Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14657
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSantos, Paulo Pitasse
dc.date.accessioned2023-12-22T03:04:07Z-
dc.date.available2023-12-22T03:04:07Z-
dc.date.issued2017-02-20
dc.identifier.citationSANTOS, Paulo Pitasse. Planejamento, síntese e avaliação de derivados 1,2,4-oxadiazólicos com potencial atividade tripanocida. 2017. 156 f. Dissertação (Mestrado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2017.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14657-
dc.description.abstractA doença de Chagas foi estudada e descrita pelo médico sanitarista e cientista brasileiro Carlos Chagas, em 1909. É causada pelo protozoário Trypanossoma cruzi, apresentando manifestações clínicas complexas. No entanto, desde sua descoberta, pouco se avançou no tratamento quimioterápico da doença de Chagas, sendo o fármaco disponível (benzonidazol) pouco eficiente e associado à manifestação de diversos efeitos colaterais. A partir do conhecimento da atividade antiparasitária da amida natural piperina, este trabalho focou-se na proposição de novas moléculas estruturalmente semelhantes com potencial tripanocida. A partir dos princípios do bioisosterismo, foi proposta uma série de novos 1,2,4-oxadiazóis diferentemente substituídos. Sua síntese foi concebida partir dos ácidos 3-arilacrílicos correspondentes, obtendo-se os respectivos cloretos de acila, através da reação com cloreto de oxalila. A etapa posterior envolve a O-acilação da benzamidoxima adequadamente substituída, seguida do fechamento do anel oxadiazólico, que se dá em em suporte sólido (sílica-gel) empregando-se irradiação de micro-ondas. A caracterização dos produtos foi feita através de ponto de fusão, RMN 1H e 13C, espectrometria no infravermelho e espectrometria de massas de alta e baixa resolução. O presente trabalho ainda traz informações quanto ao perfil de atividade biológica das moléculas sintetizadas frente a formas epimastigotas do protozoário Trypanosoma cruzi e frente a células primárias de mamíferos, permitindo que se calculasse o seu índice de seletividade. Investigações quanto a possíveis mecanismos de ação dos derivados sobre o T. cruzi indicam não haver influências sobre a ação enzimática da protease cruzaína, sobre o ciclo celular do parasito, nem sobre a biossíntese de esteróis de membrana, catalisada pela enzima CYP51. A metodologia química desenvolvida poderá ser aplicada na síntese de outros análogos. As perspectivas deste trabalho incluem ainda a avaliação biológica frente a formas amastigota e tripomastigota do parasitopor
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectsolid phase synthesiseng
dc.subjectatiprotozoaneng
dc.subject1,2,4-oxadiazoleeng
dc.subjectbioisosterismeng
dc.subjectsíntese em fase sólidapor
dc.subjectantiprotozoáriopor
dc.subject1,2,4-oxadiazolpor
dc.subjectbioisosterismopor
dc.titlePlanejamento, síntese e avaliação de derivados 1,2,4-oxadiazólicos com potencial atividade tripanocidapor
dc.title.alternativePlanning, synthesis and evaluation of potentially tripanocidal 1,2,4-oxadiazolic derivativeseng
dc.typeDissertaçãopor
dc.description.abstractOtherChagas disease was studied and described by the Brazilian sanitarist and physician Carlos Chagas in 1909. It is caused by the protozoan Trypanosoma cruzi and presents complex clinical manifestations. However, since its discovery, little progress has been made in the chemotherapeutic treatment of Chagas' disease. The only available drug for its treatment (benzonidazole) is not completely efficient and is associated with the development of several side effects. From the knowledge of the antiparasitic activity of the natural amidic alkaloid piperine, this work focused on the proposition of new structurally-similar molecules with trypanocidal potential. From the principles of bioisosterism, a series of new 1,2,4-oxadiazoles were proposed. Its synthesis was designed from the corresponding 3-arylacrylic acids to give the respective acyl chlorides by reaction with oxalyl chloride. The subsequent step involves O-acylation of the properly substituted benzamidoxime following the cyclization reaction of the oxadiazolic ring, which occurs in solid support (silica gel) using microwave irradiation. The characterization of the products was done by determination of melting points, 1H and 13C NMR, infrared espectrometry and high and low resolution mass spectrometry. The present work also presents information about the biological activity profile of the molecules synthesized against epimastigote forms of the T. cruzi protozoan and against primary mammalian cells, allowing the calculation of their selectivity indexes. Investigations about the possible mechanisms of action of the derivatives on T. cruzi indicate that there are no influences on the enzymatic action of the protease cruazain, on the cell cycle of the parasite or on the biosynthesis of membrane sterols catalyzed by the enzyme CYP51. The developed sinthetic methodology can be applied in the expansion of the series of analogues derivatives. The perspectives of this work also include the biological evaluation against amastigote and trypomastigote forms of the parasite.eng
dc.contributor.advisor1Lima, Marco Edilson Freire de
dc.contributor.advisor1ID880.202.667-04por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8392420706762318por
dc.contributor.advisor-co1Santiago, Vitor Sueth
dc.contributor.advisor-co1ID116.893.177-01por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/7873681582100547por
dc.contributor.referee1Trossini, Gustavo Henrique Goulart
dc.contributor.referee2Guedes, Herbert Leonel M.
dc.creator.ID120.854.447-09por
dc.creator.Latteshttp://lattes.cnpq.br/1280725643158086por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesALDER, J., & HANCOCK, A. Notice of a Collection of Nudibranchiate Mollusca made in India by Walter Elliot, Esq., with Descriptions of several New Genera and Species. The Transactions of the Zoological Society of London, 5(3), p. 113-147, 1864. ANSELL, M. F. The Chemistry of Acyl-Halides, S. Patai, Ed., Interscience. London, p. 35-68, 1972. AVELAR, L. A. A., CAMILO, C. D., ALBUQUERQUE, S., FERNANDES, W. B., GONÇALEZ, C., KENNY, P. W., LEITÃO, A., MCKERROW, J. H., MONTANARI, C. A., OROZCO, E. V. M., RIBEIRO, J. F. R., ROCHA, J. R., ROSINI, F., SAIDEL, M. E. Molecular Design, Synthesis and Trypanocidal Activity of Dipeptidyl Nitriles as Cruzain Inhibitors. PLoS Neglected Tropical Diseases, 9(7): e0003916, 2015. BAUM, S. G., WITTNER, M., NADLER, J. P., HORWITZ, S. B., DENNIS, J. E., SCHIFF, P. B., & TANOWITZ, H. B. Taxol, a microtubule stabilizing agent, blocks the replication of Trypanosoma cruzi. Proceedings of the National Academy of Sciences, 78(7), p. 4571-4575, 1981. BENCHIMOL-BARBOSA, P. R. Trends on acoute Chagas’ disease transmitted by oral route in Brazil: Steady increase in new cases and a concealed residual fluctuation. International Journal of Cardiology, 145, p. 494-496, 2010. BOSTROM, J., HOGNER, A., SCHMITT, S. Do structurally similar ligands bind in a similar fashion? Journal of Medicinal Chemistry, 49, p. 6716-6725, 2006. BRAK, K.; DOYLE, P. S.; MCKERROW, J. H.; ELLMAN, J. A. Identification of a New Class of Nonpeptidic Inhibitors of Cruzain. Journal of the American Chemical Society, 130, p. 6404-6410, 2008. BRENER, Z., ANDRADE, Z. A. Trypanosoma cruzi e doença de Chagas, Guanabara Koogan, Rio de Janeiro, p. 17, 1979. BRETANHA, L. C., TEIXEIRA, V. E., RITTER, M., SIQUEIRA, G. M., CUNICO, W., PEREIRA C. M. P., FREITAG, R. A. Ultrasound-promoted synthesis of 3-trichloromethyl-5-alkyl(aryl)-1,2,4-oxadiazoles. Ultrasonics Sonochemistry, 18, p. 704–707, 2011. BRIK, A., ALEXANDRATOS, J., LIN, Y. C., ELDER, J. H., OLSON, A. J., WLODAVER, A., GOODSELL, D. S., WONG, C. H. 1,2,3-Triazole as a peptide surrogate in the rapid synthesis of HIV-1 protease inhibitors. ChemBioChem, 6, p. 1167-1169, 2005. 89 BROGAN, J. T., STOOPS, S. L., LINDSLEY, C. W. Total synthesis and biological evaluation of phidianidines A and B uncovers unique pharmacological profiles at CNS targets. ACS chemical neuroscience, 3, p. 658–664, 2012. BUCKNER, F. S., VERLINDE, C. L., LA FLAMME, A. C., & VAN VOORHIS, W. C. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrobial Agents and Chemotherapy, 40(11), p. 2592-2597, 1996. BUTLER, M. S., ROBERTSON, A. A. B., COOPER, M. A. Natural products natural product derived drugs in clinical trials. Natural Products Reports, 31, p. 1612-1660, 2014. CADDICK, S. Microwave assisted organic reaction. Terrahedron, 51 (38), p. 10403-10432, 1995. CADENA, S. M. S. C., CARNIERI, E. G. S., ECHEVARRIA, A., OLIVEIRA, M. B. M. Effects of MI-D, a new mesoionic compound, on energy-linked functions of rat liver mitochondria. FESB Letters, 440, p. 46-50, 1998. CARBONE, M., LI, Y., IRACE, C., MOLLO, E., CASTELLUCCIO, F., DI PASCALE, A. Structure and Cytotoxicity of Phidianidines A and B: First Finding of 1,2,4-Oxadiazole System in a Marine Natural Product. Organic Letters, 13, p. 2516–2519, 2011. CASTRO, J. A., & DIAZ, D. T. E. Toxic effects of nifurtimox and benznidazole, two drugs used against American trypanosomiasis (Chagas' disease). Biomedical and Environmental Sciences: BES, 1(1), p. 19-33, 1988. CASTRO, J. A., MONTALTO DEMECCA, M., & BARTEL, L. C. Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Human & Experimental Toxicology, 25(8), p. 471-479, 2006. ČERVINKA, O., & KŘÍŽ, O. A contribution to mechanism of addition of hydrogen bromide to the α, β-unsaturated system of 3-phenyl-2-propenoic acid. Collection of Czechoslovak chemical communications, 48(10), p. 2952-2964, 1983. CHAGAS, C. Nova tripanosomiaze humana. Estudos sobre a morfolojía e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homen. Memórias do Instituto Oswaldo Cruz, 1, p. 159-218, 1909. CHEN, Y. T., BRINEN, L. S., KERR, I. D., HANSELL, E., DOYLE, P. S., MCKERROW, J. H., & ROUSH, W. R. In vitro and in vivo studies of the trypanocidal properties of WRR-483 against Trypanosoma cruzi. PLoS Neglected Tropical Diseases, 4(9), e825, 2010. 90 CHIOU, S., SHINE, H. J. A simplified procedure for preparing 3,5-disubstituted-1,2,4-oxadiazoles by reaction of amidoximes with acyl chlorides in piridine solution. Journal of Heterocyclic Chemistry, 26, p. 125-128, 1989. CLAPP, L. B. Advances in Heterocyclic Chemistry, In.: A.R. Katritzky 1st Ed., Academic Press, New York, 20, p. 65-116, 1976. CLAYDEN, J., GREEVES, N., WARREN, S., WOTHERS, P. Organic Chemistry. Oxford University Press, 1st ed., p. 703, 2000. COTTRELL, D. M., CAPERS, J., SALEM, M. M., DeLUCA-FRADLEY, K., CROFT, S. L., WERBOVETS, K. A. Antikinetoplastid activity of 3-aryl-5-thiocyanatomethyl-1,2,4-oxadiazoles. Bioorganic and Medicinal Chemistry, 12, p. 2815-2824, 2004. COURA, J. R. & BORGES-PEREIRA, J. Chronic phase of Chagas disease: why should it be treated? A comprehensive review. Memórias do Instituto Oswaldo Cruz, 106, p. 642-645, 2011. COURA, J. R., DE CASTRO, S.L. A critical review on Chagas disease chemoterapy, Memórias do Instituto Oswaldo Cruz, 97(1), p. 3-24, 2002. DAS, B. C., TANG, X. Y., ROGLER, P., EVANS, T. Design and synthesis of 3,5-disubstituted boron-containing 1,2,4-oxadiazoles as potential combretastatin A-4 (CA-4) analogs. Tetrahedron Letters, 53, p. 3947–3950, 2012. DE SOUZA, W. & MEYER, H. On the fine structure of the nucleus in Trypanosoma cruzi in tissue culture forms. Spindle fibers in the dividing nucleus. The Journal of protozoology, 21(1), 48-52, 1974. DE SOUZA, W. & RODRIGUES, J. C. F. Sterol biosynthesis pathway as target for anti-trypanosomatid drugs. Interdisciplinary Perspectives on Infectious Diseases, 2009. DIAS, L. C., DESSOY, M. A., ANDRICOPULO, A. D., OLIVA, G., SILVA, J. J. N., & THIEMANN, O. H. Quimioterapia da doença de Chagas: estado da arte e perspectivas no desenvolvimento de novos fármacos. Química Nova, 32 (9), p. 2444-2457, 2009. DIAZ-LUJÁN, C., TRIQUELL, M. F., MEZZANO, L., FRETES, R. E. Placental infection by Trypanosoma cruzi, the causal agente of Chagas’ disease. La Rioja: Intechopen, cap. 7, p. 127-148, 2012. DUSCHAK, V. G., COUTO, A. S. An Insight on Targets and Patented Drugs for Chemotherapy of Chagas Disease. Recent Patents on Anti-Infective Drug Discovery, 2(1), p. 19-51, 2007. 91 EIPPER, B. A. Rat brain microtubule protein: purification and determination of covalently bound phosphate and carbohydrates. Proceedings of the National Academy of Sciences, 69(8), p. 2283-2287, 1972. ESPENSHADE, P. J., & HUGHES, A. L. Regulation of sterol synthesis in eukaryotes. Genetics, 41, 2007. FERREIRA, R. S., BRYANT, C., ANG, K. K., MCKERROW, J. H., SHOICHET, B. K., & RENSLO, A. R. Divergent modes of enzyme inhibition in a homologous structure−activity series. Journal of medicinal chemistry, 52(16), 5005-5008, 2009. FERREIRA, W. S., FREIRE-DE-LIMA, L., SARAIVA, V. B., ALISSON-SILVA, F., MENDONÇA-REVIATO, L., PREVIATO, J. O., ECHEVARRIA, A., LIMA, M. E. F. Novel 1,3,4-thiadiazolium-2-phenylamine chlorides derived from natural piperine as trypanocidal agents: Chemical and biological studies. Bioorganic and Medicinal Chemistry, 16, p. 2984-2991, 2008. FREIRE-DE-LIMA, L., RIBEIRO, T. S., ROCHA, G. M., BRANDÃO, B. A., ROMEIRO, A., PREVIATO, J. O., MENDONÇA-PREVIATO, L., LIMA, M. E. F., CARVALHO, T. M. U., HEISE, N. The toxic effects of piperine against Trypanosoma cruzi: ultrastructural alterations and reversible blockage of cytokinesis in epimastigote forms. Parasitology Research, 102(5), p. 1059–1067, 2008. FREITAS, J. J. R., SILVA, E. E., REGUEIRA, J. L. L. F., DE ANDRADE, S. A., CALVALCANTE, P. M. M., OLIVEIRA, R. N., FREITAS FILHO, J. R. 1,2,4-Oxadiazóis: Síntese e aplicações. Revista Virtual de Química, 4 (6), p. 670-691, 2012. GARELLA, D., BORRETTO, E., DI STILO, A., MARTINA, K., CRAVOTTO, G., CINTAS, P. Microwave-assisted synthesis of N-heterocycles in medicinal chemistry. MedChemComm, 4(10), p. 1323–1343, 2013. GEDYE, R., SMITH F., WESTAWAY K., ALI H., BALDISERA L., LABERGE L., ROUSELL J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Letters, 27(3), p. 279-282, 1986. GIGUERE, R. J., BRAY, T. L., DUNCAN, S. M., MAJETICH, G. Application of commercial microwave ovens to organic synthesis. Tetrahedron Letters, 27(41), p. 4945–4948, 1986. GULL, K. The cytoesqueleton of trypanosomatid parasites. Annual Reviews in Microbiology, 53(1), p. 629-655, 1999. GUPTA, R. R., KUMAR, M., GUPTA, V. Heterocyclic Chemistry: Volume II: Five membered Heterocycles. 1st ed. India. Springer Science & Business Media. p. 257-302, 2005. HARVEY, A. Strategies for discovering drugs from previously unexplored natural products. Drug Discovery Today, 5(7), p. 294-300, 2000. 92 HOSTETTMANN, K., QUEIROZ, E. F., VIEIRA, P. C. Princípios ativos de plantas superiores. Série de Textos da Escola de Verão em Química - IV-UFSCar, EDUFSCar, 2003. KABOUDIN, K., NAVAEE, K. One-pot synthesis of 1,2,4-oxadiazoles mediated by microwave irradiation under solvent-free condition. Heterocycles, 60 (10), 2287-2292, 2003. KAPIL, A. Piperine: a potent inhibitor of Leishmania donovani promastigotes in vitro. Planta Medica, 59, p. 474-474, 1993. KIER, L. B., ROCHE, E. B. Medicinal chemistry of mesoionic compounds, Journal of Pharmaceutical Sciences, 56(2), p. 149-168, 1967. KOUL, S., KOUL, J. L., TANEJA, S. C., DHAR, K. L., JAMWAL, D. S., SINGH, K., REEN, R. K., SING, J. Structure-activity relationship of piperine and its synthetic analogues for their ,potentials of rat hepatic microsomal constitutive and inducible cytochrome P450 activities. Bioorganic and Medicinal Chemistry, 8(1), p. 251-268, 2000. LÄHTEENMÄKI, L., SIEVI, E., VAPAATALO, H. Inhibitory effects of mesoionic 3-aryl substituted oxatriazole-5-imine derivatives on vascular smooth muscle cell mitogenesis and proliferation in vitro, British Journal of Pharmacology, 125, p. 402-408, 1998. LEITE DIAS, J. V., MOTA QUEIROZ, D. R., DIOTAIUTI, L., & ROCHA PIRES, H. H. Conhecimentos sobre triatomíneos e sobre a doença de Chagas em localidades com diferentes níveis de infestação vetorial. Revista Ciência & Saúde Coletiva, 21(7), 2016. LEPESHEVA, G.; VIRUS, C.; WATERMAN, M. R.; Conservation in the CYP51 family. Role of the B’helix/BC loop and hélices F and G in enzimatic function. Biochemistry, 42, 9091-9101, 2003. LEPESHEVA, G.; ZAITSEVA, N. G.; NES, W. D.; ZHOU, W.; ARASE, M.; LIU, J.; HILL, G. C.; WATERMAN, N. CYP51 from Trypanosoma cruzi a phyla-specific residue in the B’ helix defines substrate preferences of sterol 14α-demethylase. The Journal of Biological Chemistry, 281, 3577-3585, 2006. L'HERNAULT, S. W., ROSEMBAUM, J. L. Chlamydomonas a-tubulin is posttranslationally modified in the flagella during flagellar assembly. The Journal of Cell Biology, 97(1), p. 258-269, 1983. LIDSTROM, P., TIERNEY, J., WATHEY, B., WESTMAN, J. Microwave assisted organic synthesis – a review. Tetrahedron, 57(45), p. 9225-9283, 2001. LIMA, L. M., BARREIRO, E. J. Bioisosterism: a useful strategy for molecular modification and drug design. Current Medicinal Chemistry, 12(1), p. 23-49, 2005. 93 LIU, Q., ZHU, R., GAO, S., MA, S.-H., TANG, H.-J., YANG, J.-J., DIAO, Y.-M., WANG, H.-L. AND ZHU, H.-J. Structure-based bioisosterism design, synthesis, insecticidal activity and structure-activity relationship (SAR) of anthranilic diamides analogs containing 1,2,4-oxadiazole rings. Pest Management Science, p. 4363, 2016. MACHADO, A. S. C. Da gênese ao ensino da química verde. Química Nova, 34(3), p. 535-543, 2011. MAFTEI, C. V., FODOR, E., JONES, P. G., DANILIUC, C. G., FRANZ, M. H., KELTER, G., FIEBIG, H. H., TAMM, M., NEDA, I. Novel 1,2,4-oxadiazoles and trifluoromethylpyridines related to natural products: synthesis, structural analysis and investigation of their antitumor activity. Tetrahedron, 72, p. 1185-1199, 2016. MASON, T. J. Ultrasound in synthetic organic chemistry. Chemical Society Reviews, 26(6), p. 443-451, 1997. MAVROVA, A. T., WESSELINOVA, D., TSENOV, Y. A., DENKOVA, P. Synthesis, cytotoxicity and effects of some 1,2,4-triazole and 1,3,4-thiadiazole derivatives on immunocompetent cells. European Journal of Medicinal Chemistry, 44, p. 63-69, 2009. MAYA, J. D., CASSELS, B. K., ITURRIAGA-VÁSQUEZ, P., FERREIRA, J., FAUNDEZ, M., GALANTI, N., FERREIRA, A., MORELLO, A. Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 146(4), p. 601-620, 2007. MCKERROW, J. H., ROSENTHAL, P. J., SWENERTON, R., DOYLE, P. Development of protease inhibitors for protozoan infections. Current Opinion in Infctious Diseases, 21(6), p. 668, 2008. MOSELEY, J. D. Microwave Chemistry – Green or Not? Chem. World , 3(8), p. 34, 2011. NAM, N. H. Combretastatin A-4 Analogues as Antimitotic Antitumor Agents. Current Medicinal Chemistry, 10, p. 1697-1722, 2003. NEWMANN, D. J., CRAGG, G. M. Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79, p. 629-661, 2016. NINGAIAH, S., BHADRAIAH, U. K., KESHAVAMURTHY, S., JAVARASETTY, C. Novel pyrazoline amidoxime and their 1,2,4-oxadiazole analogues: Synthesis and pharmacological screening. Bioorganic & Medicinal Mhemistry Letters, 23, p. 4532-4539, 2013. 94 NOBELI, I. , PRICE, S. L. , LOMMERSE, J. P. M. , TAYLOR, R. Hydrogen bonding properties of oxygen and nitrogen acceptors in aromatic heterocycles. Journal of Computational Chemistry, 18(16), p. 2060-2074, 1997. OLESEN, P. H., TONDER, J. E., HANSEN, J. B., HOLGER, C. H., RIMVALL, K. Bioisosteric replacement strategy for the synthesis of 1-azacyclic compounds with high affinity for the central nicotinic cholinergic receptor. Bioorganic and Medicinal Chemistry, 8, p. 1443-1450, 2000. PARK I. K., LEE S. G., SHIN S. C., PARK J. D., AHN Y. J. Larvicidal activity of isobutylamides identified in Piper nigrum fruits against three mosquito species. Journal of Agricultural and Food Chemistry, 50(7), p. 1866-1870, 2002. PAULL, K. D., SHOEMAKER, R. H., BOYD, M. R., PARSONS, J. L., RISBOOD, P. A., BARBERA, W. A., SHARMA, M .N., BAKER, D. C., HAND, E., SCUDIERO, D. A., MONKS, A., ALLEY, M. C., GROTE, M. The synthesis of XTT: A new tetrazolium reagent that is bioreducible to a water‐soluble formazan. Journal of Heterocyclic Chemistry, 25(3), p. 911-914, 1988. PEARL, I. A., & BEYER, D. L. Reactions of vanillin and its derived compounds. Xi. 1 cinnamic acids derived from vanillin and its related compounds. The Journal of Organic Chemistry, 16(2), p. 216-220, 1951. REY, L. Parasitologia. 3. ed. Rio de Janeiro: Guanabara Koogan. p. 856, 2001. RIBEIRO, T. S., FREIRE-DE-LIMA, L., PREVIATO, J. O., MENDONÇA-PREVIATO, L., HEISE, N., LIMA, M. E. F. Toxic effects of natural piperine and derivatives on epimastigotes and amastigotes forms of Trypanosoma cruzi. Bioorganic and Medicinal Chemistry Letters, 14, p. 3555-3558, 2004. ROBINSON, D., BEATTIE, P., SHERWIN, T., GULL, K. Microtubules, tubulin, and microtubule-associated proteins of Trypanosomes. Methods in Enzymology, 196, p. 285–296, 1991. ROEHM, N. W., RODGERS, G. H., HATFIELD, S. M., & GLASEBROOK, A. L. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. Journal of Immunological Methods, 142(2), p. 257-265, 1991. SAJID, M.; MCKERROW, J. H. Cysteine proteases of parasitic organisms. Molecular and Biochemical Parasitology, 120(1), 2002. SANGSHETTI, J. N., CHABUKSWAR, A. R., SHINDE, D. B. Microwave assisted one pot synthesis of some novel 2,5-disubstituted 1,3,4-oxadiazoles as antifungal agents. Bioorganic & Medicinal Chemistry Letters, 21, 444–448, 2011. SANTAGADA, V., FRECENTESE, F., PERISSUTI, E., CIRILLO, D., TERRACCIANO, S., CALIENDO, G. A suitable 1,2,4-oxadiazoles synthesis by 95 microwave irradiation. Bioorganic & Medicinal Chemistry Letters, 14, p. 4491-4493, 2004. SANTOS-FILHO, J. M., LEITE, A. C. L., OLIVEIRA, B. G., MOREIRA, D. R. M., LIMA, M. S., SOARES, M. B. P., LEITE, L. F. C. C. Design, synthesis and cruzain docking of 3-(4-substituted-aryl)-1,2,4-oxadiazole-N-acylhydrazones as anti-Trypanosoma cruzi agents. Bioorganic and Medicinal Chemistry, 17, p. 6682-6691, 2009. SANTOS-FILHO, J. M., SILVA, D. M. A. Q., MACEDO, T. S., TEIXEIRA, H. M. P., MOREIRA, D. R. M., CHALLAL, S., WOLFENDER, J. L., QUEIROZ, E. F., SOARES, M. B. P. Conjugation of N-acylhydrazone and 1,2,4-oxadiazole leads to the identification of active antimalarial agents. Bioorganic & Medicinal Chemistry 24, p. 5693–5701, 2016. SCHRAUZER, G. N. Ein Beitrag zum Mechanismus der Meerwein‐Reaktion. Chemische Berichte, 94(7),p. 1891-1898, 1961. SEEBER, F., & BOOTHROYD, J. C. Escherichia coli -galactosidase as na in vitro and in vivo reporter enzyme and stable transfection marker in the intracellular protozoan parasite Toxoplasma gondii. Gene, 169, p.39–45, 1996. SEEDBECK, T., HEMPHILL, A., LAWSON, D.. The cytoskeleton of Trypanosomes. Parasitology Today, 6, 49–52, 1990. SEMLER, U., GROSS, G. G. Distribution of piperine in vegetative parts of Piper nigrum. Phytochemistry, 27(5), p. 1566-1567, 1988. SHARMA, S., GANGAL, S., & RAUF, A. An efficient, one-pot synthesis of novel 3, 5-disubstituted-1, 2, 4-oxadiazoles from long-chain carboxylic acid derivatives. Acta Chim Sol, 56, p. 369-372, 2009. SHINZATO, T. O., GRYNBERG, N. F., GOMES, R. M., ECHEVARRIA, A., MILLER, J. Antitumor activity of a new mesoionic compound of the 1,3,4-triazolium-5-thiolate class. Medical Science Research, 17, p. 865-866, 1989. SILVA, E. F., CANTO-CAVALHEIRO, M. M., BRAZ, V. R., CYSNE-FINKELSTEIN, L., LEON, L. L., ECHEVARRIA, A. Synthesis, and biological evaluation of new 1,3,4-thiadiazolium-2-phenilamine derivatives against Leishmania amazonensis promastigotes and amastigotes, European Journal of Medicinal Chemistry, 37, p. 979-984, 2002. SINGH, I. P., JAIN, S. K., KAUR, A., SINGH, S., KUMAR, R., GARG, P., SHARMA, S. S., ARORA, S. K. Synthesis and antileishmanial activity of piperoyl-amino acid conjugates. European Journal of Medicinal Chemistry, 45, p. 3439-3445, 2010. 96 SOARES, B. A. Síntese e avaliação da atividade antichagásica de novos derivados 1,2,4-oxadiazólicos, derivados e análogos da amida natural piperina. Dissertação de mestrado. PPGQ-UFRRJ, p. 180, 2009. SOARES, C., DE CARVALHO, E. F., URMÉNYI, T. P., CARVALHO, O., FRANCISCO, J., DE CASTRO, F. T., & RONDINELLI, E. α‐and β‐tubulin mRNAs of Trypanosoma cruzi originate from a single multicistronic transcript. FEBS Letters, 250(2), p. 497-502, 1989. SOLOMONS, T. W. G., FRYHLE, C. B. Química Orgânica, vol. 2, 9º edição. Rio de Janeiro, LTC, p. 209-211, 2009. SOUZA, W. D., & MEYER, H. On the fine structure of the nucleus in Trypanosoma cruzi in tissue culture forms. Spindle fibers in the dividing nucleus. The Journal of protozoology, 21(1), 48-52, 1974. SRIVASTAVA, R. M., BRINN, I. M., MACHUCA-HERRERA, J. O., FARIA, H. B., CARPENTER, G. B., ANDRADE, D., VENKATESH, C. G., DE MORAIS, L. P. F. Benzamidoximes: structural, conformational and spectroscopic studies. I. Journal of Molecular Structure, 406(1), p. 159-167, 1997. STAAB, H. A., & WENDEL, K. 1, 1′‐Carbonyldiimidazole. Organic Syntheses, p. 44-44, 1973. TAVARES, W. S., CRUZ, I., PETACCI, F., FREITAS, S. S., SERRATILDE, J. E., & ZANUNCIO, J. C. Insecticide activity of piperine: Toxicity to eggs of Spodoptera frugiperda (Lepidoptera: Noctuidae) and Diatraea saccharalis (Lepidoptera: Pyralidae) and phytotoxicity on several vegetables. Journal of Medicinal Plants Research, 5(21), p. 5301-5306, 2011. TIEMANN, F., KRUGER, P. Ueber amidoxime und azoxime. Berichte der deutschen chemischen Gesellschaft, 17(2), p. 1685-1698, 1884. TIETZE L. F., EICHER, T. Reactions and Synthesis in the Organic Chemistry Laboratory. University Science Books, 1st de. USA, p. 379, 1989. TRON, G. C., PIRALI, T., BILLINGTON, R. A., CANONICO, P. L., SORBA, G.,GENAZZANI, A. A. Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloadditions between azides and alkynes. Meicinal Research Reviews, 28(2), p. 278-308, 2008. UCHIYAMA, N. Antichagasic activity of natural products against Trypanosoma cruzi. Journal of Health Science, 55(1), p. 31-39, p. 2009. URBINA, J. A. Lipid biosynthesis pathways as chemotherapeutic targets in kinetoplastid parasites. Parasitology, 114, s91-s99, 1997. VAN MEERLOO J, KASPERS GJ, CLOOS J. Cell sensitivity assays: the MTT assay. Cancer cell culture: methods and protocols, p.237–245, 2011. 97 VENIT, J. J., DIPIERRO, M., & MAGNUS, P. Studies on the synthesis of 1-azaspiro [5.5] undecanes related to histrionicotoxin. The Journal of Organic Chemistry, 54(18), p. 4298-4301, 1989. VIEGAS-JUNIOR, C., DANUELLO, A., BOLZANI, V. S., BARREIRO, E. J., FRAGA, C. A. M. Molecular hybridization: A useful tool in the design of new drug prototypes. Current Medicinal Chemistry, 14, p. 1829, 2007. VOGEL, A. I. Química Orgânica - Análise Orgânica Qualitativa. O Livro Técnico AS, 3a edição, 1978. WEB OF SCIENCE DATABASE. Keyword: 1,2,4-oxadiazole, Filters: Chemistry Medicinal or Pharmacology Pharmacy, acesso em 31 de maio de 2016. WENDEL, S. Transfusion transmitted Chagas disease: Is it really under control? Acta Tropica, 115, p. 28-34, 2010. WERMUTH, C. G. Molecular Variations Based on Isosteric Replacements. The Practice of Medicinal Chemistry, Academic Press: London. cap. 13, p. 203-237, 1996. WORLD HEALTH ORGANIZATION (WHO). Research priorities for chagas disease, human african trypanosomiasis and leishmaniasis. 2012. Disponível em <http://apps.who.int/iris/bitstream/10665/77472/1/WHO_TRS_975_eng.pdf?ua=1>. Acesso em 20 de maio de 2016. WORLD HEALTH ORGANIZATION (WHO). Trabalhando para superar o impacto global de doenças tropicais negligenciadas. 2010. Disponível em <http://apps.who.int/iris/bitstream/10665/44440/3/9789248564093_por.pdf>. Acesso em 24 de abril de 2016. https://www.scoppus.com - Pesquisa na base de dados com o termo "Trypanosoma cruzi" junto com os respectivos nomes dos alvos.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/5923/2017%20-%20%20Paulo%20Pitasse%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/12126/2017%20-%20Paulo%20Pitasse%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/20718/2017%20-%20Paulo%20Pitasse%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/27057/2017%20-%20Paulo%20Pitasse%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/33472/2017%20-%20Paulo%20Pitasse%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/39822/2017%20-%20Paulo%20Pitasse%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/46242/2017%20-%20Paulo%20Pitasse%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/52564/2017%20-%20Paulo%20Pitasse%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/59058/2017%20-%20Paulo%20Pitasse%20Santos.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/2019
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-09-06T12:10:14Z No. of bitstreams: 1 2017 - Paulo Pitasse Santos.pdf: 13320307 bytes, checksum: b714828ac2a5d9a1d2ab188470e04e9a (MD5)eng
dc.originais.provenanceMade available in DSpace on 2017-09-06T12:10:14Z (GMT). No. of bitstreams: 1 2017 - Paulo Pitasse Santos.pdf: 13320307 bytes, checksum: b714828ac2a5d9a1d2ab188470e04e9a (MD5) Previous issue date: 2017-02-20eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2017 - Paulo Pitasse Santos.pdfDocumento principal13.01 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.