Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14645
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilva, Leonardo Araujo
dc.date.accessioned2023-12-22T03:03:56Z-
dc.date.available2023-12-22T03:03:56Z-
dc.date.issued2016-04-14
dc.identifier.citationSILVA, Leonardo Araujo. Síntese de naftoimidazóis derivados de β-lapachona com potenciais atividades biológicas. 2016. 111 f. Dissertação (Mestrado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2016.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14645-
dc.description.abstractNúcleos imidazólicos estão presentes nas estruturas de muitas substâncias com atividades farmacológicas, para diferentes finalidades. O 6,6-dimetil-3,4,5,6-tetra-hidrobenzo-[7,8]cromeno[5,6-d]imidazol (BLI-H) é um naftoimidazol obtido a partir da β-lapachona – uma naftoquinona encontrada em espécies da família das bignoniáceas e que também pode ser obtida sinteticamente.1 O interesse nos estudos com este naftoimidazol se refere às possibilidades sintéticas para o núcleo imidazólico desta molécula, não substituído nas posições 1, 2 e 3, capaz de sofrer reações de substituições nucleofílica alifática e/ou eletrofílica aromática. Além disso, este, que é o naftoimidazol mais simples que pode ser obtido a partir da β-lapachona, já demonstrou seu potencial na atividade antitripanossômica, embora não tão expressiva quanto as de outros naftoimidazóis, substituídos, derivados de β-lapachona. Este trabalho relata a preparação de uma série de compostos obtidos por alquilação de BLI-H e a atividade inibitória significativa destes compostos sobre o crescimento de Staphylococcus aureus resistente à meticilina, Escherischia colii, Cryptococcus neoformans, Candida albicans, assim como Trypasoma cruzi. Além dos produtos das N-alquilações, a busca por derivados com diferentes substituintes no carbono 2, levou à síntese de três novos naftoimidazóis com grupos acila, bromo e amina, respectivamente, neste carbonopor
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectN-alkylnaftoimidazoleseng
dc.subject2-acylnaftoimidazoleeng
dc.subject2-amine-naftoimidazoleseng
dc.subjectN-alquil-naftoimidazóispor
dc.subject2-acil-naftoimidazóispor
dc.subject2-amino-naftoimidazóispor
dc.titleSíntese de naftoimidazóis derivados de β-lapachona com potenciais atividades biológicaspor
dc.title.alternativeSynthesis of β-lapachone-derived naphthoimidazoles with potential biological activitieseng
dc.typeDissertaçãopor
dc.description.abstractOtherThe imidazole nucleus is present in the structures of many substances with pharmacological activities for different purposes. 6,6-Dimethyl-3,4,5,6-tetrahydrobenzo[7,8]-chromeno[5,6-d]imidazole (BLI-H) is a naftoimidazole obtained from β-lapachone - a naphthoquinone found in species of the bignoniaceae family, and which can also be obtained synthetically. The interest in studies with this naftoimidazole refers to synthetic possibilities for the imidazole ring of this molecule unsubstituted at positions 1,2 and 3, capable of undergoing nucleophilic substitution reactions with aliphatic and / or aromatic electrophiles. Furthermore, this which is the simplest naftoimidazole which can be obtained from β-lapachone, has shown antitripanosomal activity, although not as significant as some aryl-substituted β-lapachone derived naphthoimidazoles. This work reports the preparation of a series of compounds obtained by alkylation of BLI-H and the significant inhibitory activity on the growth of methicillin-resistant Staphylococcus aureus, Cryptococcus neoformans, Escherischia colii, Candida albicans, as well as Trypanosoma cruzi, achieved with these compounds. In addition to the products of alkylations, the search for derivatives with different substituents at carbon 2, led to the synthesis of two new β-lapachone-derived naphthoimidazoles with acyl, amine and bromine groups respectively, in that carboneng
dc.contributor.advisor1Ferreira, Aurélio Baird Buarque
dc.contributor.advisor1ID237.924.007-82por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5526484175547597por
dc.contributor.advisor-co1Silva, Ari Miranda da
dc.contributor.advisor-co1ID7511236766por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/1282321674623999por
dc.contributor.referee1Garden, Simon J.
dc.contributor.referee2Suzart, Luciano Ramos
dc.contributor.referee3Silva, Bárbara Vasconcellos da
dc.contributor.referee4Santos, Cláudio E. Rodrigues dos
dc.creator.ID112.783.367-70por
dc.creator.Latteshttp://lattes.cnpq.br/7137564856594035por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.references1. JIANG, Z.; HOGELAND, J.. Synthesis of beta-lapachone and its intermediates. US20020137952 A1, United States. 23 jan. 2002. 2. KAMIJO, T.; YAMAMOTO, R.; HARADA, H.; IIZUKA, K.. An improved and conveniente procedure for the synthesis of 1-substituted Imidazoles. Chemical and Pharmaceutical Bulletin. Nagano, v. 31,p. 1213-1230. 1983. 3. NATH, J.; CHAUDHURI, M. K.. Boric acid catalyzed bromination of a variety of organic substrates: an eco-friendly and practical protocol. Green Chemistry Letters and Reviews. [s.l.], v. 1, p. 223-230. 2008. 4. CHHATTISE, P.K.; RAMASWAMY, A. V.; WAGHMODE, S. B.. Regioselective, photochemical bromination of aromatic compounds using N-bromosuccinimide. Tetrahedron Letters. Pune, v. 49, p. 189–194. 2008. 5. SILVA, A. R.; SILVA, A. M.; BERNARDES, B. O.; COSTA, R. L.; FERREIRA, A. B. B.. Synthesis of Imidazole Derivatives from β-Lapachone and Related Compounds using Microwave and Supported Reagents. Journal of Brazilian Chemical Society. [s.l.] v. 19, p. 1230-1233. 2008. 6. WILKINSON, C. F.; HETNARSKI, K.. Structure-activity relationships in the effects of 1-alkylimidazoles on microsomal oxidation in vivo and in vitro. Biochemical Pharmacology. [s.l.], v. 23, p. 2377-2386. 1974. 7. ROGERSON, T. D., WILKINSON, C. F. E HETARSKI, K.. Steric factors in the inhibitory interaction of imidazoles with microsomal enzymes. Biochemical Pharmacology. [s.l.], v. 26, p. 1039-1042. 1977. 8. KHABNADIDEH, S.; REZAEI, Z.; KHALAFI-NEZHAD, A.; BAHRINAJAFI, R.; MOHAMADI, R.; FARROKHROZ, A. A..Synthesis of N-Alkylated Derivatives of Imidazole as Antibacterial Agents. Bioorganic & Medicinal Chemistry Letters. [s.l.], v. 13, p. 2863-2865. 2003. 9 IWASAKI, S.. Photochemistry of Imidazolides. I. The Photo -Fries-Type Rearrangement of N-Substituted Imidazoles. Helvetica Chimica Acta. Zürich, v. 59, p. 2738-2752, 1976. 10. OOI, H. C.; SUSCHITZKI, H.. Practicable Syntheses of 2- Hydroxymethyl-substituted Benzimidazoles and 2- Formylbenzimidazole. Journal of the Chemical Society, Perkin Transitions I. Salford, [s.v.], p. 2871-2875. 1982. 11. WANG, Z.. Sandmeyer Reaction. In: ______. Comprehensive Organic Name Reactions and Reagents. Wiley, 2010. v: 1-3, p. 2471-2475. 12. JAYABHARATHI, J., THANIKACHALAM, V.; RAMANATHAN, P. Phenanthrimidazole as a fluorescent sensor with logic gate operations. Biomolécular Espectroscopy. [s.l.], v. 150, p. 886-891. 2015. 13. KO, S. Y.; KIM, E. J.; DZIADULEWICZ, E. K.. Mitsunobu alkylation of imidazole: a convenient route to chiral ionic liquids. Tetrahedron Letters. [s.l.], v. 46, p. 631-633. 2005. 14. LIN, K. A. E CHANG, H.. A zeolitic imidazole framework (ZIF)–sponge composite prepared via a surfactant-assisted dip-coating method. Journal of Materials Chemistry A. [s.l.], v. 3, p. 20060-20064. 2015. 15. LIU, M.; LI, X. L.; XIE, Z.; CAI, X.; XIE, G.; LIU, K.; TANG, J.; SU, S. J.; CAO, Y.. Study of Configuration Differentia and Highly Efficient, Deep-Blue, Organic Light-Emitting Diodes Based on Novel Naphtho[1,2-d]imidazole Derivatives. Advanced Functional Materials. [s.l.], p. 5190-5198. 2015. 107 16. DAVIES, D. T. Aromatic Heterocyclic Chemistry. 2. ed. Oxford: OXFORD CHEMISTRY PRIMERS, 1994. 88 p. 17. EICHER, T.; HAUPTMANN, S.. Five membered heterocycles. In: ______. The Chemistry of Heterocycles – Structure, Reactions, Synthesis and Applications. 2. ed. Weinheim: Wiley-VCH, 2003. cap. 5. p. 52-221. 18. Chemistry of Coumarin benzimidazoles – Introduction to Benzimidazoles and Coumarins. Karnatack Science College. Dharwad, cap. 3, p. 74. 19. CHAWLA, A.; SHARMA, A.; SHARMA, A. K.. Review: A convenient approach for the synthesis of imidazole derivatives using microwaves. Der Pharma Chemica. [s.l.], v. 4, p. 116-140. 2012. 20. CARVALHO, C. E. M.; SILVA, M. A. A.; BRINN, I. M.; PINTO, M. C. R.; PINTO, A. V.; SCHRIPSEMA, J; LONGO, R. L.. Tautomerization in the ground and first excited singlet states of phenyl-lapimidazole. Journal of Luminescence. [s.l.], v. 109, n. 3-4, p. 207-214. 2004. 21. KHRISTICH, B. I.. Tautomerism in a Number of Asymmetrical Imidazole Systems. Chemistry of Heterocyclic Compounds. [s.l.], v. 6, n. 12, p. 1572-1575. 1970. Translated from: Khimiya Geterotsiklicheskikh Soedinenii. n. 12, p. 1683-1687, December, 1970. 22. DEBUS, H.. On the Action of Ammonia on Glyoxal. Philosophical Transactions of the Royal Society of London. [s.l.], v. 148, 2, p. 205-209. 1858. 23. RADZISZEWSKI, B.. Ueber Glyoxalin und seine Homologue. Berichte der Deutschen Chemischen Gesellschaft. [s.l.], v. 15, p. 2706-2708. 1882. 24. LAURENT, M. A.. Sur un Nouvel Alcali Organique, la Lophine. Revue Scientifique et industrielle. Paris, s.n., p. 272-278. 1844. 25. WANG, Z.. Radziszewski Reaction. In: ______. Comprehensive Organic Name Reactions and Reagents. Wiley, 2010. v: 1-3, p. 2293-2297. 26. JAPP, F. R.; WILCOCK, E.. On the Action of Benzaldehyde on Phenanthraquinone, both alone and in presence of Ammonia. Journal of Chemistry Society, Transactions. [s.l.], v. 37, p. 661-672. 1880. 27. JAPP, F. R.; WILCOCK, E.. On the Action of Aldehydes on Phenanthraquinone in presence of Ammonia (Second Notice). Journal of Chemistry Society, Transactions. [s.l.], v. 39, p. 225-228. 1881. 28. JAPP, F. R.; STREATFEILD, F. W.. On the Action of Aldehydes on Phenanthraquinone in presence of Ammonia (Third Notice). Journal of Chemistry Society, Transactions. [s.l.], v. 41, p. 146-156. 1882. 29. JAPP, F. R.. On the Constitution of Amarine and Lophine. Journal of Chemistry Society, Transactions. [s.l.], v. 41, p. 323-329. 1882. 30. JAPP, F. R.. On Condensations of Compounds wich contain the Dycarbonyl-group with Aldehydes and Ammonia. Journal of Chemistry Society, Transactions. [s.l.], v. 43, p. 197-200. 1883. 31. GUPTA, P.; GUPTA, J. K.. Synthesis of Bioactive Imidazoles: A Review. International Journal of Modern Chemistry. [s.l.], v. 7, 2, p. 60-80. 2015. 32. STECK, E. A.; DAY, A. R.. Reactions of Phenanthraquinone and Retenequinone with Aldehydes and Ammonium Acetate in Acetic Acid Solution. Journal of the American Chemical Society. [s.l.], v. 65, 3, p. 452-456. 1943. 108 33. TEIMOURI, A. E CHERMAHINI, A. N.. An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed via solid acid nano-catalyst. Journal of Molecular Catalysis A: Chemical. [s.l.], v. 346, p. 39-45. 2011. 34. JAPP, F. R.. On the constitution of Lophine. (Second notice). Journal of Chemistry Society, Transactions. [s.l.], v. 43, n. 11, p. 9-18. 1883. 35. KONG, L.; LV, X.; LIN Q.; LIU, X.; ZHOU, Y.;JIA, Y.. Efficient Synthesis of Imidazoles from Aldehydes and 1,2-Diketones under Superheating Conditions by Using a Continuous Flow Microreactor System under Pressure. Organic Process Research & Development. Shanghai, v. 14, p. 902-904. 2010. 36. SINGH, M. S.; SMAI, S.; NANDI, G. C.; SINGH, P.. L-Proline: an efficient catalyst for the one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles. Tetrahedron. [s.l.], Vol. 65, p. 10155–10161. 2009. 37. NAGESWAR, Y. V., MURTHY, S. N. E MADHAV, B. DABCO as a mild and efficient catalytic system for the synthesis of highly substituted imidazoles via multi-component condensation strategy. Tetrahedron Letters. [s.l.], v. 51, p. 5252-5257. 2010. 38. SHATERIAN, H. R. E RANJBAR, M.. An environmental friendly approach for the synthesis of highly substituted imidazoles using Brønsted acidic ionic liquid, N-methyl-2-pyrrolidonium hydrogen sulfate, as reusable catalyst. Journal of Molecular Liquids. [s.l.], v. 160, p. 40-49. 2011. 39. NOZIÈRE, B.; MAXUT, A.; FENET, B.; MECHAKRA, H.. Formation mechanisms and yields of small imidazoles from reactions of glyoxal with NH4 in water at neutral pH. Physical Chemistry Chemical Physics. [s.l.], v. 17, p. 20416-20414. 2015. 40. KIDWAI, M.; MOTHSRA, P.; BANSAL, V.; SOMVANSHI, R. K.; ETHAYATHULLA, A. S.; DEY, S.; SINGH, T. P.. One-pot synthesis of highly substituted imidazoles using molecular iodine: A versatile catalyst. Journal of Molecular Catalysis A: Chemical. [s.l.], v. 265, p. 177-182. 2007. 41. BELLAS, M.; DUVALL, J.. Preparation of imidazoles. US 4409389 A. 11 out. 1983. 42. ORRU, R. V. A.; GELENS, E.; DE KANTER, F.J.J.; SCHMITZ, R. F.; SLIEDREGT, L. A. J. M.; VAN STEEN, B. J.; KRUSE, C. G.; LEURS, R.; GROEN, M. B.. Efficient library synthesis of imidazoles using a multicomponent reaction and microwave irradiation. Molecular Diversity. [s.l.], v. 10, p. 17-22. 2006. 43. BAO, W.; WANG, Z.; LI, Y..Synthesis of Chiral Ionic Liquids from Natural Amino Acids. Journal of Organic Chemistry. Zhejiang, v. 68, p. 591-593. 2003. 44. GOTTLIEB, H. E.; WEITMAN, M.; LERMAN, L.; COHEN, S.; NUDELMAN, A.; MAJOR, D. T.. Facile structural elucidation of imidazoles and oxazoles based on NMR spectroscopy and quantum mechanical calculations. Tetrahedron. [s.l.], v. 66, p. 1465-1471. 2010. 45. BRITTON, R.; MARTIN, R. E.; ALZIEU, T.; LEHMANN, J.; NAIDU, A. B.. Converting oxazoles into imidazoles: new opportunities for diversity-oriented synthesis. Chemmical Communication. [s.l.], v. 50, p. 1867-1870. 2014. 46. LOOPER, R. E., SULLIVAN, J. D.; GILES, R. L. 2-Aminoimidazoles from Leucetta Sponges: Synthesis and Biology of an Important Pharmacophore. Current Bioactive Compounds. [s.l.], v. 5, p. 00-00. 2009. 47. MOKHLESI, A.; HARTMANN, R.; ACHTEN, E.; CHAIDIR; HARTMANN, T.; LIN, W.; DALETOS, G.; PROKSH, P.. Lissodendrins A and B: 2-Aminoimidazole Alkaloids from the Marine Sponge Lissondendoryx (Acanthodoryx) fibrosa. European Journal of Organic Chemistry. [s.l.], v, 2016, p. 639-643. 2016. 109 48. NISHIMURA, T. E KITAJIMA, K.. Reaction of Guanidines with -Diketones, Syntheses of 4,5-Disubstituted-2-aminoimidazoles and 2,6-Unsymmetrically Substituted Imidazo[4,5-d]imidazoles. Journal of Organic Chemistry. [s.l.], v. 44, p. 818-824. 1979. 49. YOU, J.; ZHAO, D.; HU, J.; WU, N.; HUANG, X.; QIN, X.; LAN, J.. Regiospecific Synthesis of 1,2-Disubstituted (Hetero)aryl Fused Imidazoles with Tunable Fluorescent Emission. Organic Letters. [s.l.], v. 13, p. 6516-6519. 2011. 50. MELANDER, C.; HUIGENS III,, R. W.; REYES, S.; REED, C. S.; BUNDERS, C.; ROGERS, S. A.; STEINHAUER, A. T.. The chemical synthesis and antibiotic activity of a diverse library of 2-aminobenzimidazole small molecules against MRSA and multidrug-resistant A. baumannii. Bioorganic & Medicinal Chemistry. [s.l.], 2010, v. 18, pp. 663-674. 2010. 51. LIAO, S.; DU, Q.; MENG, J.; PANG, Z.; HUANG, R.. The multiple roles of histidine in protein interactions. Chemistry Central Journal. [s.l.], v. 7, p. 1-12. 2013. 52. SIMONS, F. E. J.. Recent advances in H1-rceptor antagonist treatment. Journal of Allergy and Clinical Immunology. [s.l.], v. 86, p. 995-999. 1990. 53. MOKHLESI, A.; HARTMANN, R.; ACHTEN, E.; CHAIDIR; HARTMANN, T.; LIN, W.; DALETOS, G.; PROKSH, P.. New Structural Theme in the Imidazole-Containing Alkaloids from a Calcareous Leucetta Sponge. Journal of Organic Chemistry. [s.l.], v. 69, p. 9025-9029. 2004. 54. JIN, Z.. Muscarine, imidazole, oxazole and thiazole alkaloids. Natural Products Reports. [s.l.], v. 23, p. 464-496. 2009. 55. PAPEO, G.; FORTE, B.; MALGESINI, B.; PIUTTI, C.; QUARTIERI, F.; SCOLARO, A.. A Submarine Journey: The Pyrrole-Imidazole Alkaloids. Marine Drugs. [s.l.], v. 7, p. 705-753. 2009. 56. CUADRADO-BERROCAL, I.; GUEDES, G.; ESTEVEZ-BRAUN, A.; HORTELANO, S.; LAS HERAS, B. DE. Biological evaluation of angular disubstituted naphthoimidazoles as anti-inflammatory agents. Bioorganic & Medicinal Chemistry Letters. [s.l.], v. 25, p. 4210-4213. 2015. 57. NAVARRETE-VÁZQUEZ, G.; HIDALGO-FIGUEROA, S.; TORRES-PIEDRA, M.; VERGARA-GALICIA, J.; RIVERA-LEYVA, J. C.; ESTRADA-SOTO, S.; LEÓN-RIVERA, I.; AGUILAR-GUARDARRAMA, B.; RIOS-GÓMEZ, Y.; VILLALOBOS-MOLINA, R.; IBARRA-BARAJAS, M.. Synthesis, vasorelaxant activity and antihypertensive effect of benzo[d]imidazole derivatives. Bioorganic & Medicinal Chemistry. [s.l.], v. 18, p. 3985–3991. 2010. 58. BELLINA, F.; GUAZZELLI, N.; LESSI, M.; MANZINI, C.. Imidazole analogues as resveratrol: synthesis and cancer cell growth evaluation. Tetrahedron. [s.l.], v. 71, p. 2298-2305. 2015. 59. HEERES, J.; BACKX, L. J.; H., MOTMANS J.; VAN CUTSEM, J.. Antimycotic imidazoles. Part 4. Synthesis and antifungal activity of ketoconazole , a new potent orally active broad spectrum antifungal agent. Journal of Medicinal Chemistry. [s.l.], v. 22, p. 1003-1005. 1979. 60. VAN DEN BOSSCHE, H.; WILLEMSENS, G.; COOLS, W.; CORNELISSEN, E.; LAUWERS, W. F.; VAN CUTSEM, J. M.. In vitro and in vivo effects of the antymicotic drug ketoconazole on sterol synthesis. Antimicrobial Agents and Chemoterapy. [s.l.], v. 17, p. 922–928. 1980. 110 61. GEORGE, W. L.; KIRBY, B. D.; SUTTER, V. L.; WHEELER, L. A.; MULLIGAN, M. E.; FINEGOLD, S. M..Intravenous Metronidazole for Treatment of Infections Involving Anaerobic Bacteria. Antimicrobial Agents and Chemoterapy. [s.l.], v. 21, 3, p. 441-449. 1982. 62. KHARB, R.; SHARMA, P. C.; BHANDARI, A.; YAR, M. S.. Synthesis, spectral characterization and antihelmintic evaluation of some novel imidazole bearing triazole derivatives. Der Pharmacia Lettre. [s.l.], v. 4, p. 652-657. 2012. 63. YAMMAMOTO, O., OKADA, Y.; OKABE, S.. Effects of a Proton Pump Inhibitor, Omeprazole, on Gastric Secretion and Gastric and Duodenal Ulcers or Erosions in Rats. Digestive Diseases and Sciences. [s.l.], v. 29, p. 394-401. 1984. 64. ZHU, Z.; LIPPA, B.; DRACH, J. C.; TOWNSEND, L. B.. Design, Synthesis, and Biological Evaluation of Tricyclic Nucleosides (Dimensional Probes) as Analogues of Certain Antiviral Polyhalogenated Benzimidazole Ribonucleosides. Journal of Medicinal Chemistry. [s.l.], v. 43, p. 2430-2437. 2000. 65. KEMMERLING, U.; ROJO, G.; CASTILLO, C.; DUASO, J.; LIEMPI, A.; DROGUETT, D.; GALANTI, N.; MAYA, R. D.; LÓPEZ-MUÑOZ, R.. Toxic and therapeutic effects of Nifurtimox and Benznidazol on Trypanosoma cruzi ex vivo infection of human placental chorionic villi explants. Acta Tropica. [s.l.], v. 132, p. 112-118. 2014. 66. LI, Y. F.; WANG, G. F.; HE, P. L.; HUANG, W. G.; ZHU, F. H.; GAO, H. Y.; TANG, W.; LUO, Y.; FENG, C. L.; SHI, L. P.; REN, Y. D.; LU, W.; ZUO, J. P.. Synthesis and Anti-Hepatitis B Virus Activity of Novel Benzimidazole Derivatives. Journal of Medicinal Chemistry. [s.l.], v. 49, p. 4790-4794. 2006. 67. SADEK, B.. Imidazole-substituted drugs and tendency for inhibition of Cytochrome P450 Isoenzymes: A review. Der Pharma Chemica. [s.l.], v. 3, 1, p. 410-419. 2011. 68. ZAMPIERI, D.; MAMOLO, M. G.; VIO, L.; BANFI, E.; SCIALINO, G.; FERMEGLIA, M.; FERRONE, M.; PRICL, S.. Synthesis, antifungal and antimycobacterial activities of new bis-imidazole derivatives, and prediction of their binding to P45014DM by molecular docking and MM/PBSA method. Bioorganic & Medicinal Chemistry. [s.l.], v. 15, p. 7444–7458. 2007. 69. KHABNADIDEH, S.; SHADZI, S. H.; ALIPOUR, E.; MIRMOHAMMAD SADEGHI, M.. In vitro antifungal activity of 1-alkylimidazole. Journal of Research in Medicinal Sciences. Shiraz, v. 7, supl. 2, p. 126-130. 2003. 70. CRUZ, F. S.; DOCAMPO, R.; BOVERIS, A.. Generation of Superoxide Anions and Hydrogen Peroxide from -lapachone in Bactéria. Antimicrobial Agents Chemotherapy. [s.l.], v. 14, p. 630-633. 1978. 71. DOCAMPO, R.; CRUZ, F. S.; BOVERIS, A.; MUNIZ, R. P. A.; ESQUIVEL, D. M. S.. -lalapachone enhancement of lipid peroxidation and superoxxde anion and hydrogen peroxide formation by sarcoma 180 ascites tumor cells. Biochemical Pharmacology. v. 28, p. 323-328. 1979. 72. GOIJMAN, S. G.; STOPPANI, A. O.. Effects of -lapachone, a peroxidegenerating quinone, on macromolecule synthesis and degradationin Trypanosoma cruzi. Archives Biochemistry Biophysics. [s.l.], v. 240, p. 273–80. 1985. 73. MOURA, K. C. G.; CARNEIRO, P. F.; PINTO, M. C. F. R.; SILVA, J. A.; MALTA, V. R. S.; SIMONE, C. A.; DIAS, G. G.; JARDIM, G. A. M.; CANTOS, J.; COELHO, T. S.; SILVA, P. E. A.; SILVA JR, E. N.. 1,3-Azoles from ortho-naphthoquinones: Synthesis of aryl substituted imidazoles and oxazoles and their potent activity against Mycobacterium tuberculosis. Bioorganic & Medicinal Chemistry. [s.l.], v. 20, p. 6482–6488. 2012. 111 74. CASTRO, S. L.; MOURA, K. C.G.; SALOMÃO, K.; MENNA-BARRETO, R. F.S.; EMERY, F. S.; PINTO, M.C.F.R.; PINTO, A. V.. Studies on the trypanocidal activity of semi-synthetic pyran[b-4,3]naphtho[1,2-d]imidazoles from -lapachone. European Journal of Medicinal Chemistry. [s.l.], v. 39, p. 639-645. 2004. 75. CASTRO, S. L.; MENNA-BARRETO, R. F. S.; HENRIQUES-PONS, A.; PINTO, A. V.; MORGADO-DIAZ, J. A.; SOARES, M. J.. Effect of a -lapachone-derived naphthoimidazole on Trypanosoma cruzi: identification of target organelles. Journal of Antimicrobial Chemotherapy. [s.l.], v. 56, p. 1034-1041. 2005. 76. CASTRO, S. L.; MENNA-BARRETO, R. F. S.; CORRÊA, J. R.; PINTO, A. V.. Mitochondrial disruption and DNA fragmentation in Trypanosoma cruzi induced by naphthoimidazoles. Parasitology Research. [s.l.], v. 101, p. 895–905. 2007. 77. MENNA-BARRETO, R. F. S.; CASTRO, S. L.; CORRÊA, J. R.; CASCABULHO, C. M.; FERNANDES, M. C.; PINTO, A. V.; Soares, M. J.. Naphthoimidazoles promote different death phenotypes in Trypanosoma cruzi. Parasitology. [s.l.], v. 136, p. 499-510. 2009. 78. FERREIRA, V. F.; FERREIRA, S. B.; SILVA, F. C.;. Strategies for the synthesis of bioactive pyran naphthoquinones. Organic & Biomolecular Chemistry. [s.l.], v. 8, p. 4793–4802. 2010. 79. MENNA-BARRETO, R. F. S.; BEGHINI, D. G.; FERREIRA, A. T. S.; PINTO, A. V.; CASTRO, S. L.; PERALES, J.. A proteomic analysis of the mechanism of action of naphthoimidazoles in Trypanosoma cruzi epimastigotes in vitro. Journal of Proteomics. [s.l.], v. 73, n. 4, p. 2306-2315. 2010. 80 SILVA, A. M.. Síntese de novos naftoimidazóis derivados de -lapachona e compostos relacionados, empregando irradiação na região de microondas e reagentes suportados, e outras sínteses. Tese de doutorado – Universidade Federal Rural do Rio de Janeiro, Seropédica, 2008. 81. PINGALI, S. R. K.; MADHAV, M.; JURSIC, B. S.. An efficient regioselective NBS aromatic bromination in the presence of an ionic liquid. Tetrahedron Letters. New Orleans, v. 51, p. 1383-1385. 2010. 82. GROSSMAN, R.B.. The art of writing reasonable organic reaction mechanisms. 2ed. Springer, 1998, p. 227.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/5538/2016%20-%20Leonardo%20Araujo%20Silva%20V.%201.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/5540/2016%20-%20Leonardo%20Araujo%20Silva%20V.2..pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/20250/2016%20-%20Leonardo%20Araujo%20Silva%20V.%201.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/20252/2016%20-%20Leonardo%20Araujo%20Silva%20V.2..pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/26561/2016%20-%20Leonardo%20Araujo%20Silva%20V.%201.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/26563/2016%20-%20Leonardo%20Araujo%20Silva%20V.2..pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/33002/2016%20-%20Leonardo%20Araujo%20Silva%20V.%201.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/33004/2016%20-%20Leonardo%20Araujo%20Silva%20V.2..pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/39400/2016%20-%20Leonardo%20Araujo%20Silva%20V.%201.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/39402/2016%20-%20Leonardo%20Araujo%20Silva%20V.2..pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/45784/2016%20-%20Leonardo%20Araujo%20Silva%20V.%201.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/45786/2016%20-%20Leonardo%20Araujo%20Silva%20V.2..pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/52174/2016%20-%20Leonardo%20Araujo%20Silva%20V.%201.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/52176/2016%20-%20Leonardo%20Araujo%20Silva%20V.2..pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/58596/2016%20-%20Leonardo%20Araujo%20Silva%20V.%201.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/58598/2016%20-%20Leonardo%20Araujo%20Silva%20V.2..pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/1713
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-05-31T14:03:10Z No. of bitstreams: 1 2016 - Leonardo Araujo Silva.pdf: 2217295 bytes, checksum: 97879d8a70bf2c097bd503252a894d7f (MD5)eng
dc.originais.provenanceMade available in DSpace on 2017-05-31T14:03:10Z (GMT). No. of bitstreams: 1 2016 - Leonardo Araujo Silva.pdf: 2217295 bytes, checksum: 97879d8a70bf2c097bd503252a894d7f (MD5) Previous issue date: 2016-04-14eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2016 - Leonardo Araujo Silva V. 1.pdfVolume 12.17 MBAdobe PDFThumbnail
View/Open
2016 - Leonardo Araujo Silva V.2..pdfVolume 26.34 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.