Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14934
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSouza, Raquel do Nascimento de
dc.date.accessioned2023-12-22T03:08:30Z-
dc.date.available2023-12-22T03:08:30Z-
dc.date.issued2012-06-12
dc.identifier.citationSOUZA, Raquel do Nascimento de. Efeito anti-inflamatório da acupuntura no modelo de lesão medular por compressão em ratos. 2012. 72 f. Dissertação (Mestrado Multicêntrico em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2012.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14934-
dc.description.abstractA lesão medular (SCI) inicia uma série de eventos moleculares e celulares, denominados danos secundários, onde, uma resposta inflamatória exagerada resulta em uma maior disfunção motora e sensorial. Acredita-se que a acupuntura e apipuntura possa ser utilizada como uma terapia complementar que venha promover neuroproteção e minimize os déficits gerados pela SCI. O objetivo deste estudo foi investigar o efeito da apipuntura na recuperação funcional e na expressão de citocinas inflamatórias na medula espinal após à SCI por compressão. Para indução da SCI, um cateter fogarty de embolectomia foi inflado com 15μL de salina no espaço extradural, entre as vértebras T8 e T9, por 5 minutos em ratos Wistar, machos. Inicialmente foi investigado o efeito de dois tipos de estimulação (acupuntura manual: aplicação de agulhas de acupuntura nos pontos e apipuntura: injeção de 20μL de BV diluído em salina na dose de 0,08mg/kg nos pontos de acupuntura) em três combinações diferentes de acupontos (E36 (Zunsanli) + VG3(Yaoyangquan); ID3 (Houxi) + B62 (Shenmai) e VG3 (Yaoyangquan) + VG9 (Zhiyang) na recuperação locomotora após SCI, que foi avaliada através do teste BBB por duas semanas. Não foi detectada diferença significativa entre os tipos de estimulação (acupuntura e apipuntura), além disso, a estimulação da combinação dos acupontos E36+VG3 promoveu uma melhora significativa da capacidade locomotora em relação aos seus controles (sem estimulação e acupuntura ou apipuntura em não-pontos) e em relação a estimulação das combinações ID3 + B62 e VG3 + VG9. A estimulação das combinações ID3 + B62 e VG3 + VG9 não promoveu efeito significativo na capacidade locomotora dos ratos após SCI. Com base nesses resultados, imediatamente após o SCI, foi avaliada o efeito da apipuntura nos acupontos E36+VG3 sobre a liberação das citocinas pró-inflamatórias IL-1β e IL-6 e das citocinas anti-inflamatórias IL-10 e IL-4 pelo método de quimiluminescência 1, 6 e 24 horas após o tratamento. A apipuntura nos acupontos E36+VG3 promoveu um aumento da expressão de IL-10 às 6 horas e redução de IL-6 às 24 horas em relação aos seus controles (BV em não pontos e controle sem manipulação). Não foram detectadas diferenças significativas na expressão da IL-1β e IL-4 entre os grupos em nenhum dos tempos estudados. Dessa forma, estes resultados sugerem que apipuntura nos pontos E36+VG3 é capaz de promover recuperação parcial da locomoção e esta melhora está associada a uma ação anti-inflamatória através da modulação do balanço de citocinas pró e anti-inflamatórias.por
dc.description.sponsorshipFundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do RJ, FAPERJ, Brasil.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectApipunturapor
dc.subjectcitocina proinflamatoriapor
dc.subjectcitocina anti-inflamatóriapor
dc.subjectneuroinflamaçãopor
dc.subjectveneno de abelhapor
dc.subjectApipunctureeng
dc.subjectproinflammatory cytokineeng
dc.subjectanti-inflammatory cytokineeng
dc.subjectneuroinflammationeng
dc.subjectspinal cord injuryeng
dc.subjectbee venomeng
dc.titleEfeito anti-inflamatório da acupuntura no modelo de lesão medular por compressão em ratospor
dc.title.alternativeAnti-inflammatory effect of acupuncture on the model of spinal cord compression in ratseng
dc.typeDissertaçãopor
dc.description.abstractOtherSpinal cord injury (SCI) initiates a series of molecular and cellular events, called secondary damage, where an exaggerated inflammatory response results in major motor and sensorydysfunction. It is believed that acupuncture can be a complementary therapy topromote neuroprotection and minimize the deficits generated by SCI. The objective of this study was to investigate the effect of acupuncture and apipuncture on the functional recovery and on the inflammatory cytokines expression in the spinal cord after SCI by compression. For induction of SCI, a Fogarty embolectomy catheter was inflated with saline 15μL in the extradural space between vertebrae T8 and T9, for 5 minutes in male, Wistar rats. Initially we investigated the effect of two types stimulation (manual acupuncture: application of acupuncture needles in points and apipuncture: injection of 20μLof BV diluted in saline at a dose of 0.08 mg/kg at acupuncture points) in three different combinations of acupoints (E36 (Zunsanli) + VG3 (Yaoyangquan), ID3 (Houxi) + B62 (Shenmai) and VG3 (Yaoyangquan) + VG9 (Zhiyang) on locomotor recovery after SCI, which was assessed using the BBB test for two week. No significant difference was detected between the types of stimulation (acupuncture and apipuncture), furthermore the stimulation of the combination of acupoints E36+VG3 promoted a significant increase in the locomotor capacity in relation to the controls (no stimulation or acupuncture or apipuncture in no-points) and in relation to stimulation of combinations and ID3 + B62 and VG3+VG9. The combinations of ID3 + B62 and VG9+VG3 did not promote significant effect on the locomotor capacity of rats after SCI. Based on these results, we evaluated using a chemiluminescence method, the effect of apipuncture at acupoints E36+VG3 immediately after SCI on the release of proinflammatory cytokines (IL-1β and IL-6) and anti-inflammatory cytokines (IL-10and IL-4), 6 and 24 hours after SCI. Apipuncture at the acupoints on E36 + VG3 increased the expression of IL-10 at 6 hours and reduced the expression of IL-6 at 24 hours after SCI compared to their controls (BV in non-points and no manipulation control). There were no significant differences in the expression of IL-1β and IL-4 between the groups in any of the periods studied. Thus, these results suggest that apipuncture at the acupoints VG3+E36 is able to promote partialrecovery of locomotion and this improvement is associated with an anti-inflammatoryaction by modulating the balance of pro and anti-inflammatory.eng
dc.contributor.advisor1Medeiros, Magda Alves de
dc.contributor.advisor1ID036.592.487-38por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6392136073564306por
dc.contributor.referee1Franco, Alfred Scholl
dc.contributor.referee2Vanderlinde, Frederico Argolo
dc.creator.ID110.603.277-24por
dc.creator.Latteshttp://lattes.cnpq.br/3151736859168960por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma Multicêntrico de Pós-Graduação em Ciências Fisiológicaspor
dc.relation.referencesAfshari FT, Kappagantula S, Fawcett JW. (2009) Extrinsic and intrinsic factors controlling axonal regeneration after spinal cord injury. Expert Rev Mol Med. 8, 11-37. Aires, MM. Fisiologia. 3a. edição. Rio de Janeiro. Ed. Guanabara-Koogan, 2008. Akira S, Uematsu S, Takeuchi O. (2006) Pathogen recognition and innate immunity. Cell. 124,783-801. Alexander DN, Cen S, Sullivan K.J, Bhavnani, G, Ma X, Azen SP. (2004) Effects of acupuncture treatment on poststroke motor recovery and physical function: a pilot study. Neurorehabil Neural Repair. 18, 259–267. ASIA. ASIA impairment scale. Disponível em: http://www.asia- spinalinjury.org/publications/2001_Classif_worksheet.pdf. Acesso em 21 jan 2012. Baek YH, Huh JE, Lee JD, Choi do Y, Park DS. (2006) Antinociceptive effect and the mechanism of bee venom acupuncture (Apipuncture) on inflammatory pain in the rat model of collagen-induced arthritis: Mediation by alpha2-Adrenoceptors. Brain Res. 16, 1073-1074. Bareyre FM. (2008) Neuronal repair and replacement in spinal cord injury. J Neurol Sci. 265, 63-72. Basso DM, Beattie MS, Bresnahan JC. (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 12, 1-21. Bear, MF, Connors, BW e Paradiso, MA. Neuroscience: Exploring the Brain. Third edition. Lippincott Williams & Wilkins; 2006. Behrmann DL, Bresnahan JC, Beattie MS, Shah BR. (1992) Spinal cord injury produced by consistent mechanical displacement of the cord in rats: Behavioral and histological analysis. J. Neurotrauma 9, 197–217. Boulanger, LM. (2009) Immune Proteins in Brain Development and Synaptic Plasticity. Neuron. 64, 93-109. Brewer KL, Bethea JR, Yezierski RP. (1999) Neuroprotective effects of interleukin-10 following excitotoxic spinal cord injury. Exp Neurol. 159, 484-493. Cadotte DW, Singh A, Fehlings MG. (2010) The timing of surgical decompression for spinal cord injury. F1000 Med Rep. 8, 2-67. Carneiro ER, Xavier RA, De Castro MA, Do Nascimento CM, Silveira VL. (2010) Electroacupuncture promotes a decrease in inflammatory response associated with Th1/Th2 cytokines, nitric oxide and leukotriene B4 modulation in experimental asthma. Cytokine. 50, 335-340. 61 Chae Y, Lee H, Kim H, Kim CH, Chang DI, Kim KM, Park HJ. (2009) Parsing brain activity associated with acupuncture treatment in Parkinson's diseases. Mov Disord 24, 1794–1802. Chen Y, Zhou J, Li J, Yang SB, Mo LQ, Hu JH, Yuan WL. (2012) Electroacupuncture pretreatment prevents cognitive impairment induced by limb ischemia-reperfusion via inhibition of microglial activation and attenuation of oxidative stress in rats. Brain Res. 1432, 36-45. Choi BT, Kang J, Jo UB. (2005) Effects of electroacupuncture with different frequencies on spinal ionotropic glutamate receptor expression in complete Freund's adjuvant-injected rat. Acta Histochem. 107, 67-76. Choi DC, Lee JY, Moon YJ, Kim SW, Oh TH, Yune TY. (2010) Acupuncture-mediated inhibition of inflammation facilitates significant functional recovery after spinal cord injury. Neurobiol Dis. 39, 272-282. Cizkova D, Novotna I, Slovinska L, Vanicky I, Jergova S, Rosocha J, Radonak J. (2011) Repetitive intrathecal catheter delivery of bone marrow mesenchymal stromal cells improves functional recovery in a rat model of contusive spinal cord injury. J Neurotrauma. 28, 1951-1961. Coleman WP; Benzel D; Cahill DW; Ducker T; Geisler F; Green B; Gropper MR; Goffin J; Madsen PW 3rd; Maiman DJ; Ondra SL; Rosner M; Sasso RC; Trost, GR, Zeidman S. (2000) A critical appraisal of the reporting of the national acute spinal cord injury studies (II and III) of methylprednisolone in acute spinal cord injury. J. Spinal Disord. 13, 185–199. da Silva MD, Guginski G, Werner MF, Baggio CH, Marcon R, Santos AR. (2011). Involvement of Interleukin-10 in the Anti-Inflammatory Effect of Sanyinjiao (SP6) Acupuncture in a Mouse Model of Peritonitis. Evid Based Complement Alternat Med. 2011-217946. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB. (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 8, 752-758. DeLeo, JA, Sorkin, LS, Watkins, LR. (eds) Immune and Glial Regulation of Pain (IASP, Seattle, 2007). Deverman, BE, Patterson, PH. (2009). Cytokines and CNS Development. Neuron, 64, 61-78. Dimitrijevic MR. (1992) Development of neurophysiological aspects of the spinal cord during the past ten years. Paraplegia. 30, 92-95. Ding Y, Yan Q, Ruan JW, Zhang YQ, Li WJ, Zhang YJ, Li Y, Dong H, Zeng YS. (2009) Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats. BMC Neurosci. 20, 10-35. 62 Donnelly DJ, Popovich PG. (2007) Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol. 209, 378-388. Dorsher PT, McIntosh PM. (2009) Acupuncture's Effects in Treating the Sequelae of Acute and Chronic Spinal Cord Injuries: A Review of Allopathic and Traditional Chinese Medicine Literature. Evid Based Complement Alternat Med. Dou CL and Levine JM. (1994) Inhibition of neurite growth by the NG2 chondroitin sulfate proteoglycan. J Neurosci. 14, 7616-7628 Dougherty KD, Dreyfus CF, Black IB. (2000) Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/ macrophages after spinal cord injury. Neurobiol Dis.7, 574-585 Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB and Dumont AS. (2001) Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol. 24, 254–264. Esposito E, Cuzzocrea S. (2011) Anti-TNF therapy in the injured spinal cord. Trends Pharmacol Sci. 32, 107-115. Esposito E, Paterniti I, Mazzon E, Genovese T, Galuppo M, Meli R, Bramanti P, Cuzzocrea S. (2011a) MK801 attenuates secondary injury in a mouse experimental compression model of spinal cord trauma. BMC Neuroscience. 14, 12-31. Fernandes, KJL e Tetzlaff, W. Gene expression in axotomized neurons: identifying the intrinsic determinants of axonal growth, in Regeneration in the Central Nervous System (Murray, N., ed.), (2000), New York: Marcel Dekker. Fitch MT, Silver J. (2008) CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol. 209, 294-301. Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, Pasquale-Styles M, Dietrich WD, Weaver LC. (2006) The cellular inflammatory response in human spinal cords after injury. Brain. 129, 3249-3269. Fouad K, Klusman I, Schwab ME. (2004) Regenerating corticospinal fibers in the Marmoset (Callitrix jacchus) after spinal cord lesion and treatment with the anti-Nogo-A antibody IN-1. Eur J Neurosci. 20, 2479-2482. Freund P, Schmidlin E, Wannier T, Bloch J, Mir A, Schwab ME, Rouiller EM. (2006) Nogo-A-specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nat Med. 12, 790-792 Gao HM, Hong JS. (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol. 29, 357-365. Genovese T, Esposito E, Mazzon E, Muià C, Di Paola R, Meli R, Bramanti P, Cuzzocrea S. (2008) Evidence for the role of mitogen-activated protein kinase 63 signaling pathways in the development of spinal cord injury. J Pharmacol Exp Ther. 325, 100-114. Genovese T, Mazzon E, Esposito E, Muià C, Di Paola R, Crisafulli C, Bramanti P, Cuzzocrea S. (2007) N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone reduces severity of experimental spinal cord injury. Shock. 27, 258-265. Genovese T, Mazzon E, Mariotto S, Menegazzi M, Cardali S, Conti A, Suzuki H, Bramanti P, Cuzzocrea S. (2006) Modulation of nitric oxide homeostasis in a mouse model of spinal cord injury. J Neurosurg Spine. 4, 145-153. Gibson RM, Rothwell NJ, Le Feuvre RA. (2004) CNS injury: the role of the cytokine IL-1. Vet J. 168, 230-237. Gordon S. (2003) Alternative activation of macrophages. Nat Rev Immunol. 3, 23-35. Greenfeder SA, Nunes P, Kwee L, Labow M, Chizzonite RA, Ju G. (1995) Molecular cloning and characterization of a second subunit of interleukin-1 receptor complex. J Biol. Chem. 270, 13757-13765. Gris D, Marsh DR, Oatway MA, Chen Y, Hamilton EF, Dekaban GA, Weaver LC. (2004) Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function. J Neurosci. 24, 4043-4051. Guerrero AR, Uchida K, Nakajima H, Watanabe S, Nakamura M, Johnson WE, Baba H. (2012) Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J Neuroinflammation. 27;9:40. Gui J, Xiong F, Li J, Huang G. (2012) Effects of acupuncture on Th1, th2 cytokines in rats of implantation failure. Evid Based Complement Alternat Med. 2012-893023. Habgood MD, Bye N, Dziegielewska KM, Ek CJ, Lane MA, Potter A, Morganti-Kossmann C, Saunders NR. (2007) Changes in blood-brain barrier permeability to large and small molecules following traumatic brain injury in mice. Eur J Neurosci. 25, 231-238. Hagg T, Oudega M. (2006) Degenerative and Spontaneous Regenerative Processes after Spinal Cord Injury. J Neurotrauma. 23, 264-280. Hall ED. (2001) Pharmacological treatment of acute spinal cord injury: how do we build on past success? J Spinal Cord Med. 24, 142-146. Hashimoto M, Nitta A, Fukumitsu H, Nomoto H, Shen L, Furukawa S. (2005) Inflammation-induced GDNF improves locomotor function after spinal cord injury. Neuroreport. 16, 99-102. Hausmann ON. (2003) Post-traumatic inflammation following spinal cord injury. Spinal Cord. 41, 369-378. 64 Hayashi AM, Matera JM, da Silva TS, Pinto AC, Cortopassi SR. (2007) Electro-acupuncture and Chinese herbs for treatment of cervical intervertebral disk disease in a dog. J Vet Sci. 8, 95-98. Hopkins SJ, Rothwell NJ. (1995) Cytokines and the nervous system. I: Expression and recognition. Trends Neurosci. 18, 83-88. Houaiss, A. Dicionário Houaiss da Lingua Portuguesa. Rio de Janeiro: Objetiva, 2001. Hurlbert RJ. (2001) The role of steroids in acute spinal cord injury: an evidence based analysis. Spine 26, 39–46. Hurst SM, Wilkinson TS, McLoughlin RM, Jones S, Horiuchi S, Yamamoto N, Rose-John S, Fuller GM, Topley N, Jones SA. (2001) IL-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity. 14, 705-714. Hwang HS, Kim YS, Ryu YH, Lee JE, Lee YS, Yang EJ, Choi SM, Lee MS. (2011) Electroacupuncture Delays Hypertension Development through Enhancing NO/NOS Activity in Spontaneously Hypertensive Rats. Evid Based Complement Alternat Med. 2011, 130529 Ibarra A, Hauben E, Butovsky O, Schwartz M. The therapeutic window after spinal cord injury can accommodate T cell-based vaccination and methylprednisolone in rats. (2004) Eur J Neurosci. 19, 2984-2990. Jang MH, Shin MC, Lee TH, Lim BV, Shin MS, Min BI, Kim H, Cho S, Kim EH, Kim CJ. (2003) Acupuncture suppresses ischemia-induced increase in c-Fos expression and apoptosis in the hippocampal CA1 region in gerbils. Neurosci Lett. 14, 3475-3478. Jendelová P, Herynek V, Urdzíková L, Glogarová K, Kroupová J, Andersson B, Bryja V, Burian M, Hájek M, Syková E. (2004) Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res. 76, 232-243. Jeon S, Kim YJ, Kim ST, Moon W, Chae Y, Kang M, Chung MY, Lee H, Hong MS, Chung JH, Joh TH, Lee H, Park HJ. (2008) Proteomic analysis of the neuroprotective mechanisms of acupuncture treatment in a Parkinson's disease mouse model. Proteomics 8, 4822–4832. Johnson-Green PC, Dow KE, Riopelle RJ. (1991) Characterization of glycosaminoglycans produced by primary astrocytes in vitro. Glia 4, 314-321. Kandel ER, Schwartz JH, Jessel TM. Principles of Neural Science. EUA: McGrow-Hill; 2000. Kang JM, Park HJ, Choi YG, Choe IH, Park JH, Kim YS, Lim S. (2007) Acupuncture inhibits microglial activation and inflammatory events in the MPTP-induced mouse model. Brain Res. 1131, 211-219. 65 Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci. 29, 13435-13444. Kim EH, Jang MH, Shin MC, Lim BV, Kim HB, Kim YJ, Chung JH, Kim CJ. (2002) Acupuncture increases cell proliferation and neuropeptide Y expression in dentate gyrus of streptozotocin-induced diabetic rats. Neurosci Lett. 12, 33-36. Kim EH, Kim YJ, Lee HJ, Huh Y, Chung JH, Seo JC, Kang JE, Lee HJ, Yim SV, Kim CJ. (2001) Acupuncture increases cell proliferation in dentate gyrus after transient global ischemia in gerbils. Neurosci Lett. 297, 21-24. Kim HW, Kwon YB, Ham TW, Roh DH, Yoon SY, Lee HJ, Han HJ, Yang IS, Beitz AJ, Lee JH. (2003) Acupoint stimulation using bee venom attenuates formalin-induced pain behavior and spinal cord fos expression in rats. J Vet Med Sci. 65, 349-355. Kim HW, Kwon YB, Han HJ, Yang IS, Beitz AJ, Lee JH. (2005) Antinociceptive mechanisms associated with diluted bee venom acupuncture (apipuncture) in the rat formalin test: involvement of descending adrenergic and serotonergic pathways. Pharmacol Res. 51, 183-188. Kim JH, Min BI, Schmidt D, Lee HJ, Park DS. (2000) The difference between electroacupuncture only and electroacupuncture with manipulation on analgesia in rats. Neurosci Lett. 279, 149-152. Kim JI, Yang EJ, Lee MS, Kim YS, Huh Y, Cho IH, Kang S, Koh HK. (2011) Bee venom reduces neuroinflammation in the MPTP-induced model of Parkinson's disease. Int J Neurosci. 121, 209-217. Kim SN, Doo AR, Park JY, Bae H, Chae Y, Shim I, Lee H, Moon W, Lee H, Park HJ. (2011) Acupuncture enhances the synaptic dopamine availability to improve motor function in a mouse model of Parkinson's disease. PLoS One. 6, 1-9. Kim YK, Lim HH, Song YK, Lee HH, Lim S, Han SM, Kim CJ. (2005) Effect of acupuncture on 6-hydroxydopamine-induced nigrostratal dopaminergic neuronal cell death in rats. Neurosci Lett. 384, 133-138. Knoblach SM, Faden AI. (1998) Interleukin-10 improves outcome and alters proinflammatory cytokine expression after experimental traumatic brain injury. Exp Neurol. 153, 143-151. Kraft AD, Harry GJ. (2011) Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int J Environ Res Public Health. 8, 2980-3018. Kwon BK, Borisoff JF, Tetzlaff W. (2002) Molecular targets for therapeutic intervention after spinal cord injury. Mol Interv. 2, 244-258. Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR. (2004) Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J. 4, 451-464. 66 Kwon YB, Ham TW, Kim HW, Roh DH, Yoon SY, Han HJ, Yang IS, Kim KW, Beitz AJ, Lee JH. (2005) Water soluble fraction (<10 kDa) from bee venom reduces visceral pain behavior through spinal alpha 2-adrenergic activity in mice. Pharmacol Biochem Behav. 80, 181-187. Kwon YB, Han HJ, Beitz AJ, Lee JH. (2004) Bee venom acupoint stimulation increases Fos expression in catecholaminergic neurons in the rat brain. Mol Cells. 17, 329-333. Kwon YB, Kang MS, Han HJ, Beitz AJ, Lee JH. (2001a) Visceral antinociception produced by bee venom stimulation of the Zhongwan acupuncture point in mice: role of alpha(2) adrenoceptors. Neurosci Lett. 3, 133-137. Kwon YB, Kang MS, Kim HW, Ham TW, Yim YK, Jeong SH, Park DS, Choi DY, Han HJ, Beitz AJ, Lee JH. (2001c) Antinociceptive effects of bee venom acupuncture (apipuncture) in rodent animal models: a comparative study of acupoint versus non-acupoint stimulation. Acupunct Electrother Res. 26, 59-68. Lacroix S, Chang L, Rose-John S, Tuszynski MH. (2002) Delivery of hyper-interleukin-6 to the injured spinal cord increases neutrophil and macrophage infiltration and inhibits axonal growth. J Comp Neurol. 454, 213-228. Lee SI, Jeong SR, Kang YM, Han DH, Jin BK, Namgung U, Kim BG. (2010) Endogenous expression of interleukin-4 regulates macrophage activation and confines cavity formation after traumatic spinal cord injury. J Neurosci Res. 88, 2409-2419. Lee YB, Yune TY, Baik, SY; Shin, YH, Du S, Rhim H; Lee EB; Kim YC; Shin ML, Markelonis GJ, Oh TH. (2000) Role of tumor necrosis factor-alpha in neuronal and glial apoptosis after spinal cord injury. Exp. Neurol. 166, 190-195. Lewen A, Matz P, Chan PH. (2000) Free radical pathways in CNS injury. J Neurotrauma 17, 871–890. Li WJ, Pan SQ, Zeng YS, Su BG, Li SM, Ding Y, Li Y, Ruan JW. (2010) Identification of acupuncture-specific proteins in the process of electro-acupuncture after spinal cord injury. Neurosci Res. 67, 307-316. Li X, Commane M, Jiang Z, Stark GR. (2001) IL-1-induced NFkappa B and c-Jun N-terminal kinase (JNK) activation diverge at IL-1 receptor-associated kinase (IRAK). Proc Natl Acad Sci U S A. 98, 4461-4465. Li, AH, Zhang, JM, Xie, YK. (2004) Human acupuncture points mapped in rats are associated with excitable muscle/skin–nerve complexes with enriched nerve endings. Brain Res. 1012, 154–159. Lianza S, Casalis MEP, Greve JMD, Eichberg R. (2001) Lesão medular. In: Lianza S. Medicina de Reabilitação. 3ª. ed. São Paulo: Guanabara-Koogan, 299-321. Liu C, Shi Z, Fan L, Zhang C, Wang K, Wang B. (2011) Resveratrol improves neuron protection and functional recovery in rat model of spinal cord injury. Brain Res. 1374, 100-109. 67 Liu H, Yang K, Xin T, Wu W, Chen Y. (2012) Implanted electro-acupuncture electric stimulation improves outcome of stem cells' transplantation in spinal cord injury. Artif Cells Blood Substit Immobil Biotechnol. 2 Loane DJ, Byrnes KR. (2010) Role of microglia in neurotrauma. Neurotherapeutics. 7, 366-377. Longworth W, McCarthy PW. (1997) A review of research on acupuncture for the treatment of lumbar disk protrusions and associated neurological symptomatology. J Altern Complement Med. 3, 55-76. Lu P, Jones LL, Tuszynski MH. (2005) BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord. Exp Neurol. 191, 344-360. Lu, KT, Wang YW, Yang JT, Chen HI. (2005) Effect of interleukin-1 on traumatic brain injury-induced damage to hippocampal neurons. J. Neurotrauma 22, 885–895. Lucas SM, Rothwell NJ, Gibson RM. (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol. 147, 232-240. Lundy-Ekman L. Neurociência: Fundamentos para Reabilitação. Rio de Janeiro: Elsevier; 2004. Machado, ABM. Neuroanatomia Funcional. 2ª edição. Rio de Janeiro: Livraria Atheneu, 2000. Makarov SS. (2000) NF-kappaB as a therapeutic target in chronic inflammation: recent advances. Mol Med Today. 6, 441-448. Matyja E, Nagańska E, Taraszewska A, Rafałowska J. (2005) The mode of spinal motor neurons degeneration in a model of slow glutamate excitotoxicity in vitro. Folia Neuropathol. 43, 7-13. Mayer DJ, Price DD, Rafii A. (1977) Antagonism of acupuncture analgesia in man by the narcotic antagonist naloxone. Brain Res. 121, 368-372. Maynard FM Jr, Bracken MB, Creasey G, Ditunno JF Jr, Donovan WH, Ducker TB, Garber SL, Marino RJ, Stover SL, Tator CH, Waters RL, Wilberger JE, Young W. (1997) International Standards for Neurological and Functional Classification of Spinal Cord Injury. American Spinal Injury Association. Spinal Cord. 35, 266-274. McKeon R.J, Hoke A. and Silver J. (1995) Injury- induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp. Neur. 136, 32-43 McTigue DM. (2008) Potential therapeutic targets for pparγ after spinal cord injury. PPAR Res 517162. Medeiros MA. (2001) Mapeamento através da expressão de c-Fos das estruturas encefálicas envolvidas na acupuntura analgésica (ponto Zusanli) em animais imobilizados. In: Departamento de Psicobiologia, p 129. São Paulo: Universidade Federal de São Paulo. 68 Min KJ, Jou I, Joe E. (2003) Plasminogen-induced IL-1beta and TNF-alpha production in microglia is regulated by reactive oxygen species. Biochem Biophys Res Commun. 312, 969-974. Molina, AELS. Análise da sensibilidade e reprodutividade da escala de Basso, Beattie e Bresnahan (BBB) em ratos Wistar. Dissertação de mestrado. USP. São Paulo (2006). Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 683-765. Mosser DM, Edwards JP. (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 8, 958-69. Moynagh PN. (2005) The interleukin-1 signalling pathway in astrocytes: a key contributor to inflammation in the brain. J Anat. 207, 265-269. Muangchan C, Pope JE. (2012) Interleukin 6 in Systemic Sclerosis and Potential Implications for Targeted Therapy. J Rheumatol. [Epub ahead of print] Murphy PG, Borthwick LA, Altares M, Gauldie J, Kaplan D, Richardson PM. (2000) Reciprocal actions of interleukin-6 and brain-derived neurotrophic factor on rat and mouse primary sensory neurons. Eur J Neurosci. 12, 1891-1899. Nakamura M, Houghtling RA, MacArthur L, Bayer BM, Bregman BS. (2003) Differences in cytokine gene expression profile between acute and secondary injury in adult rat spinal cord. Exp Neural, 184, 313-325. O'Reilly S, Ciechomska M, Cant R, Hügle T, van Laar JM. (2012) Interleukin-6, its role in fibrosing conditions. Cytokine Growth Factor Rev. [Epub ahead of print] Oyinbo CA. (2011) Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars). 71, 281-299. Pais TF, Figueiredo C, Peixoto R, Braz MH, Chatterjee S. (2008) Necrotic neurons enhance microglial neurotoxicity through induction of glutaminase by a MyD88-dependent pathway. J. Neuroinflammation. 9, 5-43. Paola FA, Arnold M. (2003) Acupuncture and spinal cord medicine. J Spinal Cord Med. 26, 12-20. Park HJ, Lim S, Joo WS, Yin CS, Lee HS, Lee HJ, Seo JC, Leem K, Son YS, Kim YJ, Kim CJ, Kim YS, Chung JH. (2003) Acupuncture prevents 6-hydroxydopamine-induced neuronal death in the nigrostriatal dopaminergic system in the rat Parkinson’s disease model. Exp Neurol. 180, 93-98. Park HJ, Lim S, Lee HS, Lee HJ, Yoo YM, Lee HJ, Kim SA, Yin CS, Seo JC, Chung JH. (2002) Acupuncture enhances cell proliferation in dentate gyrus of maternally-separated rats. Neurosci Lett. 22, 153-156. Pomeranz B., Chiu D. (1976) Naloxone blocks acupuncture analgesia and causes hyperalgesia: endorphine is implicated. Life Sci. 19, 1757-1762. 69 Popovich PG, Guan Z, Wei P, Huitinga I, van Rooijen N, Stokes BT. (1999) Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol. 158, 351-365. Profyris C, Cheema SS, Zang D, Azari MF, Boyle K, and Petratos S (2004) Degen- erative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis. 15, 415–436. Ramer MS, Harper GP, Bradbury EJ. (2000) Progress in spinal cord research - a refined strategy for the International Spinal Research Trust. Spinal Cord . 38,449-72. Roh DH, Kim HW, Yoon SY, Kang SY, Kwon YB, Cho KH, Han HJ, Ryu YH, Choi SM, Lee HJ, Beitz AJ, Lee JH. (2006) Bee venom injection significantly reduces nociceptive behavior in the mouse formalin test via capsaicin-insensitive afferents. J Pain. 7, 500-512. Roh DH, Kwon YB, Kim HW, Ham TW, Yoon SY, Kang SY, Han HJ, Lee HJ, Beitz AJ, Lee JH. (2004) Acupoint stimulation with diluted bee venom (apipuncture) alleviates thermal hyperalgesia in a rodent neuropathic pain model: involvement of spinal alpha 2-adrenoceptors. J Pain. 5, 297-303. Rothwell NJ, Luheshi GN (2000) Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci 23, 618–625. Rothwell, NJ, Strijbos, PJ. (1995) Cytokines in neurodegeneration and repair. Int J Dev Neurosci. 13, 179-185. Rubio-Perez JM, Morillas-Ruiz JM. (2012) A review: inflammatory process in Alzheimer's disease, role of cytokines. Scientific World Journal, ID 756357. Saganová K, Orendácová J, Cízková D, Vanický I. (2008) Limited minocycline neuroprotection after balloon-compression spinal cord injury in the rat. Neurosci Lett. 433, 246-249. Sanderson KL, Raghupathi R, Saatman, KE; Martin D, Miller G, Mcintosh TK. (1999) Interleukin-1 receptor antagonist attenuates regional neuronal cell death cognitive dysfunction after experimental brain injury. J. Cereb. Blood Flow Metab. 19, 1118–1125. Schnell L, Fearn S, Schwab M.E, Perry VH, Anthony DC. (1999) Cytokine-induced acute inflammation in the brain and spinal cord. J. Neuropathol. Exp. Neurol. 58, 245–254. Schwab ME, Bartholdi D. (1996) Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev; 76, 319–370. Schwab ME. (2002) Repairing the Injured Spinal Cord. Science. 295, 1029-1031. Schwartz M, Yoles E. (2006) Immune-based therapy for spinal cord repair: autologous macrophages and beyond. J Neurotrauma.23, 360–370. 70 Schwartz M. (2000) Autoimmune involvement in CNS trauma is beneficial if well controlled. Prog Brain Res; 128: 259–263. Schwartz M. (2003) Macrophages and microglia in central nervous system injury: are they helpful or harmful? J Cereb Blood Flow Metab. 23, 385–394. Sedý J, Urdzíková L, Likavcanová K, Hejcl A, Jendelová P, Syková E. (2007) A new model of severe neurogenic pulmonary edema in spinal cord injured rat. Neurosci Lett. 423, 167-171. Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, Rolls A, Mack M, Pluchino S, Martino G, Jung S, Schwartz M. (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med. 6, e1000113 Short DJ, El Masry WS, Jones PW. (2000) High dose methylprednisolone in the management of acute spinal cord injury - a systematic review from a clinical perspective. Spinal Cord. 38, 273-286. Shuai, K. & Liu, B. (2003) Regulation of JAK–STAT signalling in the immune system. Nat Rev Immunol. 3, 900-911. Shuman SL, Bresnahan JC, Beattie MS. (1997) Apoptosis of microglia and oligodendrocytes after spinal cord contusion in rats. J Neurosci Res. 50, 798-808. Son DJ, Lee JW, Lee YH, Song HS, Lee CK, Hong JT. (2007) Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol. Ther. 115, 246–270. 1 Streit WJ, Semple-Rowland SL, Hurley SD, Miller RC, Popovich PG, Stokes BT. (1998) Cytokine mRNA profiles in contused spinal cord and axotomized facial nucleus suggest a beneficial role for inflammation and gliosis. Exp Neurol. 152, 74-87. Suh SJ, Kim KS, Kim MJ, Chang YC, Lee SD, Kim MS, Kwon DY, Kim CH. (2006) Effects of bee venom on protease activities and free radical damages in synovial fluid from type II collagen-induced rheumatoid arthritis rats. Toxicol In Vitro. 20, 1465-1471. Tanaka S, Takehashi M, Iida S, Kitajima T, Kamanaka Y, Stedeford T, Banasik M, Ueda K. (2005) Mitochondrial impairment induced by poly(ADP-ribose) polymerase-1 activation in cortical neurons after oxygen and glucose deprivation. J Neurochem. 95, 179-190. Taoka Y, Okajima K, Murakami K, Johno M, Naruo M. (1998) Role of neutrophil elastase in compression-induced spinal injury in rats. Brain Res. 799, 264–269. Taoka Y, Okajima K, Uchiba M, Murakami K, Kushimoto S, Johno M, Naruo M, Okabe H, Takatsuki K. (1997) Role of neutrophils in spinal cord injury in the rat. Neuroscience. 79; 1177-1182. 71 Tator CH and Fehlings MG. (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg. 75, 15-26. Turrin NP, Plata-Salamán CR. (2000) Cytokine-cytokine interactions and the brain. Brain Res Bull. 51, 3-9 Urdzíková L, Jendelová P, Glogarová K, Burian M, Hájek M, Syková E. (2006) Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats. J Neurotrauma. 23, 1379-1391. Vanický I, Urdzíková L, Saganová K, Cízková D, Gálik J. (2001) A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. J Neurotrauma. 18, 1399-1407. Vitkovic L, Maeda S, Sternberg E. (2001) Anti-inflammatory cytokines: expression and action in the brain. Neuroimmunomodulation. 9, 295-312. Werry EL, Liu GJ, Lovelace MD, Nagarajah R, Bennett MR. (2012) Glutamate potentiates lipopolysaccharide-stimulated interleukin-10 release from neonatal rat spinal cord astrocytes. Neuroscience. 207, 12-24. Wong AM, Leong CP, Su TY, Yu SW, Tsai WC, Chen CP. (2003) Clinical trial of acupuncture for patients with spinal cord injuries. Am J Phys Med Rehabil. 82, 21-27. Wu CP, Chao CC, Zhao ZQ, Wei, JY. (1974) Inhibitory effect produced by stimulation of afferent nerves on responses of cat dorsolateral fasciculus fibers to nocuous stimulus. Sci. Sin. 17, 688–697. Xiong Y, Rabchevsky AG, Hall ED. (2007) Role of peroxynitrite in secondary oxidative damage after spinal cord injury. J Neurochem. 100, 639-649. Xu W, Chi L, Xu R, Ke Y, Luo C, Cai J, Qiu M, Gozal D, Liu R. (2005) Increased production of reactive oxygen species contributes to motor neuron death in a compression mouse model of spinal cord injury. Spinal Cord 43, 204–213. Yan Q, Ruan JW, Ding Y, Li WJ, Li Y, Zeng YS. (2011) Electro-acupuncture promotes differentiation of mesenchymal stem cells, regeneration of nerve fibers and partial functional recovery after spinal cord injury. Exp Toxicol Pathol. 63, 151-156. Yang EJ, Jiang JH, Lee SM, Hwang HS, Lee MS, Choi SM. (2010) Electroacupuncture reduces neuroinflammatory responses in symptomatic amyotrophic lateral sclerosis model. J Neuroimmunol. 223, 84-91. Yang EJ, Jiang JH, Lee SM, Yang SC, Hwang HS, Lee MS, Choi SM. (2010a) Bee venom attenuates neuroinflammatory events and extends survival in amyotrophic lateral sclerosis models. J Neuroinflammation. 15, 1-12. Yang EJ, Kim SH, Yang SC, Lee SM, Choi SM. (2011) Melittin restores proteasome function in an animal model of ALS. J Neuroinflammation. 20, 1-9. 72 Yim YK, Lee H, Hong KE, Kim YI, Lee BR, Son CG, Kim JE. (2007) Electro-acupuncture at acupoint ST36 reduces inflammation and regulates immune activity in Collagen-Induced Arthritic Mice. Evid Based Complement Alternat Med. 4, 51-57. Yin CS, Jeong HS, Park HJ, Baik Y, Yoon MH, Choi CB, Koh HG. (2008) A proposed transpositional acupoint system in a mouse and rat model. Res Vet Sci. 84, 159-165. Yoon SY, Kim HW, Roh DH, Kwon YB, Jeong TO, Han HJ, Lee HJ, Choi SM, Ryu YH, Beitz AJ, Lee JH. (2005) The anti-inflammatory effect of peripheral bee venom stimulation is mediated by central muscarinic type 2 receptors and activation of sympathetic preganglionic neurons. Brain Res. 1049, 210-216. Yu YP, Ju WP, Li ZG, Wang DZ, Wang YC, Xie AM. (2010) Acupuncture inhibits oxidative stress and rotational behavior in 6-hydroxydopamine lesioned rat. Brain Res. 1336, 58-65. Yun SJ, Park HJ, Yeom MJ, Hahm DH, Lee HJ, Lee EH. (2002) Effect of electroacupuncture on the stress-induced changes in brain-derived neurotrophic factor expression in rat hippocampus. Neurosci Lett. 25, 85-88. Zhao ZQ. Neural mechanism underlying acupuncture analgesia. (2008) Prog Neurobiol. 85, 355-75. Zhou Z, Peng X, Hao S, Fink DJ, Mata M. (2008) HSV-mediated transfer of interleukin-10 reduces inflammatory pain through modulation of membrane tumor necrosis factor alpha in spinal cord microglia. Gene Ther. 15, 183-190. Zhou Z, Peng X, Insolera R, Fink DJ, Mata M. (2009) IL-10 promotes neuronal survival following spinal cord injury. Exp Neurol. 220, 183-190.por
dc.subject.cnpqFisiologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/60941/2012%20-%20Raquel%20do%20Nascimento%20de%20Souza.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/3677
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-06-25T18:36:35Z No. of bitstreams: 1 2012 - Raquel do Nascimento de Souza.pdf: 1675302 bytes, checksum: 3b5075a0679a78a18bcff4ae4ac3e894 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-06-25T18:36:35Z (GMT). No. of bitstreams: 1 2012 - Raquel do Nascimento de Souza.pdf: 1675302 bytes, checksum: 3b5075a0679a78a18bcff4ae4ac3e894 (MD5) Previous issue date: 2012-06-12eng
Appears in Collections:Mestrado Multicêntrico em Ciências Fisiológicas

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2012 - Raquel do Nascimento de Souza.pdf2012 - Raquel do Nascimento de Souza1.64 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.