 116, 2016. https://doi.org/10.3389/fcimb.2016.00116 STARR, T., CHILD, R., WEHRLY, T.D., HANSEN, B., HWANG, S., LÓ PEZ-OTIN, C., VIRGIN, H.W., CELLI, J. Article Selective Subversion of Autophagy Complexes Facilitates Completion of the Brucella Intracellular Cycle. Cell Host Microbe 11, 33–45, 2012. https://doi.org/10.1016/j.chom.2011.12.002 STOENNER, H.G., LACKMAN, D.B. A preliminary report on a Brucella isolated from the desert wood rat, Neotoma lepida Thomas. J. Am. Vet. Med. Assoc. 130, 411–412, 1957. SVEC, D., TICHOPAD, A., NOVOSADOVA, V., PFAFFL, M.W., KUBISTA, M. ARTICLE IN PRESS G Model How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomol. Detect, 2015. Quantif. https://doi.org/10.1016/j.bdq.2015.01.005 TANYEL, E., FISGIN, N.T., YILDIZ, L., LEBLEBICIOGLU, H., DOGANCI, L., TULEK, N. Panniculitis as the Initial Manifestation of Brucellosis: A Case Report. Am. J. Dermatopathol. 30, 169–171, 2008. https://doi.org/10.1097/DAD.0b013e31816563f5 THE CENTER FOR FOOD SECURITY & PUBLIC HEALTH. Brucellosis in Marine Mammals. Most 1–11, 2018. THOMSEN, A. Does The Bull Spread Infectious Abort-Ion in Cattle? Experimental Studies from 1936 to 1942. J. Comp. Pathol. Ther. 53, 199–211, 1943. https://doi.org/10.1016/s0368-1742(43)80019-9 134 THRUSFIELD, M. Veterinary Epidemiology, Third Edition. The Canadian Veterinary Journal, 2007. https://doi.org/10.1016/S0167-5877(03)00107-7 TILLER, R. V., GEE, J.E., FRACE, M.A., TAYLOR, T.K., SETUBAL, J.C., HOFFMASTER, A.R., DE, B.K. Characterization of novel Brucella strains originating from wild native rodent species in North Queensland, Australia. Appl. Environ. Microbiol. 76, 5837–5845, 2010a. https://doi.org/10.1128/AEM.00620-10 TILLER, R. V., GEE, J.E., LONSWAY, D.R., GRIBBLE, S., BELL, S.C., JENNISON, A. V., BATES, J., COULTER, C., HOFFMASTER, A.R., DE, B.K. Identification of an unusual Brucella strain (BO2) from a lung biopsy in a 52 year-old patient with chronic destructive pneumonia. BMC Microbiol. 10, 2010b. https://doi.org/10.1186/1471-2180-10-23 TIWARI, A., PAL, V., AFLEY, P., SHARMA, D.K., BHATNAGAR, C.S., BHARDWAJ, B., RAI, G.P., KUMAR, S. Real-time PCR carried out on DNA extracted from serum or blood sample is not a good method for surveillance of bovine brucellosis. Trop. Anim. Health Prod. 46, 1519–1522, 2014. https://doi.org/10.1007/s11250-014-0664-8 TRAXLER, R.M., GUERRA, M.A., MORROW, M.G., HAUPT, T., MORRISON, J., SAAH, J.R., SMITH, C.G., WILLIAMS, C., FLEISCHAUER, A.T., LEE, P.A., STANEK, D., TREVINO-GARRISON, I., FRANKLIN, P., OAKES, P., HAND, S., SHADOMY, S. V., BLANEY, D.D., LEHMAN, M.W., BENOIT, T.J., STODDARD, R.A., TILLER, R. V., DE, B.K., BOWER, W., SMITH, T.L. Review of brucellosis cases from laboratory exposures in the United States in 2008 to 2011 and improved strategies for disease prevention. J. Clin. Microbiol, 2013.. https://doi.org/10.1128/JCM.00813-13 TROTTA, A., MARINARO, M., CIRILLI, M., SPOSATO, A., ADONE, R., BEVERELLI, M., BUONAVOGLIA, D., CORRENTE, M. Brucella melitensis B115-based ELISA to unravel false positive serologic reactions in bovine brucellosis: A field study. BMC Vet. Res. 16, 50, 2020. https://doi.org/10.1186/s12917-020-02278-7 TSOLIS, R.M., SESHADRI, R., SANTOS, R.L., SANGARI, F.J., GARCÍA LOBO, J.M., DE JONG, M.F., REN, Q., MYERS, G., BRINKAC, L.M., NELSON, W.C., DEBOY, R.T., ANGIUOLI, S., KHOURI, H., DIMITROV, G., ROBINSON, J.R., MULLIGAN, S., WALKER, R.L., ELZER, P.E., HASSAN, K.A., PAULSEN, I.T. Genome degradation in Brucella ovis corresponds with narrowing of its host range and tissue tropism. PLoS One 4, 2009. https://doi.org/10.1371/journal.pone.0005519 135 TURSE, J., PEI, J., FICHT, T. Lipopolysaccharide-Deficient Brucella Variants Arise Spontaneously during Infection. Front. Microbiol. 2, 2011. https://doi.org/10.3389/FMICB.2011.00054 UHRIG, S.R., NOL, P., MCCOLLUM, M., SALMAN, M., RHYAN, J.C. Evaluation of transmission of Brucella abortus strain 19 in bison by intravaginal, intrauterine, and intraconjunctival inoculation. J. Wildl. Dis. 49, 522–526, 2013. https://doi.org/10.7589/2012-03-071 VALENCIA, M., GUZMAN, M.. Brucelosis Humana. Inst. Nac. Salud INS 42, 1987. VELASCO, J., ROMERO, C., LÓPEZ-GOÑI, I., LEIVA, J., DĨAZ, R., MORIYÓN, I. Evaluation of the relatedness of Brucella spp. and Ochrobactrum anthropi and description of Ochrobactrum intermedium sp. nov., a new species with a closer relationship to Brucella spp. Int. J. Syst. Bacteriol. 48, 759–768, 1998. https://doi.org/10.1099/00207713-48-3-759 VERGER, J.-M., GRIMONT, F., GRIMONT, P.A.D., GRAYON’, M. Brucella, a Monospecific Genus as Shown by Deoxyribonucleic Acid Hybridization. International Journal of Systematic Bacteriology, 1985. VIADAS, C., RODRÍGUEZ, M.C., SANGARI, F.J., GORVEL, J.-P., GARCÍA-LOBO, J.M., LÓPEZ-GOÑI, I. Transcriptome Analysis of the Brucella abortus BvrR/BvrS Two-Component Regulatory System. PLoS One 5, e10216, 2010. https://doi.org/10.1371/journal.pone.0010216 VICENTE, J., VERCAUTEREN, K.C., VERCAUTEREN, K. The Role of Scavenging in Disease Dynamics. 2019. https://doi.org/10.1007/978-3-030-16501-7_7 VILLALOBOS-VINDAS, J.M., AMUY, E., BARQUERO-CALVO, E., ROJAS, N., CHACÓN-DÍAZ, C., CHAVES-OLARTE, E., GUZMAN-VERRI, C., MORENO, E. Brucellosis caused by the wood rat pathogen Brucella neotomae: Two case reports. J. Med. Case Rep. 11, 2017. https://doi.org/10.1186/s13256-017-1496-8 VILLALOBOS-ZÚÑIGA, M.A., BARRANTES-VALVERDE, E., MONGE-ORTEGA, P. Endocarditis por Brucella abortus: Reporte del primer caso en C.R Brucella abortus Endocarditis. Acta Med. Costarric. 53, 154–157, 2011. VITRY, M.A., MAMBRES, D.H., DEGHELT, M., HACK, K., MACHELART, A., LHOMME, F., VANDERWINDEN, J.M., VERMEERSCH, M., DE TREZ, C., PÉREZ- 136 MORGA, D., LETESSON, J.J., MURAILLE, E. Brucella melitensis invades murine erythrocytes during infection. Infect. Immun. 82, 3927–3938, 2014. https://doi.org/10.1128/IAI.01779-14 VRIONI, G., PAPPAS, G., PRIAVALI, E., GARTZONIKA, C., LEVIDIOTOU, S. An Eternal Microbe: Brucella DNA Load Persists for Years after Clinical Cure . Clin. Infect. Dis. 46, e131–e136, 2008. https://doi.org/10.1086/588482 WALDROP, S.G., SRIRANGANATHAN, N. Intracellular invasion and survival of Brucella neotomae, another possible zoonotic Brucella species. PLoS One 14, e0213601, 2019. https://doi.org/10.1371/journal.pone.0213601 WANG, Q., ZHAO, S., WURELI, H., XIE, S., CHEN, C., WEI, Q., CUI, B., TU, C., WANG, Y. Brucella melitensis and B. abortus in eggs, larvae and engorged females of Dermacentor marginatus. Ticks Tick. Borne. Dis. 9, 1045–1048, 2018. https://doi.org/10.1016/J.TTBDIS.2018.03.021 WARETH, G., BÖTTCHER, D., MELZER, F., SHEHATA, A.A., ROESLER, U., NEUBAUER, H., SCHOON, H.A. Experimental infection of chicken embryos with recently described Brucella microti: Pathogenicity and pathological findings. Comp. Immunol. Microbiol. Infect. Dis. 41, 28–34, 2015a. https://doi.org/10.1016/j.cimid.2015.06.002 WARETH, G., MELZER, F., TOMASO, H., ROESLER, U., NEUBAUER, H. Detection of Brucella abortus DNA in aborted goats and sheep in Egypt by real-time PCR. Veterinary Research. BMC Res. Notes 8, 2015b. https://doi.org/10.1186/s13104-015-1173-1 WARETH, KHEIMAR, NEUBAUER, MELZER. Susceptibility of Avian Species to Brucella Infection: A Hypothesis-Driven Study. Pathogens 9, 77, 2020. https://doi.org/10.3390/pathogens9020077 WATTAM, A.R., FOSTER, J.T., MANE, S.P., BECKSTROM-STERNBERG, S.M., BECKSTROM-STERNBERG, J.M., DICKERMAN, A.W., KEIM, P., PEARSON, T., SHUKLA, M., WARD, D. V., WILLIAMS, K.P., SOBRAL, B.W., TSOLIS, R.M., WHATMORE, A.M., O’CALLAGHAN, D. Comparative phylogenomics and evolution of the brucellae reveal a path to virulence. J. Bacteriol. 196, 920–930, 2014. https://doi.org/10.1128/JB.01091-13 WATTAM, A.R., WILLIAMS, K.P., SNYDER, E.E., ALMEIDA, N.F., SHUKLA, M., 137 DICKERMAN, A.W., CRASTA, O.R., KENYON, R., LU, J., SHALLOM, J.M., YOO, H., FICHT, T.A., TSOLIS, R.M., MUNK, C., TAPIA, R., HAN, C.S., DETTER, J.C., BRUCE, D., BRETTIN, T.S., SOBRAL, B.W., BOYLE, S.M., SETUBAL, J.C. Analysis of ten Brucella genomes reveals evidence for horizontal gene transfer despite a preferred intracellular lifestyle. J. Bacteriol. 191, 3569–3579, 2009. https://doi.org/10.1128/JB.01767-08 WEYNANTS, V., GILSON, D., CLOECKAERT, A., TIBOR, A., DENOEL, P.A., GODFROID, F., LIMET, J.N., LETESSON, J.-J. Characterization of Smooth Lipopolysaccharides and O Polysaccharides of Brucella Species by Competition Binding Assays with Monoclonal Antibodies. Infection and Immunity, 65(5), 1939-1943. 1997. WHATMORE, A.M. Current understanding of the genetic diversity of Brucella, an expanding genus of zoonotic pathogens. Infect. Genet. Evol, 2009. https://doi.org/10.1016/j.meegid.2009.07.001 WHATMORE, A.M., DALE, E.-J., STUBBERFIELD, E., MUCHOWSKI, J., KOYLASS, M., DAWSON, C., GOPAUL, K.K., PERRETT, L.L., JONES, M., LAWRIE, A. Isolation of Brucella from a White’s tree frog (Litoria caerulea). JMM Case Reports 2, 2015. https://doi.org/10.1099/jmmcr.0.000017 WHATMORE, A.M., DAVISON, N., CLOECKAERT, A., AL DAHOUK, S., ZYGMUNT, M.S., BREW, S.D., PERRETT, L.L., KOYLASS, M.S., VERGNAUD, G., QUANCE, C., SCHOLZ, H.C., DICK, E.J., HUBBARD, G., SCHLABRITZ-LOUTSEVITCH, N.E. Brucella papionis sp. nov., isolated from baboons (Papio spp.). Int. J. Syst. Evol. Microbiol. 64, 4120–4128, 2014. https://doi.org/10.1099/ijs.0.065482-0 WHATMORE, A.M., DAWSON, C.E., GROUSSAUD, P., KOYLASS, M.S., KING, A.C., SHANKSTER, S.J., SOHN, A.H., PROBERT, W.S., MCDONALD, W.L. Marine Mammal Brucella Genotype Associated with Zoonotic Infection - Volume 14, Number 3—March 2008 - Emerging Infectious Diseases journal - CDC. Emerg. Infect. Dis. 14, 517–518, 2008. https://doi.org/10.3201/EID1403.070829 WHATMORE, A.M., PERRETT, L.L., MACMILLAN, A.P. Characterisation of the genetic diversity of Brucella by multilocus sequencing. BMC Microbiol. 7, 2007. https://doi.org/10.1186/1471-2180-7-34 WORLD HEALTH ORGANIZATION. Global Plan to Combat Neglected Tropical Diseases, 138 2008-2015. World Health 37, 2007. https://doi.org/WHO/CDS/NTD/2007.3 WORLD HEALTH ORGANIZATION AND PAN AMERICAN HEALTH ORGANIZATION. 55.o Consejo Directivo. 68.a Sesión del Comité Regional de la OMS para las Americas, 2016.. WORLD ORGANIZATION FOR ANIMAL HEALTH. Terrestrial manual: OIE - World Organisation for Animal Health. Man. Diagnostic Tests Vaccines Terr. Anim. 2, 1185–1191, 2018. XAVIER, M.N., PAIXÃO, T.A., POESTER, F.P., LAGE, A.P., SANTOS, R.L. Pathological, Immunohistochemical and Bacteriological Study of Tissues and Milk of Cows and Fetuses Experimentally Infected with Brucella abortus. J. Comp. Pathol. 140, 149–157, 2009. https://doi.org/10.1016/j.jcpa.2008.10.004 YAGUPSKY, P. Blood Cultures for the Diagnosis of Human Brucellosis, in: Updates on Brucellosis. InTech, 2015. https://doi.org/10.5772/61143 YAGUPSKY, P., BARON, E.J. Laboratory exposures to brucellae and implications for bioterrorism. Emerg. Infect. Dis, 2005. https://doi.org/10.3201/eid1108.041197 YAGUPSKY, P., MORAT, P., COLMENERO, J.D. Laboratory diagnosis of human brucellosis. Clin. Microbiol. Rev. 33, 2020. https://doi.org/10.1128/CMR.00073-19 YAMAMOTO, T., TSUTSUI, T., NISHIGUCHI, A., KOBAYASHI, S. Evaluation of surveillance strategies for bovine brucellosis in Japan using a simulation model. Prev. Vet. Med. 86, 57–74, 2008. https://doi.org/10.1016/j.prevetmed.2008.03.004 ZHANG, T., LIANG, X., ZHU, X., SUN, H., ZHANG, S. An outbreak of brucellosis via air-born transmission in a kitchen wastes disposing company in Lianyungang, China. Int. J. Infect. Dis, 2020. https://doi.org/10.1016/j.ijid.2020.03.008 ZHELUDKOV, M.M., TSIRELSON, L.E. Reservoirs of Brucella infection in nature. Biol. Bull. 37, 709–715, 2010. https://doi.org/10.1134/S106235901007006X ZYGMUNT, M.S., JACQUES, I., BERNARDET, N., CLOECKAERT, A. Lipopolysaccharide heterogeneity in the atypical group of novel emerging Brucella species. Clin. Vaccine Immunol. 19, 1370–1373, 2012. https://doi.org/10.1128/CVI.00300-12pt_BR
dc.subject.cnpqMedicina Veterináriapt_BR
dc.subject.cnpqMedicina Veterináriapt_BR
Appears in Collections:Doutorado em Ciências Veterinárias

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Olga Lucia Herran Ramirez.pdf2.19 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.