Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14612
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPenetra, Pedro Lessa
dc.date.accessioned2023-12-22T03:03:29Z-
dc.date.available2023-12-22T03:03:29Z-
dc.date.issued2016-07-21
dc.identifier.citationPENETRA, Pedro Lessa. Síntese de novos derivados Ácido (Z)-2-benzamido-3-fenilacrílicos planejados como Inibidores da Fosfodiesterase 4 para o tratamento da asma e COPD. 2016.102 f.. Dissertação( Mestrado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2016.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14612-
dc.description.abstractAsma e Doença Pulmonar Obstrutiva Crônica (DPOC) são doenças inflamatórias crônicas com diferentes níveis de obstrução do fluxo aéreo. O reconhecimento do papel crítico da inflamação no processo tem sido dirigido ao eixo de tratamento para a prevenção ou bloqueio de alterações inflamatórias. Com esse propósito novos fármacos foram estudados e entre eles os inibidores específicos da fosfodiesterase 4 (PDE4) apresentaram resultados promissores devido ao controle dos níveis de AMPc, que estão implicados em células musculares lisas, inflamatórias e imunes. Este trabalho tem como objetivo sintetizar novos ácidos (Z) -2-benzamida-3-fenilacrílicos concebidos como inibidores de PDE4 (iPDE4), com base nos farmacóforos presentes no cilomilast e roflumilast, e avaliar a actividade inibitória dos compostos sintetizados num modelo enzimático teórico de docking molecular para a PDE4. A síntese para a obtenção dos novos ácidos passa por quatro etapas. Primeiro, uma série de derivados de succinimida, que são obtidos a partir da reação de um ácido benzóico substituído com a N hidroxisuccinimida, DCC em THF à temperatura ambiente durante 20 h (93-79%). Em segundo lugar, os derivados de ácido hipúrico que foram produzidos a partir da reacção de intermediários succinimídicos da etapa anterior com glicina no ambiente básico (76- 66%). Em terceiro lugar, a preparação de azalactonas seguindo uma metodologia de Erlemmeyer-Ploch onde os derivados de ácido hipúrico, benzaldeídos substituídos, acetato de sódio reagem a 120°C em anidrido acético (59-49%). Finalmente, a hidrólise de azalactonas com hidróxido de sódio em acetonitrila à temperatura ambiente levou aos ácidos desejados (96-92%). Os estudos de acoplamento molecular foram realizados no programa GOLD com o sítio catalítico de PDE4D (PDB 1XOR) definido em torno de 10,0 Å da tirosina 159. O redocking foi feito para escolher a melhor base para validar o modelo. Os melhores resultados foram obtidos com a base PLP. As estruturas dos compostos ácidos (1-7) foram minimizadas usando o software Spartan Pro 14.0 (PM6) e os estudos de acoplamento foram realizados fornecendo as pontuações de score de energia (72,45 - 78,06). Apesar dos valores de pontuação elevada indicar uma bom ancoramento, foi feita ainda uma análise visual da interação entre os ligantes e o bioreceptor. As principais conformações revelam as principais interacções esperadas de inibidores de PDE4: ligações hidrogênio dos grupos dimetoxifenila com Gln369, empacotamento π com Phe372 e interacções hidrofílicas com o sítio metalíco. A rota de síntese para obtenção do ácido (Z) -2-benzamido-3-fenilacrílico foi viável e apresenta bons rendimentos, passando por intermediários de reacção estáveis e de fácil armazenamento. Estudos de acoplamento molecular com os produtos finais apresentaram um perfil de inibição teórica "in silico" para PDE4 muito semelhante aos inibidores já descritos na literatura. Os compostos estão agora sob avaliação dos seus perfis inibitórios de PDE4, para verificação de atividade "in vitro"por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.description.sponsorshipFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiropor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectDPOCpor
dc.subjectAsmapor
dc.subjectPDE4por
dc.subjectinflamaçãopor
dc.subjectácido-(Z)-2-benzamido-3- fenilacrílicopor
dc.subjectCOPDeng
dc.subjectasthmaeng
dc.subjectPDE4eng
dc.subjectinflammationeng
dc.subjectacid-(Z)-2-benzamido-3- phenylacryliceng
dc.titleSíntese de novos derivados Ácido (Z)-2-benzamido-3-fenilacrílicos planejados como Inibidores da Fosfodiesterase 4 para o tratamento da asma e COPDpor
dc.title.alternativeSynthesis of new (Z)-2-benzamido-3-phenylacrylic acid derivatives planned as Phosphodiesterase 4 Inhibitors for the treatment of asthma and COPDeng
dc.typeDissertaçãopor
dc.description.abstractOtherAsthma and Chronic Obstructive Pulmonary Disease (COPD) are chronic inflammatory diseases with varying levels of airflow obstruction. Recognition of the critical role of inflammation in the process has been directed the treatment axis for the prevention or blockage of inflammatory changes. For this purpose new drugs have been studied and among them the specific inhibitors of phosphodiesterase 4 (PDE4) have presented promising results due to the control of cAMP levels, which are implicated in smooth, inflammatory and immune muscle cells. This work aimed to synthesize new (Z)- 2-benzamide-3-phenylacrylic acids designed as PDE4 inhibitors (iPDE4), based on pharmacophores present in cilomilast and roflumilast, and to evaluate the inhibitory activity of the synthesized compounds in a theoretical enzymatic model of PDE4 molecular docking. The synthesis for obtaining the new acids goes through four steps. First, a series of succinimide derivatives, which are obtained from the reaction of a substituted benzoic acid with an N-hydroxysuccinimide, DCC in THF at room temperature for 20 h (93-79%). Second, hippuric acid derivatives were produced from the the reaction of succinimide intermediates of the previous step with glycine in basics environment (76-66%). Third, preparation of azalactones following an Erlemmeyer Ploch methodology where the derivatives of hippuric acid, substituted benzaldehydes, sodium acetate are reacted at 120 °C in acetic anhydride (59-49%). Finally, the hydrolysis of azalactones with sodium hydroxide in acetonitrile at room temperature led to the desired acids (96-92%). Molecular docking studies were performed in the GOLD program with the catalytic site of PDE4D (PDB 1XOR) defined around 10.0 Å from tyrosine 159. Redocking was done in order to chose the best base and to validate the model. The best results were obtained with the PLP basis. The acid compounds (1-7) were minimized using Spartan Pro 14.0 software (PM6) and the docking studies were done providing the scores (72,45 - 78,06). Despite the high score values it was make a visual analysis of the interaction poses between ligand and bioreceptor. The main conformers showed the main expected interactions of PDE4 inhibitors: hydrogen bonds of the dimethoxyphenyl groups with Gln369, π-stacking with Phe372 and hydrophilic interactions with the metal site. The synthetic route for obtaining (Z)-2-benzamido-3- phenylacrylic acid was viable and presented good yields, through stable reaction intermediates. Molecular docking studies with the final products presented a theoretical inhibition profile for PDE4 very similar to the inhibitors already described in the literature. The compounds are now under evaluation of theirs PDE4 inhibitory profileseng
dc.contributor.advisor1Kümmerle, Arthur Eugen
dc.contributor.advisor1ID053.978.847-78por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5598000938584486por
dc.contributor.referee1Kümmerle, Arthur Eugen
dc.contributor.referee1ID053.978.487-78por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/5598000938584486por
dc.contributor.referee2Moura, Ricardo Olímpio de
dc.contributor.referee2Latteshttp://lattes.cnpq.br/3707776918049437por
dc.contributor.referee3Neves, Amanda Porto
dc.contributor.referee3Latteshttp://lattes.cnpq.br/7460226353493536por
dc.creator.ID147.155.437-61por
dc.creator.Latteshttp://lattes.cnpq.br/2576311429133890por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesAHMAD, R. KHOSROPOUR. C6(Mim)2]2W10O32.2H2O: A novel and powerful catalyst for the synthesis of 4-arylidene-2-phenyl-5(4)-oxazolones under ultrasonic condition. University of Isfahan, 2010. ALONSO, H.; BLIZBYUK, A. A.; GREADY. Combining docking simulation in drug design. Medical Research Reviews, v. 9, p. 531-568, 2006. ANDRADE G. A. , PISTNER A. J., YAP G. P. A. , LUTTERMAN D., ROSENTHAL J. Photocatalytic Conversion of CO2 to CO Using Rhenium Bipyridine Platforms Containing Ancillary Phenyl or BODIPY Moieties. ACS Catalisys, v. 3, n. 8, p. 1685 – 1692, 2013. Asian-Development-Bank. Toward an Environmentally Sustainable Future: Country Environmental Analysis of the People’s Republic of China, 2013. Associação Médica Brasileira e Conselho Federal de Medicina. Doença Pulmonar Obstrutiva Crônica, 2001. ATHANAZIO, R., Airway disease: similarities and differences between asthma, COPD and bronchiectasis. Clinics, v. 67, n. 11, p. 1335 – 1343, 2012. BANNER K. H., TREVETHICK M. A. PDE4 inhibition: a novel approach for the treatment of inflammatory bowel disease. Trends Pharmacol. Sci., v. 25, n. 8, p. 430 – 436, 2004. BANNER, K. H., PRESS, N. J. Dual PDE3/4 inhibitors as therapeutic agents for chronic obstructive pulmonary disease. British journal of pharmacology, v. 157, n. 6, p. 892 - 906, 2009. BARJAKTAREVIC, I. Z., ARREDONDO, A. F., COOPER, C. B. Positioning new pharmacotherapies for COPD. International Journal of COPD, v. 10, p. 1427 – 1442, 2015. 91 BARNES, P. J. Immunology of asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol., v. 8, n. 3, p. 183 – 192, 2008. BARNES, P. J. Mechanisms in COPD: differences from asthma. Chest, v. 117, p. 10 – 14, 2000. BARNETTE M. S. Phosphodiesterase 4 (PDE4) inhibitors in asthma and chronic obstructive pulmonary disease (COPD). Prog. Drug Res., v. 53, p. 193 – 229, 1999. BARNETTE M. S., CHRISTENSEN S. B., UNDERWOOD D.C. Phosphodiesterase 4: Biological underpinnings for the design improved inhibitors. Pharmacol. Rev. Commun., v. 8,n. 1, p. 65 – 73, 1995. BARNETTE M.S., BARTUS J.O., BURMAN M. Association of the anti-inflammatory activity of phosphodiesterase 4 (PDE4) inhibitors with either inhibition of PDE4 catalytic activity or competition forrolipram binding. Biochem. Pharmacol., v. 51, n. 7, p. 949 – 956, 1996. BÁRTHOLO, R. M. Diferenças clínicas entre asma e DPOC. Revista HUPE, UERJ, v. 12, n. 2, p. 62 – 70, 2013. BOLGER G.B., ERDOGAN S., JONES R.E. Characterization of five different proteins produced by alternatively spliced mRNAs from the human cAMP-specific phosphodiesterase PDE4D gene. Biochem. J., v.328, pt. 2, p. 539 – 548, 1997. BORGES, W., BURNS, D., VIEIRA, S. E. Asthma in childhood: drug therapy. Ver. Assoc. Med., v.57, n. 4, p. 369 – 376, 2011. BUTCHER R. W.; SUTHERLAND E. W. Adenosine 3',5'-Phosphate in Biological. The jornal of Biological Chemistry, v. 237, n. 4, 1962. CAMPOS H., XISTO D., ZIN W.A., ROCCO P.R.M. Inibidores de fosfodiesterases: novas perspectivas de uma antiga terapia na asma? J. Pneumol, v.29, n. 3, 2003. 92 CAMPOS, H. S., CAMARGOS, P. A. M. Broncodilatadores. Pulmao RJ, v. 21, n. 2, p. 60 – 64, 2012. CAREY, F.; SUNDBERG, R. J. Advanced Organic Chemistry. 5 ed. Spring Verlag, 2007. CARTER, H. E. Azalactones. Org react., v. 3, p. 198 – 239, 1946. CAVALLA D., FRITH R. Phosphodiesterase IV inhibitors: structural diversity and therapeutic potential in asthma. Curr. Med. Chem., v. 2, p. 561 – 572, 1995. CAZZOLA, M., SEGRETI, A., MATERA, M. G. Novel bronchodilators in asthma. Curr. Opin. Pulm. Med., v. 16, n. 1, p. 6 – 12, 2010. CHANDRASEKHAR, S.; KARRI, P. Aromaticity in azlactone anions and its significance for the Erlenmeyer synthesis. Tetrahedron Letters. v. 47, p. 5763-5766, 2006. CHANDRASEKHAR, S.; KARRI, P. Erlenmeyer azlactone synthesis with aliphatic aldehydes under solvent-free microwave conditions. Tetrahedron Letters. v. 48, p. 785- 786, 2007. CHOUDHARY, M. I. Oxazolones: New tyrosinase inhibitors; synthesis and their structure–activity relationships. Bioorg. Med. Chem., v. 14, n. 17, p. 6027-6033, 2006. CLEARY, T.; RAWALPALLY, T.; KENNEDY, N.; CHAVEZ, F. Catalyzing the Erlenmeyer Plöchl reaction: organic bases versus sodium acetate. Tetrahedron Letters. v. 51, p. 1533-1536, 2010. COMPTON C. H., GUBB J., NIEMAN R. Cilomilast, a selective phosphodiesterase-4 inhibitor for treatment of patients with chronic obstructive pulmonary disease: a randomised, dose-ranging study. The Lancet., v. 358, p. 265 – 70, 2001. 93 COSTA C. H., RUFINO R.; Tratamento da doença pulmonar obstrutiva crônica. Revista HUPE RJ, v. 12, n. 2, p. 71 – 77, 2013. CROCKER I. C., TOWNLEY R. G. Therapeutic potential of phosphodiesterase 4 inhibitors in allergic diseases. Drugs Today., v. 35, n. 7, p. 519 – 535, 1999. Da SILVA, V. B. Estudos de modelagem molecular e relação estrutura atividade da oncoproteína hnRNP K e ligantes. 2007. Dissertação – USP. DE AZEVEDO, L. L. Síntese e avaliação farmacológica de novas imidazolonas planejadas como inibidoras de cisteíno proteases para o tratamento da Leucemia. 2013. Dissertação (Mestrado) – UFRRJ. DE AZEVEDO, L. L.; KUMMERLE, A. E. Inibidores da PDE4: da Descoberta e Fracasso Anunciado ao seu Ressurgimento. Rev. Virtual Quím., v. 7, n. 2, p. 465 – 494, 2014. DETHLEFSEN, U., REPGAS, R. Ein neues therapieprinzip bei nechtlichen asthma. Klin Med., v. 80, p. 44 – 47, 1985. ERLENMEYER, F. G. C. E. Ueber die Condensation der Hippursäure mit Phtalsäureanhydrid und mit Benzaldehyd. Ann. v. 275, n. 3, 1893. ERTEKIN, K.; ALP, S.; KARAPIRE, C.; YENIGÜL, B.; HENDEN, E.; IÇLI, S. Fluorescence emission studies of an azlactone derivative embedded in polymer films: an optical sensor for pH measurements. J. Photochem, Photobiol. A, v. 137, p. 155-161, 2000. ERTEKIN, K.; ALP, S.; YALCIN, I. Photophysical and photochemical characteristics of an azlactone dye in sol-gel matrix; a new fluorescent pH indicator. Dyes & Pigm., v. 56, n. 2, p. 125-133, 2003. 94 ERTEKIN, K.; CINAR, S.; AYDEMIR, T.; ALP, S. Glucose sensing employing fluorescent pH indicator: 4-[(p-N,N-dimethylamino)benzylidene]-2- phenyloxazole-5- one. Dyes & Pigm., v. 67, n. 2, p. 133-138, 2005. EUQUERES, J. S. Estimativa do pKa da Rutina empregando modelos semi-empíricos de cálculo mecânico-quântico. 2009. Dissertação – Universidade Federal de Uberlândia. FANG, X., WANG, C. X. COPD in China: the burden and importance of proper management. Chest, v. 139, n. 4, p. 920 – 929, 2011. FERREIRA, C.; ARROIO, A.; RESENDE, D. B. Uso de modelagem molecular no estudos de conceito de nucleofilicidade e basicidade. Quim. Nov., v. 34, n. 9, p. 1661- 1664, 2011. G. MARIAPPAN, B. P. SAHA, SRIPARNA DATTA, DEEPAK KUMAR; P. K. HALDAR. Design, synthesis and antidiabetic evaluation of oxazolone derivatives. J. Chem. Sci., v. 123, n. 3, p. 335 – 341, 2011. GIEMBYCZ, M. A., NEWTON, R. How Phosphodiesterase 4 Inhibitors Work in Patients with Chronic Obstructive Pulmonary Disease of the Severe, Bronchitic, Frequent Exacerbator Phenotype. Clin. Chest. Med., v. 35, p. 203 – 217, 2014. GURNEY, M. E., D’AMATO, E. C., BURGIN, A. B. Phosphodiesterase-4 (PDE4) Molecular Pharmacology and Alzheimer’s Disease. Neurotherapeutics, v. 12, p. 49 – 56, 2015. HEILMANN, S. M.; DRTINA, G. J.; HADDAD, L. C.; RASMUSSEN, J. K., GADDAM, B. N.; LIU, J. J.; FITZSIMONS, R. T.; FANSLER, D. D.; VYVYAN, J. R.; YANG, Y. N.; BEAUCHAMP T. J. Azlactone-reactive polymer supports for immobilizing synthetically useful enzymes (Part I - Pig liver esterase on dispersion polymer supports). J. Mol. Cat. B, v. 30, n. 1, p. 33-42, 2004. HISASHI SHINKAI, KOJI TOI, KUMASHIRO IZUMI, YOSHIKO SETO, MARIKO SETO. N-Acylphenylalanines and Related Compounds. A New Class of Oral 95 Hypoglycemic Agents. J. Med. Chem., n. 31, p. 2092 - 2097, 1988. HORTON Y.M., SULLIVAN M., HOUSLAY M. D. Molecular cloning of a novel splice variant of human type IVa (PDE-IVa) cyclic AMP phosphodiesterase and localization of the gene to the p13.1-q12 region of human chromosome 19. Biochem. J., v. 308, pt. 3, p. 683 – 691, 1995. HUSTON E., HOUSLAY T.M., BAILLIE G. S. cAMP phosphodiesterase-4A1 (PDE4A1) has provided the paradigm for the intracellular targeting of phosphodiesterases, a process that underpins compartmentalized cAMP signalling. Biochem. Soc. Trans., v. 34, pt. 4, p. 504 – 509, 2006. Insight II User Guide, version 2005, Accelrys: CA, USA, 2005. JACOBITZ S., McLAUGHLIN M. M., LIVI G.P. Mapping the functional domains of human recombinant phosphodiesterase 4A: structural requirements for catalytic activity and rolipram binding. Mol. Pharmacol., v. 50, n. 4, p. 891 – 899, 1996. KARLSSON J. A., ALDOUS D. Phosphodiesterase 4 inhibitors for the treatment of asthma. Expert Opinion on Therapeutic Patents., v. 7, n. 9, p. 989 – 1003, 1997. KHAN, K. M.; MUGHAL, U. R., KHAN, M. T. H., ULAAH, Z., PERVEEN, S.; KODGULE, R., VAIDYA, A., SALVI, S. Newer Therapies for Chronic Obstructive Pulmonary Disease. Journal of the Association of Physicians of India, v. 60, p. 8 – 13, 2012. KÜMMERLE, A. E. Uma quimioteca de N-acilidrazonas (NAH): a influência da metila na modulação das propriedades analgésicas e anti-inflamatórias de novos candidatos a fármacos. 2009. Tese – UFRJ. KÜMMERLE, A. E.; BARREIRO, E. J.; FRAGA, C. A. M. The Methylation Effect in Medicinal Chemistry. Chemical Reviews. v. 111, p. 5215–5246, 2011. 96 KÜMMERLE, A. E.; SCHMITT, M.; LOPES, A. B. et. al. Design, Synthesis, and Pharmacological Evaluation of N-Acylhydrazones and Novel Conformationally Constrained Compounds as Selective and Potent Orally Active Phosphodiesterase-4 Inhibitors. J. Med. Chem., n. 55, p. 7525−7545, 2012. LAPERRE, T. S. Airway pathology in COPD: smoking cessation and pharmacological treatment intervention. Results from the GLUCOLD study, Universiteit Leiden. p. 169, 2010. LEHNINGER, Princípios de Bioquímica. 4ª EDIÇÃO; CAPÍTULO 6 - ENZIMAS, p. 190 - 200. LI, J. J. Name Reactions. 3 ed. Berlin: Springer, p. 212-213, 2006. LIMA, M. M. Síntese de peptídeo modificado contendo grupo 1,2,3-triazol 1,4- dissubstituído. 2013. Dissertação – USP. LIPWORTH B. J. Pharmacological interventions and outcome measurements in the unified airway. Clinical & Experimental Allergy Reviews, v. 5, n. 1, p. 26 – 31, 2005. LOBBAN M., SHAKUR Y., BEATTIE J. Identification of two splice varient forms of type IVB cyclic AMP phosphodiesterase, DPD (rPDE-IVB1) and PDE-4 (rPDE-IVB2) in brains; selective localization in membrane and cytosolic compartments and differential expression in various brain regions. Biochem. J., v. 304, p. 399–406, 1994. LÓPEZ, O. B. G. Presence of bronchial asthma and the use of peak flow meter in children and adolescents living at more than 3 000 meters of altitude. Rev. Peru. pediatr., v. 61, n. 4, p. 207 – 214, 2008. Lu, K., QIN, Y., HE, G. X. The impact of haze weather on health: a view to future. Biomed. Environ. Sci., v. 26, p. 945 – 946, 2013. MAK, G., HANANIA, N. A., New bronchodilators. Curr. Opin. Pharmacol., v. 12, n. 3, p. 238 – 245, 2012. 97 MANGANIELLO V. C., MURATA T., TAIRA M. Diversity in cyclic nucleotide phosphodiesterase isoenzyme families. Arch. Biochem. Biophys., v. 322, n. 1, p. 1 – 13, 1995. MANNING C. D., BURMAN M., CHRISTENSEN S. B. Suppression of human inflammatory cell function by subtype-selective PDE4 inhibitors correlates with inhibition of PDE4A and PDE4B. Br J. Pharmacol., v.128, n. 7, p. 1393 – 1398, 1999. MARCHIORI, R. C., SUSIN, C. F., LAGO, L. D. Diagnosis and treatment of exacerbated COPD in emergency care. Revista da AMRIGS, RS, v. 54, n. 2, p. 214 - 223, 2010 MARSHALL, G. R. Introduction to chemoinformatics in drug discovery - A personal view. In: OPREA, T. I. Chemoinformatics in drug discovery. Weinheim: WILEY - VHC, 2004. p. 1-22. MARTIN - CHOULY C. A., ASTIER A., JACOB C. Modulation of matrix metalloproteinase production from human lung fibroblasts by type 4 phosphodiesterase inhibitors. Life Sci., v. 75, n. 7, p. 823 – 840, 2004. MASTBERGEN, V. J. The mechanism of action of doxofylline is unrelated to HDAC inhibition, PDE inhibition or adenosine receptor antagonism. Pulm Pharmacol Ther, v. 25, n. 1, p. 55 – 61, 2012. McCONKEY, B. J., SOBOLEV, V., EDELMAN, M. The performance of current methods in ligand-protein docking. Current Science, v. 83, n. 7, p. 845-856, 2002. MEHATS C., JIN S. L., WAHLSTROM J. PDE4D plays a critical role in the control of airway smooth muscle contraction. FASEB J., v. 17, n. 13, p. 1831 – 1841, 2003. MENDONÇA, E. M., ALGRANTI, E., de FREITAS J. B., ROSA, E. A., SANTOS, F. J. A., SANTOS, P. U. D. Occupational asthma in the city of Sao Paulo. Am. J. Ind. Med., v. 43, n. 6, p. 611 – 617, 2003. 98 MITRA, A., BASSLER, D., GOODMAN, K., LASSERSON, T. J., DUCHARME, F. M. Intravenous aminophylline for acute asthma in children over two years receiving inhaled bronchodilators. Cochrane Database Syst Rev., v. 2, p. 1276, 2005. MULLER T., ENGELS P., FOZARD J.R. Subtypes of the type 4 cAMP phosphodiesterases: structure, regulation and selective inhibition. Trends Pharmacol. Sci., v. 17, n. 8, p. 294 – 298, 1996. NICHOLSON C. D., SHAHID M. Inhibitors of cyclic nucleotide phosphodiesterase isoenzymes their potential utility in the therapy of asthma. Pulm. Pharmacol, v. 7, n. 1, p. 1 – 17, 1994. OBERNOLTE R., RATZLIFF J., BAECKER P. A. Multiple splice variants of phosphodiesterase PDE4C cloned from human lung and testis. Biochim Biophys Acta., v. 1353, n. 3, p. 287 – 97, 1997. OLIVEIRA J. C. A. Doença Obstrutiva Crônica Pulmonar. J. Bras. Pneumol., v.24, n. 6, 1998. OPPENHEIMER, J., NELSON, H. S. Skin testing. Ann Allergy Asthma Immunol., v. 96, n. 2, p. 6 – 12, 2006. OZTURK, G.; ALP, S.; ERTEKIN, K. Fluorescence emission studies of 4-(2- furylmethylene)-2-phenyl-5-oxazolone embedded in polymer thin film and detection of Fe3+ ion. Dyes & Pigm., v. 72, n.2, p. 150-156, 2007. PALFREYMAN M. N. SOUNESS J. E. Phosphodiesterase type IV inhibitors. Prog. Med. Chem., v. 33, n. 1, p. 1 – 52, 1996. PARIKH, N., CHAKRABORTI, A. K. Phosphodiesterase 4 (PDE4) Inhibitors in the treatment of COPD: Promising drug candidates and future directions. Current Medicinal Chemistry, v. 23, p. 129 – 141, 2016. 99 PATEL, J. G., NAGAR, S. P. Indirect costs in chronic obstructive pulmonar disease: a review of the economic burden on employers and individuals in the United States. Int. J. chronic Obstr. Pulm. Dis., v. 9, p. 289 – 300, 2014. PLÖCHL J. Über einige Derivate der Benzoylimdozimtsäure. Ber. v. 17, p. 1623, 1893. PRI-BARA, I., SCHWARTZ, J. N,N-Dialkylcarbodiimide synthesis by palladium catalysed coupling of amines with isonitriles. Chem. Commun., v. 4, p. 347, 1997. PROFITA, M., CHIAPPARA, G., MIRABELLA, F. Effect of cilomilast (Ariflo) on TNF alpha, IL-8, and GM-CSF release by airway cells of patients with COPD. Thorax, v. 58, p. 573 – 579, 2003. RABE K. F., MAGNUSSEN H., DENT G. Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relaxants. European Respiratory Journal, v.8, n. 4, p. 637 – 642, 1995. RANG, H. P.; DALE, M. M.; RITTER, J. M.; FLOWER, R. J. Farmacologia. 6º Ed. Rio de Janeiro: Elsevier Editora Ltda., 2007. RIBEIRO L. V. F. S. F., PINTO, L. A., STEIN, T. R. Uso de macrolídeos em doenças pulmonares: controvérsias da literatura recente. J. Pediatr. RJ, v.91, n.6, 2015. Roberta Ricciarelli, Ernesto Fedele. Phosphodiesterase 4D: na enzyme to remember. British Journal of Pharmacology (2015) 172 p. 4785 – 4789. ROBICHAUD A., SAVOIE C., STAMATIOU P.B., TATTERSALL F.D., CHAN C.C. PDE4 inhibitors induce emesis in ferrets via a noradrenergic pathway. Neuropharmacology., v. 40, n. 2, p. 262 – 269, 2001. SCHNEIDER, G.; BOHM, H. Virtual screening and fast automated docking methods. Drug Discovery Today, v. 7, p. 64-70, 2002. Secretaria Nacional de Ações Básicas de Saúde. Estatísticas de Mortalidade. Ministério da Saúde; 2014. 100 SERAFIN, W. E. Drugs used in the treatment of asthma. The pharmacological basis of therapeutics., 9ª Ed., p. 659 – 682, 1996. SILVER P. J., HAMEL L. T., PERRONE M. H. Differential pharmacologic sensitivity of cyclic nucleotide phosphodiesterase isozymes isolated from cardiac muscle, arterial and airway smooth muscle. Eur. J. Pharmacol., v. 150, n. 1 – 2, p. 85 – 94, 1988. SOUNESS J.E., HOUGHTON C., SARDAR N. Evidence that cyclic AMP phosphodiesterase inhibitors suppress interleukin-2 release from murine splenocytes by interacting with a ‘low-affinity’ phosphodiesterase 4 conformer. Br J. Pharmacol., v. 121, n. 4, p. 743 – 750, 1997. SOUZA, D. S., NOBLAT, L. A. C. B., SANTOS, P. M. Factors associated with quality of life in patients with severe asthma: the impact of pharmacotherapy J. bras. Pneumol. v.41, n.6, 2015. SOUZA, R.O.M.A; MIRANDA, LSM. Irradiação de micro-ondas aplicada à síntese orgânica: Uma história de sucesso no Brasil. Quím. Nova, v. 34, n. 3, p. 497 – 506, 2011. SUTHERLAND E. W.; RALL T. W. Earl W. Sutherland’s Discovery of Cyclic Adenine Monophosphate and the Second Messenger System. The jornal of Biological Chemistry, v. 280, n. 42, 1958. TANG, J., MOHAN, T., VERKADE, J. G. Selective and Efficient Syntheses of Perhydro 1 ,3,5-triazine-2,4,6-triones and Carbodiimides from Isocyanates Using ZP(MeNCH2CH2)sN Catalysts. J. Org. Chem., v. 59, p. 4931 – 4938, 1994. TORPHY T. J. Phosphodiesterase isozymes: molecular targets for novel antiasthma agents. Am. J. Respir. Crit. Care Med., v. 157, n. 2, p. 351 – 370, 1998. TORPHY T.J. Beta-Adrenoceptors, cAMP and airway smooth muscle: challenges to the dogma. Trends Pharmacol. Sci., v. 15, n.10, p. 370–374, 1994. 101 TORPHY T.J., STADEL J. M., BURMAN M. Coexpression of human cAMP-specific phosphodiesterase activity and high affinity rolipram binding in yeast. J. Biol. Chem., v. 267, n. 3, p. 1798 – 804, 1992. TORPHY, T. J., BARNETTE, M. S., UNDERWOOD, D. C. A second generation phosphodiesterase 4 inhibitor for the treatment of asthma and COPD: from concept to clinic. Pulm. Pharmacol. Ther., v. 12, p. 131 – 135, 1999. TURNER-WARWICK, M. Epidemiology of nocturnal asthma. Am J. Med., v. 85, p. 6 – 8, 1988. VANDENPLAS, O., MALO, J. L. Inhalation challenges with agents causing occupational asthma. Eur Respir. J., v. 10, n. 11, p. 2612 – 2629, 1999. VANDEPLAS, O., MALO, J. L. Definitions and types of work-related asthma: a nosological approach. Eur Respir. J., v. 21, n. 4, p. 706 – 712, 2003. VIGNOLA, A. M. PDE4 inhibitors in COPD, a more selective approach to treatment. Respiratory Medicine, v. 98, p. 495 – 503, 2004. WALLACK, Z. R.L. Salmeterol plus theophylline combination therapy in the treatment of COPD. Chest, v. 119, n. 6, p. 1661-70, 2001. WANG P., WU P., OHLETH K. M. Phosphodiesterase 4B2 is the predominant phosphodiesterase species and undergoes differential regulation of gene expression in human monocytes and neutrophils. Mol. Pharmacol., v. 56, n. 1, p. 170 – 174, 1995. WEINBERGER M., HENDELES L. Theophylline in asthma. N. Eng. I. J. Med., v. 334, n. 21, p. 1380 – 1388, 1996. www.fda.gov (acessado em maio de 2016). 102 ZEITOUN M., WILK B., MATSUZAKA, A., KNOPFLI, B.H., WILSON B., Facial cooling enhaces exercise-induced bronchoconstriction in asthmatic children. Med Sci Sports Exerc., v. 36, n. 5, p. 767 – 771, 2004. ZHANG, X.Y., WANG, Y. Q., NIU, T. Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys., v. 12, p. 779 – 799, 2012. ZHU, J., MIX, E., WINBLAD, B. The antidepressant and antiinflammatory effects of rolipram in the central nervous system. CNS Drug Reviews, v. 7, n. 4, p. 387 – 398, 2001. ZUO, L., KURT, L., FORTUNA, C. A., CHUANG, C. C., THOMAS, M. B. Molecular Regulation of Toll-like receptors in Asthma and COPD. Frontiers in Physiology, v. 6, p. 312, 2015. CHUNG, L. P., WATETER, G., THOMPSON, P. J. Pharmacogenetics of β2 adrenergic receptor gene polymorphisms, long-acting β-agonists and asthma. Clin. Exp Allergy, v. 41, n.3, p.312-326, 2011por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/68249/2016%20-%20Pedro%20Lessa%20Penetra.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5405
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2022-02-18T15:58:30Z No. of bitstreams: 1 2016 - Pedro Lessa Penetra.pdf: 12069139 bytes, checksum: e329743557d09a3d68da43ad24f5b054 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-02-18T15:58:30Z (GMT). No. of bitstreams: 1 2016 - Pedro Lessa Penetra.pdf: 12069139 bytes, checksum: e329743557d09a3d68da43ad24f5b054 (MD5) Previous issue date: 2016-07-21eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2016 - Pedro Lessa Penetra.pdf2016 - Pedro Lessa Penetra11.79 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.