Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14691
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAndrade, Renato Ramos de
dc.date.accessioned2023-12-22T03:04:34Z-
dc.date.available2023-12-22T03:04:34Z-
dc.date.issued2012-03-06
dc.identifier.citationANDRADE, Renato Ramos de. Estudo teórico para obtenção dos confôrmeros mais estáveis em solução aquosa para D-manose.. 2012. 96 f. Dissertação (Programa de Pós-Graduação em Química) - Universidade Federal Rural do Rio de Janeiro, Seropédica.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14691-
dc.description.abstractOs resultados obtidos experimentalmente para os monossacarídeos são sempre uma média das várias conformações presentes no sistema. Faz-se necessário o estudo teórico para obtenção individual das conformações mais estáveis. Diante disso o objetivo deste trabalho é selecionar os confôrmeros mais estáveis da D-manose em solução aquosa, na temperatura ambiente, e validá-los através da comparação com o valor de rotação específica experimental. Partiu-se de duas conformações iniciais (um anômero α e um anômero β), construídas no vácuo e geometricamente otimizadas utilizando B3LYP/6-31+G*. Partindo-se das respectivas geometrias anoméricas iniciais, um total final de 1458 possibilidades conformacionais (729 + 729 ) foram obtidas supondo que somente posições estreladas para os átomos de hidrogênio dos grupos hidroxila ao longo da ligação C-OH são energeticamente favorecidas (3 (C1) x 3 (C2) x 3 (C3) x 3 (C4) x 3 (C5) x 3 (C6) = 729). Cálculos "single-point" no vácuo foram realizados para as 1458 possibilidades conformacionais utilizando B3LYP/6-31+G*. 97 possibilidades conformacionais foram selecionadas (aquelas que apresentaram valor de energia relativa menor que 10 kcal/mol, tomando como referencia a respectiva geometria inicial) e tiveram a geometria otimizada no vácuo utilizando B3LYP/6-31+G*, o que reduziu o conjunto de 97 possibilidades conformacionais para 64 confôrmeros. Cálculos de otimização de geometria e frequência vibracional foram realizados e calculou-se a rotação específica para o sistema.O valor de razão anomérica (:) obtido foi 50:50. O resultado de abundancia rotamérica se aproximou do dado experimental apenas para o rotâmero gt. Duas conformações apresentaram um comportamento um tanto peculiar na mudança do vácuo para solução. A conformação _336661 apresentou um aumento drástico no seu valor de abundancia enquanto a conformação _111166 uma diminuição. Analisando o processo de solvatação, constatou-se que quando utiliza-se o valor de energia livre de Gibbs em solução sem computar a entropia, há alteração nos valores de população de Boltzmann, que passam a reproduzir o valor experimental de razão anomérica (:), indicando que a entropia para o sistema solvatado talvez não esteja sendo bem descrita. O resultado de rotação especifica também aproxima-se do dado experimental, quando os novos valores de população são utilizados.por
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasil.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectMonossacarídeopor
dc.subjectrazão anoméricapor
dc.subjectrotação específicapor
dc.subjectMonosaccharideeng
dc.subjectanomeric ratioeng
dc.subjectspecific rotationeng
dc.titleEstudo teórico para obtenção dos confôrmeros mais estáveis em solução aquosa para D-manose.por
dc.title.alternativeTheoretical study for obtaining the most stable D-mannose conformers in aqueous solution.eng
dc.typeDissertaçãopor
dc.description.abstractOtherExperimental results obtained for monosaccharides are always an average of the several conformations of the system. A theoretical study is necessary to obtain the most stable individual conformations. The goal of this work is to select the most stable conformers of D-mannose in aqueous solution at room temperature, and validate them by comparing the experimental value of specific rotation with those obtained from the selected conformations. We started from two initial conformations ( anomer and  anomer), geometrically optimized in vacuum using B3LYP/6-31+G*. Starting from the respective anomeric initial geometries, 1458 possible conformations (729  + 729 ) were obtained assuming that staggered conformations of the hydrogen atoms of hydroxyl groups with regard to the C-OH bond are energetically favored (3 (C1) x 3 (C2) x 3 (C3) x 3 (C4) x 3 (C5) x 3 (C6) = 729). Single-point calculations in vacuum were performed for all 1458 conformational possibilities using B3LYP/6-31+G *. 97 conformational possibilities were selected (those which had relative energy values lower than 10 kcal/mol, from the energy value of the initial geometry, taken as reference), and their geometry optimized in vacuum from B3LYP/6-31+G* calculations, which reduced the original set from 97 to 64 conformers. Geometry optimization and vibrational frequency calculations were performed and used to calculate the specific rotation for the system. The anomeric ratio value (:) obtained was 50:50. The result of rotameric abundance approached to the experimental data only for the gt rotamer. Two conformations presented a peculiar behavior when solvated: the relative abundance of _336661 conformation showed a drastic increase, while the conformation _111166 has decreased very much. Analyzing the solvation process, it was found that when we use the value of Gibbs free energy in solution without computing the entropy, there are changes in the values of the Boltzmann population, which can reproduce the experimental value of anomeric ratio (:), suggesting that the entropy for the system perhaps is not properly computed from the harmonic approximation. The specific rotation value also is closer to the experimental data when the new population values are used.eng
dc.contributor.advisor1Silva, Clarissa Oliveira da
dc.contributor.advisor1ID014.109.957-71por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3211933004567550por
dc.contributor.referee1Bruns, Roy Edward
dc.contributor.referee2Bauerfeldt, Glauco Favilla
dc.creator.ID057.775.217-03por
dc.creator.Latteshttp://lattes.cnpq.br/9571154466212777por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.references1K. P. C. Vollhardt, N. E. Schore. Química Orgânica: Estrutura e Função, 4ª ed. Bookman, 2004. 2Devulapalle, K. S.; Segura, A. G.; Ferrer, M.; Alcalde, G. M.; Plou, F. J. Carbohyd. Res. 2004, 339, 1029. 3Veres-Bencomo, V.; Fernandez-Santana, V.; Hardy, E.; Toledo, M. E.; Rodriguez, M. C.; Heynngnezz, L., Rodrigues, A.; Baly, A., Herrera, L.; Izquierdo, W.; Villar, A.; Valdes, Y.; Cosme, V.; Deler, M. L.; Montane, M.; Garcia, E.; Ramos, A.; Aguilar, A.; Medina, E.; Torano, G.; Sosa, I.; Hernandez, I.; Martinez, R.; Muzachio, A.; Costa, L.; Cardoso, F.; Campa, C.; Diaz, M.; Ray, R. Science 2004, 305, 522. 4Dhénin, S. G. Y.; Moreau, V.; Morel, N.; Nevers, M.; Volland, H.; Créminon, C.; Djedaini-Pilard, F. Carbohyd.Res.2008, 343, 2101. 5Sanki, A. K.; Boucau, J.; Srivastava, P.; Adams, S. S.; Ronning, D. R.; Sucheck, S. J. Bioorg. Med. Chem. 2008, 16, 5672. 6Nobmann, P.; Smith, A.; Dunne, J.; Henehan, G.; Bourke, P. Int. J. Food Microbiol.2009, 128, 440. 7Chu, C. K.; Jin, Y. H.; Baker, R. O.; Huggins, J. Bioorg.Med. Chem. Lett. 2003, 13, 9. 8Barradas, J. S.; Errea, M. I.; D’Accorso, N. B.; Sepúlveda, C. S.; Talarico, L. B.; Damonte, E. B. Carbohyd. Res. 2008, 343, 2468. 9Hidari, K. I. P. J.; Takahashi, N.; Arihara, M.; Nagaoka, M.; Morita, K.; Suzuki, T. Biochem. Biophys. Res. Commun. 2008, 376, 91. 10da Silva, F. C.; Souza, M. C. B. V.; Frugulhetti, I. I. P.; Castro, H. C.; Souza, S. L. O.; de Souza, T. M. L.; Rodrigues, D. Q.; Souza, A. M. T.; Abreu, P. A.; Passamani, F.; Rodrigues, C. R.; Ferreira, V. F. Eur. J. Med. Chem. 2009, 44, 373. 11Yang, G.; Scheming, J.; Tsuji, M.; Franck, R. W. Angew.Chem.Int.Ed.2004, 43, 3818. 12Abdou, I. M.; Saleh, A. M.; Zohdi, H. F. Molecules2004, 9, 109. 13Bergman, A. M.; Kuiper, C. M.; Voorn, D. A.; Comijin, E. M.; Myhern, F.; Sandvold, M. L.; Hendriks,H. R.; Peters, G. J. Biochem. Pharmacol.2004, 67, 503. 14Chen, H.; Jiao, L.; Guo, Z.; Li, X.; Ba, C.; Zhang, J. Carbohyd.Res.2008, 343, 3015. 15Hewitt, M. C; Seeberer, P. H. Org. Lett. 2001, 3, 3699. 16Leitão, A.; Andricopulo, A. D.; Oliva, G., Pupo, M. T., Marchi, A. A.; Vieira, P. C.; Silva, M. F. G. F.; Ferreira, V. F.; Souza, M. C. B. V.; Sá, M. M., Moraes, V. R. S.; Montanari, C. A. Bioorg. Med. Chem. Lett. 2004, 14, 2199. 64 17Muhizi, T.; Coma, V.; Grelier, S. Carbohyd.Res.2008, 343, 2369. 18Hai,N.; Sardari, S.; Selecky, M.; Parang, K. Bioorg. Med. Chem. 2004, 12, 6255. 19Puterka, G. J.; Farone, W.; Palmer, T.; Barrington, A. J. Econ.Entomol.2003, 96, 636. 20Brito-Arias, M.; Pereda-Miranda, R.; Heathcock, C. H. J. Org. Chem. 2004, 69, 4567. 21Wormald, M. R.; Petrescu, A. J.; Pao, Y-L; Glithero, A.; Elliott, T.; Dwek, R. A. Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography and molecular modelling. Chem. Rev. 2002, 102, 371-386. 22Molteni, C.; Parrinello, M. Condensed matter effects on the structure of crystalline glucose.Chem. Phys. Lett. 1997, 275, 409-413. 23Bock, K.; Duus, J. Ø. A conformational study of hydroxymethyl groups in carbohydrates investigated by 1H NMR spectroscopy. J. Carbohyd. Chem. 1994, 13, 513-543. 24Tvaroska, I,;Gajdos, J. Angular dependence of vicinal carbon-proton coupling constants for conformational studies of the hydroxymethyl group in carbohydrates. Carbohyd. Res. 1995, 271, 151-162. 25Tvaroska, I,; Taravel, F. R.; Utille, J. P.; Carver, J. P. Quantum mechanical and NMR spectroscopy studies on the conformations of the hydroxymethyl and methoxymethyl groups in aldohexosides. Carbohyd. Res. 2002, 337, 353-367. 26 Zhao, H.; Pan, Q.; Zhang, W.; Carmichael, I.; Serianni, A. S. DFT and NMR studies of 2JCOH, 3JHCOH, and 3JCCOHspin-couplings in saccharides: C-O torsional bias and H-bonding in aqueous solution. J. Org. Chem. 2007, 72, 7071-7082. 27Tvaroska, I,;Hricovíni, M.; Petráková, E. An attempt to derive a new Karplus-type equation of vicinal proton-carbon coupling constants for C-O-C-H segments of bonded atoms. Carbohyd. Res. 1989, 189, 359-362. 28Duus, J. Ø.; Gotfredsen, C. H.; Bock, K. Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. Chem. Rev.2000, 100, 4589-4614. 29Roslund, M. U.; Tähtinen,P.; Niemitzc, M. ; Sjöholm, R. Complete assignments of the 1H and 13C chemical shifts and JH,H coupling constants in NMR spectra of D-glucopyranose and all D-glucopyranosyl-D-glucopyranosides. Carbohyd. Res. 2008, 343, 101-112. 30 Zhu, Y.; Zajicek, J.; Serianni, A. S. Acyclic forms of [1-13C]aldohexoses in aqueous solution: quantification by 13C NMR and deuterium isotope effects on tautomericequilibria. J.Org. Chem. 2001, 66, 6244-6251. 65 31Angyal, S. J. Conformational analysis in carbohydrate chemistry. I. Conformational free energies. The conformations and :ratios of aldopyranoses in aqueous solution. Aust. J. Chem., 1968, 21, 2737-2746. 32Eijck, B. P.; Hooft, R. W. W.; Kroon, J. Molecular dynamics study of conformational and anomericequilibria in aqueous D-glucose. J. Phys.Chem.1993, 97, 12093-12099. 33Tvaroska, I.; Bleha, T. Anomeric and exo-anomeric effects in carbohydrate chemistry.Adv.Carbohyd. Chem. Biochem., 1989, 47, 45-123. 34Bitzer, R. S.; Barbosa, A. G. H.; Silva, C. O.; Nascimento, M. A. C. On thegeneralized valence bond description of the anomeric and exo-anomeric effects: an ab initio conformational study of 2-methoxytetrahydropyran. Carbohyd.Res.,2005, 340, 2172-2184. 35Mo, Y. Computational evidence that hyperconjugative interactions are not responsible for the anomericeffect.Nature Chem. 2010, DOI: 10.1038/NCHEM.721 36Salzner, U.; Schleyer, P. R. Ab initio examination of anomeric effects in tetrahydropyrans, 1,3-dioxanes, and glucose. J. Org. Chem. 1994, 59, 2138-2155. 37Molteni, C.; Parrinello, M. Glucose in aqueous solution by first principles molecular dynamics.J. Am. Chem. Soc. 1998, 120, 2168-2171. 38 Barrows, S. E., Dulles, F. J., Cramer, C. J., French, A. F., and Truhlar, D. G. Relative stability of alternative chair forms and hydroxymethyl conformations of -D- glucopyranose. Carbohyd. Res. 1995, 276, 219-251. 39Appell, M.; Strati, G.; Willett, J. L.;Momany, F. A. B3LYP/6-311++G** study of - and -D glucopyranose and 1,5-anhydro-D-glucitol: 4C1 and 1C4 chairs, 3;OB and B3;O boats, and skew-boat conformations. Carbohyd. Res.2004, 339, 537-551. 40Rao, V. S. R., Qasba, P. K., Baslaji, P. V., and Chandrasekaran, R. Conformation of Carbohydrates, Hardwood Academic, Amsterdam, 1998. 41Corchado, J. C.; Sanchez, M. L.; Aguilar, M. A. Theoretical study of the relative stability of rotational conformers of  and -D-glucopyranose in gas phase and aqueous solution.J. Am. Chem. Soc. 2004, 126, 7311-7319. 42Brown, J. W.; Wladkowski, B. D. Ab initio studies of the exocyclic hydroxymethylrotational surface in -D-glucopyranose.J. Am. Chem. Soc.1996, 118¸ 1190-1193. 43Cramer, C. J.; Truhlar, D. G. Quantum chemical conformational analysis of glucose in aqueous solution.J. Am. Chem. Soc. 1993, 115, 5745-5753. 66 44Momany, F. A.; Appell, M.; Strati, G.; Willett, J. L. B3LYP/6-311++G** study of monohydrates of - and -D-glucopyranose: hydrogen bonding, stress energies, and effect of hydration on internal coordinates. Carbohyd.Res. 2004, 339, 553-567. 45Momany, F. A.; Appell, M.; Willett, J. L.;Bosma, W. B. B3LYP/6-311++G** geometry-optimization study of pentahydrates of - and -Dglucopyranose. Carbohyd. Res. 2005, 340, 1638-1655. 46Tvaroska, I.; Taravel, F. R.; Utille, J. P.; Carver, J. P. Quantum mechanicaland NMR spectroscopy studies on the conformations of the hydroxymethylandmethoxymethyl groups in aldohexosides. Carbohyd. Res. 2002, 337, 353-367. 47Barnett, C. B.; Naidoo, K. J. Stereoelectronicand solvation effects determine hydroxymethyl conformational preferences in monosaccharides.J. Phys.Chem. B 2008, 112, 15450-15459. 48Spiwok, V.; Tvaroska, I. Metadynamics modeling of the solvent effect on primary hydroxyl rotamerequilibria in hexopyranosides.Carbohyd. Res.2009, 344, 1575-1581. 49Woods, R. J. The application of molecular modelling techniques to the determination of oligosaccharide solution conformations. In Reviews inComputational Chemistry; Lipkowitz, K.B.; Boyd, D.B. Eds.; VCH: New York, 1996, 9, pp.129-165. 50Hemmingsen, L., Madsen, D. E., Esbensen, A. L., Olsen, L., and Engelsen, S. B. Evaluation of carbohydrate molecular mechanical force fields by quantum mechanical calculations. Carbohyd. Res., 2004, 339, 937-948. 51 Pérez, S., Imberty, A., Elgensen, S. B., Gruza, J., Mazeau, K., Jiménez-Barbero, J., Poveda, A., Espinosa, J-F., van Eyck, B. P., Johnson, G., French, A. D., Kouwijzer, M. L. C. E., Grootenius, P. D. J., Bernardi, A., Raimondi, L., Senderowitz, H., Durier, V., Vergoten, G., and Rasmussen, K. A comparison and chemometric analysis of several molecular mechanics force fields andparameter sets applied to carbohydrates. Carbohyd. Res., 1998, 314, 141-155. 52 Silva, C.O.; Menezes, A. O.; Coelho, A. V.; Paralovo, V. O.; Soares, C. S.Quantum mechanical calculations on carbohydrates: what they can tell us? In Strategies for the Determination of Carbohydrates Structure and Conformation, Hugo Verli Ed.; Transworld Research Network : Kerala, 2011; v. 1, p. 1-37. 53Guvench, O.; Hatcher, E.; Venable, R. M.; Pastor, R. W.; MacKerell Jr., A. D. CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J. Chem. Theory Comput.,2009, 5, 2353-2370. 54Klein, R. A. Electron density topological analysis of hydrogen bonding in glucopyranose and hydrated glucopyranose.J. Am. Chem. Soc., 2002, 124, 13931-13937. 67 55Polavarapu,P.L.;Ewig,C.S. Ab initio computed molecular-structures and energies of the conformers of glucose. J.Comput.Chem. 1992, 13,1255–1261. 56Appell, M.; Willet, J. L.; Momany, F. A. DFT study of - and -D-mannopyranoseat the B3LYP/6 311++G** level.Carbohyd. Res. 2005, 340, 459-468. 57Momany, F. A.; Appell, M.; Willett, J. L.; Schnupf, U.; Bosma, W. B. DFT study of - and -D galactopyranose at the B3LYP/6-311++G** level of theory. Carbohyd. Res. 2006, 341, 525-537. 58Schnupf, U.; Willett, J. L.; Bosma, W. B.; Momany, F. A. DFT study of - and -D-allopyranose at the B3LYP/6-311++G** level of theory.Carbohyd.Res.2007, 342, 196-216. 59Kurihara, Y.; Ueda, K.An investigation of the pyranose ring interconversionpath of -L-idose calculated using density functional theory.Carbohyd. Res.2006, 341, 2565-2574. 60 Barrows, S. E., Storer, J. W., Cramer, C. J., French, A. F., and Truhlar, D. G. Factors controlling relative stability of anomers and hydroxymethyl conformers of glucopyranose. J. Comp. Chem. 1998, 19, 1111-1129. 61 Suzuki, T.;Kawashima, H.; Sota, T. Conformational properties of and a reorientation triggered by sugar-water vibrational resonance in the hydroxymethylgroup in hydrated -glucopyranose.J. Phys. Chem. B, 2006,110, 2405-2418. 62 Nishida, Y.; Ohrui, H.; Meguro, H. 1H-NMR studies of (6R)- and (6S)- deuteratedD-hexoses: assignment of the preferred rotamers about C5-C6 bond of D-glucose and D-galactose derivatives in solutions. Tetrahed.Lett.,1984, 25, 1575-1578. 63Thibaudeau, C.; Stenutz, R.; Hertz, B; Klepach, T.; Zhao, S.; Wu, Q.; Carmichael, I.; Serianni, A. S. Correlated C-C and C-O bond conformations in saccharide hydroxymethyl groups: parametrization and application of redundant1H-1H, 13C-1H, and 13C-13C NMR J-couplings. J. Am. Chem. Soc., 2004,126, 15668-15685. 64 Ma, B., Schaefer III, H. F., and Allinger, N. L. Theoretical studies of the potential energy surfaces and compositions of the D-aldo- and D-ketohexoses. J. Am. Chem. Soc., 1998, 120, 3411-3422. 65Lii, J-H., Ma, B., and Allinger, N. L. Importance of selecting proper basis set in quantum mechanical studies of potential energy surfaces of carbohydrates. J. Comp. Chem.,1999, 15, 1593-1603. 66Silva, C. O., Vreven, T., and Mennucci, B. Density functional study of the optical rotation of glucose in aqueous solution.J. Org. Chem., 2004, 69, 8161-8164. 67Silva, C. O.; Mennucci, B. The optical rotation of glucose prototypes: a local or a global property? J. Chem. Theory Comp. 2007, 3, 62-70. 68 68Andrade, R. R.; Silva, C. O.On the Route of the Determination of MonosaccharidesConformations.Mini-Rev. Org. Chem. 2011, 8, 239–248. 69Alcácer, L. Introdução a Química Quantica Computacional. 1a. ed. Coleção Ensino da Ciência e da Tecnologia. Editora IST Pres. 2007. 70 N. H. Morgon, Métodos de Química Teórica e Modelagem Molecular. Livraria da Física, 2007. 71A. D. Becke. Phys. Rev. A., 38, 3098, 1988. 72K. A. Dill, S. Bromberg. Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology. Garland Science, 2003. 73Cammi, R.; Tomasi, J.Remarks on the use of the apparent surface-charges (ASC) methods in salvation problems-iterative versus matrix-inversion procedures and the renormalization of the apparentecharges.Journal of the Computation Chemistry, v. 16, p. 1449-1458, 1995. 74Mennucci, B; Cancès, E; Tomasi, J. Journal Physical Chemistry, v. 107, p. 3032-3041, 1997. 75Mennucci, B; Cancès, E; Tomasi, J. Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. Journal Physical Chemistry, v. 101, p. 10506-10517, 1997. 76Amovilli, C.; Barone, V.; Cammi, R.; Cossi, M.; Mennucci, B.; Pomelli, C. S.; Tomasi J. Journal Advanced Quantum Chemistry, v. 32, p. 227, 1998. 77Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models.Chemical Reviews, v. 105, p. 2999-3093, 2005. 78 CSONKA, G.I. Proper basis set for quantum mechanical studies of potencial energy surfaces of carbohydrates.Journal of Molecular Structure (Theochem), v. 584, p. 1-4, Feb. 2002. 79Csonka, G.I.; French, A. D.; Johnson, G. P.; Stortz, C. A. J. Chem. Theory Comp.2009, 5, 679. 80Matsuo, K., Gekko, K. Vacuum-ultraviolet circular dichroism study of saccharides by synchrotron radiation spectrophotometry. Carbohyd. Res., 2004, 339, 591–597. 81Bondi, A. van der Waals volumes and radii.J. Phys. Chem., 1964, 68, 441-451. 82Mennucci, B., and Cammi, R. Eds. Continuum Solvation Models in ChemicalPhysics: from theory to applications. Wiley & Sons, 2007. 69 83 Stephens, P. J.; Devlin, F. J.; Cheeseman, J. R.; Frisch, M. J. Calculation of optical rotation using density functional theory. J. Phys. Chem. A, 2001, 105, 5356-5371. 84 Gaussian 03, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004. 85Yuping Zhu, JaroslavZajicek, and Anthony S. Serianni, J. Org. Chem. 2001, 66, 6244-6251 86Angyal, S.J. and Bethell, G.S. (1976) Conformational analysis in carbohydrate chemistry. III. The 13C N.M.R. spectro of the hexuloses.Aust. J. Chem., 29, 1249-1265. 87U. Schnupf, J. L. Willett, F. Momany. DFTMD studies of glucose and epimers: anomeric ratios, rotamer populations, and hydration energies. Carbohyd. Res., 2010, 345, 503–511. 88Andrade, Renato R.; da Silva, Clarissa O. Specific rotation as a property to validate monosaccharide conformations.Carbohyd.Res., v. 350, p. 62-67, 2012. 89Bates, F. J. Polarimetry, Saccharimetry and the Sugars, NBS Circular C440,U.S. Government Printing Office, Washington D.C., 1942, p. 762.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/61372/2012%20-%20Renato%20Ramos%20de%20Andrade.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/3764
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-07-28T18:55:11Z No. of bitstreams: 1 2012 - Renato Ramos de Andrade.pdf: 1828147 bytes, checksum: 247209edc6272eeb9f5d9dbd8317526d (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-07-28T18:55:12Z (GMT). No. of bitstreams: 1 2012 - Renato Ramos de Andrade.pdf: 1828147 bytes, checksum: 247209edc6272eeb9f5d9dbd8317526d (MD5) Previous issue date: 2012-03-06eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2012 - Renato Ramos de Andrade.pdf2012 - Renato Ramos de Andrade1.79 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.