Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14871
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJustino, Lucas Rodrigo
dc.date.accessioned2023-12-22T03:07:17Z-
dc.date.available2023-12-22T03:07:17Z-
dc.date.issued2019-08-02
dc.identifier.citationJUSTINO, Lucas Rodrigo. Xilanase, probiótico e simbiótico em dietas de suínos em crescimento. 2019. 43 f. Dissertação (Mestrado em Zootecnia) - Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14871-
dc.description.abstractO experimento foi realizado com o objetivo de investigar a suplementação da enzima xilanase individualmente, ou associada com probiótico ou simbiótico na dieta de suínos com redução do valor de energia metabolizável. As variáveis estudadas foram: consumo de ração diário (CRD), ganho de peso diário (GPD), conversão alimentar (CA), parâmetros ósseos, morfometria intestinal, diversidade da microbiota intestinal e viabilidade econômica das dietas experimentais. Foram utilizados 75 leitões machos castrados e fêmeas, com peso médio inicial de 25,024 ± 3, 21 kg. O delineamento experimental foi o de blocos ao acaso, contendo cinco tratamentos, cinco blocos totalizando 25 unidades experimentais compostas por três suínos (dois machos e uma fêmea), sendo os tratamentos: T1= Dieta referência; T2= Dieta basal com redução de 100 kcal/kg de energia metabolizável; T3= T2 + xilanase (100g/ton.); T4= T3 + probiótico (B subtilis e Bacillus Licheniformis) e T5= T3 + simbiótico (B subtilis e Bacillus Licheniformis e mananoligossacarídeo). Os animais que receberam a dieta T4 apresentaram menor CRD (P<0,05) no primeiro período experimental (1-22 dias) em relação àqueles receberam a dieta T2. No segundo período experimental (23-30 dias) não houve diferença significativa (P>0,05) para as variáveis de desempenho. Já no período total (1-30 dias) foi observado que o T2 resultou em piora (P<0,05) da conversão alimentar em relação ao T4, não sendo observadas diferenças significativas entre estes tratamentos e os demais. A dieta T5 resultou em maior relação altura das vilosidades: profundidades das criptas no jejuno em comparação ao T2. Em relação à diversidade microbiana do conteúdo cecal, foi constatada maior abundância relativa (% de UTOs) para os filos Firmicutes, Actinobactéria e Proteobacteria independente do tratamento. As famílias mais abundantes foram Lactobacillaceae, Steptococcaceae e Clostrideacea. Rações de suínos em crescimento com redução de 100 kcal/kg de EM e suplementadas com xilanase, probiótico e simbiótico resultaram em parâmetros de desempenho semelhantes quando comparadas aos resultados dos suínos que receberam ração referência. A utilização de xilanase aliada ao probiótico na ração melhorou a conversão alimentar em relação à dieta com redução energética sem estes aditivos. A combinação de xilanase e simbiótico promoveu uma maior relação altura das vilosidades: profundidade das criptas. A utilização conjunta de xilanase e probiótico resultou em melhor índice de eficiência econômica e melhor índice de custopor
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectAditivospor
dc.subjectDesempenhopor
dc.subjectManejo nutricionalpor
dc.subjectMicrobiotapor
dc.subjectSaúde intestinalpor
dc.subjectAdditiveseng
dc.subjectIntestinal healtheng
dc.subjectMicrobiotaeng
dc.subjectNutritional managementeng
dc.subjectPerformanceeng
dc.titleXilanase, probiítico e simbiótico em dieta de suínos em crescimentopor
dc.title.alternativeXilanase, Probiotic and Symbiotic in Growing Pork Dietseng
dc.typeDissertaçãopor
dc.description.abstractOtherThe experiment was carried with the objective of investigating the supplementation of the enzyme xylanase individually or in combination with probiotic or symbiotic in the diet of pigs with reduction of the level of metabolizable energy . The variables studied were daily dietary intake (CRD), daily weight gain (GPD), feed conversion (CA), bone parameters, intestinal morphometry, intestinal microbiota diversity and economic viability of the experimental diets. Seventy five male and female piglets were used, with a mean initial weight of 25,024 ± 3,21 kg. The experimental design was a randomized block design, containing five treatments, five blocks totaling 25 experimental units composed of three pigs (two males and one female), with the following treatments: T1 = Reference diet; T2 = Basal diet with reduction of 100 kcal / kg of metabolizable energy; T3 = T2 + xylanase (100g / ton); T4 = T3 + probiotic (B subtilis and Bacillus Licheniformis) and T5 = T3 + symbiotic (B subtilis and Bacillus Licheniformis and Mananoligosaccharide). It was observed that the animals that received the T4 diet presented lower CRD (P <0.05) in the first experimental period (1-22 days) in comparison to those that received the T2 diet. In the second experimental period (23-30 days) there was no significant difference (P> 0.05) between treatments for any of the performance variables. In the total period (0-30 days) it was observed that T2 resulted in worsening of feed conversion in relation to T4, and no significant differences were observed between these treatments and the others. The T5 diet resulted in a higher ratio of villus height: crypt depths in the jejunum compared to T2. In relation to the microbial diversity of the cecal content, the relative abundance (% of OTUs) for the Firmicutes, Actinobacteria and Proteobacteria phylae independent of the treatment were observed at phylum level. While at the family level the greatest abundance was for Lactobacillaceae, Steptococcaceae and Clostrideacea. Growth pigs rations with reduction of 100 kcal/kg of ME and supplemented with xylanase, probiotic and simbiotic resulted in similar performance compared with the results of pigs receiving reference ration. The xylanase plus probiotic improved the feed convertion compared to the energetic reduction diet without these additives. The xylanase and symbiotic combination prooted the biggest villus height:crypth depth ratio. The joint use of xylanase and probiotic results in best economic efficiency and best cost ratioeng
dc.contributor.advisor1Lima, Cristina Amorim Ribeiro de
dc.contributor.advisor1ID449.983.176-87por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6546054162092853por
dc.contributor.referee1Lima, Cristina Amorim Ribeiro de
dc.contributor.referee1ID449.983.176-87por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6546054162092853por
dc.contributor.referee2Vieira, Antonio Assis
dc.contributor.referee2Latteshttp://lattes.cnpq.br/0307905746544873por
dc.contributor.referee3Cardoso, Verônica da Silva
dc.contributor.referee3Latteshttp://lattes.cnpq.br/0211928200714456por
dc.creator.ID117.045.076-85por
dc.creator.Latteshttp://lattes.cnpq.br/8419528791276997por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Zootecniapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Zootecniapor
dc.relation.referencesADEOLA, O.; COWIESON, A.J.; BOARD-INVITED REVIEW: Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. Journal of Animal Science, v. 89, p. 3189-3218, 2011. ALMEIDA, L.M.; PANISSON, J.C.; Bonardi, A.J.K.; Massuquetto, A.; Maiorka, A; Scandolera, A.J.; Adição de simbiótico em ração de leitões com deafio nutricional no período de creche. Archives of Veterinary Science, v.22, n.3, p.57-65, 2017. AWAD, W.; GHAREEB, K.; JOSEF BÖHM, J. Intestinal Structure and Function of Broiler Chickens on Diets Supplemented with a Synbiotic Containing Enterococcus faecium and Oligosaccharides. International Journal of Molecular Sciences, v.9, p.2205-2216, 2008. BARKO, P.C.; MCMICHAEL, M.A.; SWANSON, K.S.; WILLIAMS, D.A. The Gastrointestinal Microbiome: A Review. Journal of Veterinary Internal Medicine, v.32, p. 9-25, 2018. BEDFORD, M. R.; PARTRIDGE, G.G. Enzymes in farm animal nutrition, 2nd edition. 2. ed. Wallingford: CABI, 2010. BELLAVER, C.; FIALHO, E. T.; PROTAS, J. F. S.; GOMES, P. C. Radícula de malte na alimentação de suínos em crescimento e terminação. Pesquisa Agropecuária Brasileira, v.20, n.8, p.969-74, 1985. BON, M.L.; DAVIES, H.E.; GLYNN, C.; THOMPSON, C.; MADDEN, M.; WISEMAN, J.; DODD, C.E.R.; HURDIDGE, L.; PAYNE, G.; TREUT, Y.L.; CRAIGON, J.; TÖTEMEYER, S.; MELLITS, K.H. Influence of probiotics on gut health in the weaned pig. Livestock Science, v. 133, p. 179–181, 2010. BRITO, J.M.; FERREIRA, A.H.C.; JÚNIOR, H.A.S.; ARARIPE, M.N.B.A.; JOÃO BATISTA LOPES3, DUARTE, A.R.; CARDOSO, E.S.; RODRIGUES, V.L. Probióticos, prebióticos e simbióticos na alimentação de não-ruminantes – Revisão. Revista Eletrônica Nutritime, v.10, n.4, p. 2525 – 2545, 2013. CAMPESTRINI, E.; SILVA, V.T.M.; APPELT, M.D. Utilização de enzimas na alimentação animal. Revista Eletrônica Nutritime, v.2, n.6, p.254-267, 2005. CANTARELLI, V.S.; FIALHO, E.T.; ALMEIDA, E.C.; ZANGERONIMO, M.G.; AMARAL, N.O.; LIMA, J.A.F. Características da carcaça e viabilidade econômica do uso de cloridrato de ractopamina para suínos em terminação com alimentação à vontade ou restrita. lli et al. Ciência Rural, v.39, n.3, 2009. CARDOSO, M.R.I.; Interferência da microbiota na saúde intestinal: interação com antimicrobianos. In: Simpósio Brasil Sul de Suinocultura e Brasil Sul Pig Fair, 11º e 10º, 2018, Santa Catarina. Anais ... Chapecó: Embrapa Suínos e Aves, 2018. 75-80 p. CELI, P.; COWIESON, A.J.; FRU-NJI, F.; STEINERT, R.E.; KLUENTERB, A.-M.; VERLHACD, V. Gastrointestinal functionality in animal nutrition and health: New 36 opportunities for sustainable animal production. Animal Feed Science and Technology, v. 234, p. 88–100, 2017. CHAMONE, J.M.A.; MELO, M.T.P.; AROUCA, C.L.C.; BARBOSA, M.M.; SOUZA, F.A.; DOS SANTOS, D. Fisiologia digestiva de leitões. Revista Eletrônica Nutritime v.7, n.5, p.1353-1363, 2010. CHEN, H.; MAO, X.B.; HE, J.; YU, B.; HUANG, Z.Q.; YU, J.; ZHENG, P.; CHEN, D.W. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. British Journal of Nutrition, v. 110, p. 1837–1848, 2013. CHEN, H.; MAO, X.B.; CHE, L.Q.; YU, B.; HE, J.; YU, J.; HAN, G.Q.; HUANG, Z.Q.; ZHENG, P.; CHEN, D.W. Impact of fiber types on gut microbiota, gut environment andgut function in fattening pigs. Animal Feed Science and Technology, v. 195, p. 101-111, 2014. CHO, J.H.; KIM, I.H. Effects of Beta Mannanase and Xylanase Supplementation in Low Energy Density Diets on Performances, Nutrient Digestibility, Blood Profiles and Meat Quality in Finishing Pigs. Asian Journal of Animal and Veterinary Advances, v. 8 (4), p. 622-630, 2013. CHRISTOFF, A. P.; SEREIA, A. F. R; BOBERG, D. R; MORAES, R. L. V.; OLIVEIRA, L. F. V. Bacterial identification through accurate library preparation and high-throughput sequencing. Florianópolis: Neoprospecta Microbiome Technologies, Sa, 2017. 5 p. DOWARAH, R.; VERMA, A.K.; AGARWAL, N. The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: A review. Animal Nutrition, v.3, p.1-6, 2017. DOWARAH, R.; VERMA, A.K.; AGARWAL, N.; PATEL, B.H.M.; SINGH, P.; Effect of swine based probiotic on performance, diarrhoea scores, intestinal microbiota and gut health of grower-finisher crossbred pigs. Livestock Science, v.195, p. 74-79, 2017. FAO. Guidelines for the evaluation of probiotics in food. Report of a Joint FAO/WHO Working Group on Drafting Gidelines for the evaluation of probiotics in food. 2002; 30.04–01.05.2002, London, Ontario, Kanada. FERREIRA, D.F. Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciência & Agrotecnologia, v.38, n.2, p.109-112, 2014. FIALHO, E. T.; BARBOSA, O.; FERREIRA, A. S.; GOMES, P. C.; GIROTTO, A. F. Utilização da cevada suplementada com óleo de soja para suínos em crescimento e terminação. Pesquisa Agropecuária Brasileira, v. 27, p. 1467-1475, 1992. FOUHSE, J.M.; ZIJLSTRA, R.T.; WILLING, B.P. The role of gut microbiota in the health and disease of pigs. Animal Frontiers, v.6, n.3, p. 30-36, 2016. GIANNENAS, I.; DOUKASB, D.; KARAMOUTSIOS, A.; TZORA, A.; BONOS, E.; SKOUFOS, I.; TSINAS, A.; CHRISTAKI, E.; TONTIS, D.; FLOROU-PANERI, P. Effects of Enterococcus faecium, mannan oligosaccharide, benzoic acid and their mixture on growth performance, intestinal microbiota, intestinal morphology and blood lymphocyte 37 subpopulations of fattening pigs. Animal Feed Science and Technology, v. 220, p. 159-167, 2016. HAMASALIM, H.J. Synbiotic as Feed Additives Relating to Animal Health and Performance. Advances in Microbiology, v.6, p. 288-302, 2016. HYEUN BUM KIM, H. B.; ISAACSON, R.E. The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing. Veterinary Microbiology, v.177, p. 242–251, 2015. ISAACSON, R.; KIM, H.B. The intestinal microbiome of the pig. Animal Health Research Reviews, v.13, n.1, p.100–109, 2012. JHA, R.; BERRECOSO, J.F.D. Dietary fiber and protein fermentation in the intestine of swine and their interactive effects on gut health and on the environment: A review. Animal Feed Science and Technology, v. 212, p. 18-26, 2016. JØRGENSEN, J.N.; LAGUNA, J.S.; MILLÁN, C.;CASABUENA, O.; GRACIA, M.I. Effects of a Bacillus-based probiotic and dietary energycontent on the performance and nutrient digestibility ofwean to finish pigs. Animal Feed Science and Technology, v. 221, p. 54-61, 2016. KIARIE, E.; OWUSU-ASIEDU, A.; PÉRON, A.; SIMMINS, P.H.; NYACHOTI, C.M. Efficacy of xilanase and b-glucanase blend in mixed grains and grain co-products-based diets for fattening pigs. Livestock Science, v. 148, p. 129–133, 2012. KICH, J.D.; MENEGUZZI, M. Interferência da microbiota na saúde intestinal: Eubiose vs Disbiose. In: Simpósio Brasil Sul de Suinocultura e Brasil Sul Pig Fair, 11º e 10º, 2018, Santa Catarina. Anais ... Chapecó: Embrapa Suínos e Aves, 2018. 70-74 p. KLASING, K.C. Nutrition and the immune system. British Poultry Science, v.48, n.5, p. 525-537, 2007. KNUDSEN, K.E.B.; HEDEMANN, M.S.; LÆRKE, H.N.; The role of carbohydrates in intestinal health of pigs. Animal Feed Science and Technology, v.173, p. 41-53, 2012. KONSTANTINOV, S.R.; FAVIER, C.F.; ZHU, W.Y.; WILLIAMS, B.A.; KLÜß, J.; SOUFFRANT, W.B.; DE VOS, W.M.; AKKERMANS, A.DL.; SMIDT, H. Microbial diversity studies of the porcine gastrointestinal ecosystem during weaning transition. Animal Research, v.53, p. 317–324, 2004. LEE, K.Y.; BALASUBRAMANIANA, B.; KIM, J.K.; KIM, I.H.; Dietary inclusion of xylanase improves growth performance, apparent total tract nutrient digestibility, apparent ileal digestibility of nutrients and amino acids and alters gut microbiota in growing pigs. Animal Feed Science and Technology, v.235, p. 105–109, 2018. LESER, T.D.; AMENUVOR, J.Z.; JENSEN, T.K.; LINDECRONA, R.H.; BOYE, M.; MØLLER, K. Culture-Independent Analysis of Gut Bacteria: the Pig Gastrointestinal Tract Microbiota Revisited. Applied and Environmental Microbiology, v.68, n.2, p. 673–690, 2002. 38 LIAO, S.F.; NYACHOTI, M. Using probiotics to improve swine gut health and nutrient utilization. Animal Nutrition, v. 3, p.331- 343, 2017. LINDBERG, J. E,; LYBERG, K.; SANDS, J. Influence of phytase and xylanase supplementation of a wheat-based diet on ileal and total tract digestibility in growing pigs. Livestock Science,v.109, p. 268-270, 2007. LIU, G.; YU, L.; MARTÍNEZ, Y.; REN, W.; NI, H.; AL-DHABI, N.A.; DURAIPANDIYAN, V.; YIN, Y. Dietary Saccharomyces cerevisiae Cell Wall Extract Supplementation Alleviates Oxidative Stress and Modulates Serum Amino Acids Profiles in Weaned Piglets. Oxidative Medicine and Cellular Longevity, p.0-7, 2017, In: https://doi.org/10.1155/2017/3967439. LIU, Q.; ZHANG, W.M.; ZHANG, Z.J.; ZHANG, Y.J.; ZHANG, Y.W.; CHEN, L.; ZHUANG, S. Effect of fiber source and enzyme addition on the apparentdigestibility of nutrients and physicochemical properties ofdigesta in cannulated growing pigs. Animal Feed Science and Technology, v. 216, p. 262–272, 2016. LIU, W.C.; YE, M.; LIAO, J.H.; ZHAO, Z.H.; KIM, I.H.; AN, L.L. Application of complex probiotics in swine nutrition – a review. Annals of Animal Science, vol.18, n. 2, p. 335–350, 2018. MARKOWIAK, P.; ŚLIŻEWSKA, K. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog, p. 10:21, 2018. In https://doi.org/10.1186/s13099-018-0250-0. MENIN, A.; RECK, C.; SOUZA, D.; KLEIN, C.; VAZ, E. Agentes bacterianos enteropatogênicos em suínos de diferentes faixas etárias e perfil de resistência a antimicrobianos de cepas de Escherichia coli e Salmonella spp. Ciência Rural, v. 38, n.6, p.1687-1693, 2008. MILTENBURG,G. Extratos herbais como substitutivo de antimicrobianos na alimentação animal. In: SIMPÓSIO SOBRE ADITIVOS ALTERNATIVOS NA NUTRIÇÃO ANIMAL, 19., 2000, Campinas. Anais ...Campinas: CNBA, 2000. p.87-100. MOCHERLA, V.; SURYANARAYANA, A.N. Performance and Total tract Digestibility of Probiotic, Xylanase and Phytase in the Diets of Grower Pigs. Journal of Agriculture and Sustainability, v. 2 , n. 1, p. 86-97, 2013. MOREIRA, I.;MOURINHO, F.L.;CARVALHO, P.L.O.; PAIANO, D. ; PIANO, L.M .; JUNIOR, I.S.K. Avaliação nutricional da casca de soja com ou sem complexo enzimático na alimentação de leitões na fase inicial. Revista Brasileira de Zootecnia., v.38, n.12, p.2408-2416, 2009. NASCIMENTO, P.P. Dissertação: Utilização de complexo enzimático em rações contendo milho ou sorgo para leitões em fase de creche. Mestrado em Ciência Animal, Universidade Federal de Goiás, Goiânia - GO, 2010, 81 p; NELSON, D. L.; COX, M. M. Princípios de bioquímica de Lehninger. 5. ed. Porto Alegre: Artmed, 2011. 39 NDOU, S.P.; KIARIE, E.; AGYEKUMA, A.K.; HEO, J.M.; ROMERO, L.F.; ARENTD, S.; LORENTSEN, R.; NYACHOTI, C.M. Comparative efficacy of xylanases on growth performanceand digestibility in growing pigs fed wheat and wheat bran-or corn and corn DDGS-based diets supplemented with phytase. Animal Feed Science and Technology, v. 209, p. 230-239, 2015. NORTEY, T.N.; PATIENCE, J.F.; SANDS, J.S.; ZIJLSTRA, R.T. Xylanase supplementation improves energy digestibility of wheat by-products in grower pigs. Livestock Science, v.109, p. 96–99, 2007. OETTING, L.L.; UTIYAMA,C.E.; GIANI, P.A.; RUIZ, U.S.; MIYADA, V.S. Efeitos de extratos vegetais e antimicrobianos sobre a digestibilidade aparente, o desempenho, a morfometria dos órgãos e a histologia intestinal de leitões recém-desmamados. Revista Brasileira de Zootecnia, v.35, n.4, p.1389-1397, 2006. OLIVEIRA, H.R.V. Dissertação: Efeito da Xilanase Isolada ou Associada à Levedura na Dieta de Leitões a Base de Sorgo sobre o Desempenho e a Microbiota Intestinal. Mestrado em Agronomia, Universidade Estadual do Norte do Paraná, Bandeirantes – PR, 2018, 48 p; O’SHEA, C.J.; MC ALPINE, P.O.; SOLAN, P.; CURRAN, T.; VARLEY, P.F.; WALSH, A.M.; DOHERTY, J.V.O. The effect of protease and xylanase enzymes on growth performance, nutrient digestibility, and manure odour in grower–finisher pigs. Animal Feed Science and Technology, v.189, p. 88– 97, 2014. OWUSU-ASIEDU, A.; SIMMINS, P.H.; BRUFAU, J.; LIZARDO, R.; PÉRON, A. Effect of xylanase and β-glucanase on growth performance and nutrient digestibility in piglets fed wheat–barley-based diets. Livestock Science, v. 134, p.76–78, 2010. PAIXÃO, L.A.; CASTRO, F.F.S. A colonização da microbiota intestinal e sua influência na saúde do hospedeiro. Universitas: Ciências da Saúde, v. 14, n. 1, p. 85-96, 2016. PASCOAL, L. A. F.; SILVA, L. P. G.; MIRANDA, E. C.; MARTINS, T. D. D.; THOMAZ, M. C.; LAMENHA, M. I. A.; ALMEIDA, D. H. Complexo enzimático em dietas simples sobre os parâmetros séricos e a morfologia intestinal de leitões. Revista Brasileira de Saúde e Produção Animal, v.9, n.1, p. 117-129, 2008. PAJARILLO, E.A.B.; CHAE, J.P.; BALOLONG, M,P.; KIM, H.B.; KANG, D.K. Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. The Journal of General and Applied Microbiology, v. 60, p. 140‒146, 2014. PASSOS, A.A.; PARK, I.; FERKET, P.; VON HEIMENDAHL, E.; KIM, S.W. Effect of dietary supplementation of xylanase on apparent ileal digestibility of nutrients, viscosity of digesta, and intestinal morphology of growing pigs fed corn and soybean meal based diet. Animal Nutrition, v.1, p. 19-23, 2015. PLUSKE, J.R.; TURPIN, D.L.; KIM, J.C.; Gastrointestinal tract (gut) health in the young pig. Animal Nutrition, v.4, p. 187-196, 2018. 40 RAI, V.; YADAV, B.; LAKHANI, G. P.; Application of Probiotic and Prebiotic in Animals Production: A Review. Environment & Ecology, v.31, n.2B, p.873-876, 2013. RICHARDS, J. D.; GONG, J.; DE LANGE, C. F. M. The gastrointestinal microbiota and its role in monogastric nutrition and health with an emphasis on pigs: Current understanding, possible modulations, and new technologies for ecological studies. Canadian Journal of Animal Science, v.85, p. 421–435, 2005. ROBLES-HUAYNATE, R. A.; THOMAZ, M. C.; SANTANA, Á. E.; MASSON, G.C.I.H.; AMORIM, A.B.; SILVA, S. Z.; RUIZ, U.S.; WATANABE, P.H.; BUDIÑO, F. E.L. Effect of the probiotic addition in diets of weaned piglets on the characteristics of the digesting system and of performance. Revista Brasileira de Saúde e Produção Animal, v.14, n.1, p.248-258, 2013. ROSS, G.R.; GUSILS, C.; OLISZEWSKI, R.; HOLGADO, S.C.; GONZÁLEZ, S.N. Effects of probiotic administration in swine. Journal of Bioscience and Bioengineering, vol. 109, n. 6, p.545–549, 2010. ROSTAGNO, H.S.; ALBINO, L. F. T.; HANNAS, M. I.; DONZELE, J.L.; SAKOMURA, N. K.; PERAZZO, F. G.; SARAIVA, A.; TEIXEIRA, M.L.; RODRIGUES, P. B.; OLIVEIRA, R. F.; BARRETO, S.L. T.; BRITO, C. O. 2017. Tabelas Brasileiras para Aves e Suínos: Composição de Alimentos e Exigências Nutricionais. 3. ed. Viçosa, MG, 2017. SAKOMURA, N.K.; ROSTAGNO, H.S. Métodos de pesquisa em nutrição de monogástricos. Jaboticabal, SP: Editora Funep, 2007. 286 p. SANTANA, A. L. A.; CARVALHO, P. L. O.; CRISTOFORI, E. C.; CHAMBO, P. C. S.; BARBIZAN, M. NUNES, R. V.; GREGORY, C. R.; GENOVA, J. L. Supplementation of pig diets in the growth and termination phases with different calcium sources. Tropical Animal Health Production, 2017 doi.org/10.1007/s11250-017-1456-8 SATTLER, V.A.; BAYER, K.; SCHATZMAYR, G.; HASLBERGER, A.G.; KLOSE, V. Impact of a probiotic, inulin, or their combination on the piglets’ microbiota at different intestinal locations. Beneficial Microbes, v.6, n.4, p. 473-483, 2015; SEEDOR, J.G. The biophosphanate alendronate (MK-217) inhibit bone loss due to ovariectomy in rats. Journal of Bone and Mineral Research, v. 4, p. 265-270, 1993. SILVA, D. J.; QUEIROZ, A. C. Análise de alimentos: métodos químicos e biológicos. 3. ed. Viçosa: UFV, 2006. 235 p. SHE, Y,; LIU, Y.; V, C. G.; STEIN, H.H. Effects of graded levels of an Escherichia coli phytase on growth performance, apparent total tract digestibility of phosphorus, and on bone parameters of weanling pigs fed phosphorus-deficient corn-soybean meal based diets. Animal feed Science and technology, p.102-109, 2017. SILVA, D. J.; QUEIROZ, A. C. Análise de alimentos (métodos químicos e biológicos). Viçosa, MG: Editora UFV, 2001. 235p. 41 SILVA, S.Z.; THOMAZ, M.C; WATANABE, P.H.; Rizal Alcides ROBLES HUAYNATE, A.; RUIZ,U.S.; PASCOAL, L.A.F.; SANTOS, V.M.; MASSON, G.C.I.H. Mananoligossacarídeo em dietas para leitões desmamados. Brazilian Journal of Veterinary Research and Animal Science, v. 49, n. 2, p. 102-110, 2012. STERK , A.;. VERDONK, J.M.A.J.; MUL, A.J.; SOENEN, B.; BEZENÇON, M.L.; FREHNER, M.; LOSA, R. Effect of xylanase supplementation to a cereal-based diet on the apparent faecal digestibility in weanling piglets. Livestock Science, v.108, p. 269–271, 2007. UNNO, T.; KIM, J.; GUEVARRA, R.B.; NGUYEN, S.G. Effects of Antibiotic Growth Promoter and Characterization of Ecological Succession in Swine Gut Microbiota. Journal of Microbiology and Biotechnology , v.25, n.4, p.431- 438, 2015. UPADHAYA, S.D.; KIM, S.C.; VALIENTES, R.A.; KIM, I.H.; The Effect of Bacillus based Feed Additive on Growth Performance, Nutrient Digestibility, Fecal Gas Emission, and Pen Cleanup Characteristics of Growing-Finishing Pigs. Asian-Australasian Journal of Animal Sciences, v.28, n.7, p. 999-1005. VAN LAERE, K.M.J.; HARTEMINK, R.; BOSVELD, M.; HENK A. SCHOLS, H.A.;VORAGEN, A.G.J. Fermentation of Plant Cell Wall Derived Polysaccharides and Their Corresponding Oligosaccharides by Intestinal Bacteria. J. Journal of Agricultural and Food Chemistry, v. 48, p.1644-1652, 2000. YIN , Y.L.; BAIDOOB, S.K.; SCHULZEC, H.; SIMMINS, P.H. Effects of supplementing iets containing hulless barley varieties having different levels of non-starch polysaccharides with b-glucanase and xylanase on the physiological status ofthe gastrointestinal tract and nutrient digestibility of weaned pigs. Livestock Production Sciencen, v.71, p. 97–107, 2001. YIRGA, H. The Use of Probiotics in Animal Nutrition. Journal of Probiotics and Health, v.3, n. 2, p. 1-10, 2015. WANG Y. Prebiotics: present and future in food science and technology. Food Research International, v.42, p. 8-12, 2009. WEISS, E.; EKLUND1, M.; SEMASKAITE2, A.; URBAITYTE1, R.; METZLER-ZEBELI3, B.; SAUER1, N.; RATRIYANTO4, A.; GRUZAUSKAS2, R.; MOSENTHIN, R. Combinations of feed additives affect ileal fibre digestibility and bacterial numbers in ileal digesta of piglets. Czech Journal of Animal Science, v. 58, n. 8, p. 351-359, 2013. ZEINELDIN, M.; ALDRIDGE, B.; BLAIR, B.; KANCER, K.; LOWE, J. Impact of parenteral antimicrobial administration on the structure and diversity of the fecal microbiota of growing pigs. Microbial pathogenesis, v. 118, p. 220-229, 2018. ZENG, Z.K.; LI, Q.Y.; TIAN, Q.Y.; XU, Y.T.; PIAO, X.S. The combination of carbohydrases and phytase to improve nutritional value and non-starch polysaccharides degradation for growing pigs fed diets with or without wheat bran. Animal Feed Science and Technology, v.235, p. 138–146, 2018. 42 ZHAO, W.; WANG, Y.; LIU, S.; HUANG, J.; ZHAI, Z.; HE, C.; DING, J.; WANG, J.; WANG, H.; FAN, W.; ZHAO, J.; MENG, H. The Dynamic Distribution of Porcine Microbiota across Different Ages and Gastrointestinal Tract Segments. Plos One, v.10, n.2, p. 1-13, 2015. ZHANG, Y.J.; LIU, Q.; ZHANG, W.M.; ZHANG, Z.J.; WANG, W.L.; ZHUANG, S. Gastrointestinal microbial diversity and short-chain fatty acid production in pigs fed different fibrous diets with or without cell wall-degrading enzyme supplementation. Livestock Science, v.207, p. 105–116, 2018. ZHANG, Z.;TUN, H.M.; LI, R.; GONZALEZ, B.J.M.; KEENES, H.C.; NYACHOTI, C.M.; KIARIE, E.; KHAFIPOUR, E. Impact of xylanases on gut microbiota of growing pigs fed corn- or wheat-based diets. Animal Nutrition, v.4, p. 339-350, 2018.por
dc.subject.cnpqZootecniapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/69900/2019%20-%20Lucas%20Rodrigo%20Justino.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5797
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2022-07-13T11:35:40Z No. of bitstreams: 1 2019 - Lucas Rodrigo Justino.pdf: 3005547 bytes, checksum: 745db939a346dba5dec4da33e4db2b03 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-07-13T11:35:40Z (GMT). No. of bitstreams: 1 2019 - Lucas Rodrigo Justino.pdf: 3005547 bytes, checksum: 745db939a346dba5dec4da33e4db2b03 (MD5) Previous issue date: 2019-08-02eng
Appears in Collections:Mestrado em Zootecnia

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2019 - Lucas Rodrigo Justino.pdf2019 - Lucas Rodrigo Justino2.94 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.