Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14606
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPenetra, Pedro Lessa
dc.date.accessioned2023-12-22T03:03:26Z-
dc.date.available2023-12-22T03:03:26Z-
dc.date.issued2016-07-21
dc.identifier.citationPENETRA, Pedro Lessa. Síntese de novos derivados ácido (Z)-2-benzamido-3-fenilacrílicos planejados como inibidores da fosfodiesterase 4. 2016. 99, lvi f. Dissertação (Mestrado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2016.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14606-
dc.description.abstractA asma é uma doença inflamatória crônica com níveis variados de obstrução ao fluxo aéreo podendo se apresentar de diferentes formas. O reconhecimento do papel crítico da inflamação neste processo vem direcionando o eixo do tratamento para a prevenção ou para o bloqueio das alterações inflamatórias. Novos fármacos vêm sendo estudados, dentre eles, os inibidores específicos de fosfodiesterases (PDEs) que vêm apresentando resultados promissores. A Doença Pulmonar Obstrutiva Crônica (DPOC) é uma doença caracterizada por desenvolvimento progressivo de limitação ao fluxo aéreo que não é totalmente reversível. Os broncodilatadores são os medicamentos mais importantes na terapêutica da DPOC. As PDEs são descritas na literatura como uma classe enzimática capaz de promover a hidrólise seletiva de ligações fosfodiéster de substratos específicos como o AMPc e o GMPc, que atuam em diversas vias de sinalização celular. A enzima fosfodiesterase tipo IV (PDE4) é uma isoforma dentre onze fosfodiesterases conhecidas atualmente, sendo responsável pela manutenção dos níveis citoplasmáticos de AMPc nas células musculares lisas, inflamatórias e imunitárias. O mensageiro secundário AMPc controla muitas funções celulares e é sabido que um nível elevado de AMPc pode inibir alguns processos inflamatórios. Sendo assim, a inibição desta enzima pode ser um dos principais meios de se induzir o relaxamento da musculatura lisa pulmonar e tratar doenças relacionadas à broncoconstrição. Os inibidores de primeira geração da PDE 4 teofilina e xantina foram usados durante anos no tratamento da asma, pelo seu efeito broncodilatador. No entanto, a utilização desses fármacos tem sido limitada devido aos efeitos colaterais e baixa eficácia. A segunda geração de inibidores, mais seletivos como cilomilast melhoraram os perfis dos efeitos colaterais e demonstraram eficácia clínica em pacientes com DPOC e asma. Estes medicamentos ainda causam êmese, porém foram liberados para uso clínico em 2011 devido à falta de tratamentos efetivos para a DPOC. Este trabalho tem como objetivo a síntese de novos ácidos-(Z)-2-benzamido-3-fenilacrílicos como inibidores da PDE4, baseados em farmacóforos presentes no cilomilast e roflumilast. O objetivo é desenvolver novos inibidores desta enzima buscando cada vez mais seletividade e menores efeitos colaterais. Os novos compostos serão obtidos através de uma rota sintética e posteriormente avaliados como possíveis agentes contra a DPOC. A característica estrutural principal responsável pela atividade farmacológica dos inibidores de segunda geração, são os grupos ácido carboxílico no cilomilast e piridinila no roflumilast capazes de interagir com a água intracelular e o sítio metálico. Esta característica é preservada na série dos ácidos-(Z)-2-benzamido-3-fenilacrílicos de modo a manter o caráter do grupo farmacofórico. Os substituintes (3,4-dimetóxi; 4-cloro; 4-metóxi; 4- fenil) do anel ligado ao benzilideno foram escolhidos de modo a variar as propriedades físico – químicas dos compostos, explorando a bolsa hidrofóbica e as cavidades polares da enzima. A síntese para a obtenção dos novos ácidos passa por quarto etapas. A primeira delas é a série dos derivados succinimídicos que são obtidos a partir da reação de um ácido benzóico substituído com a N-hidroxisuccinimida, DCC em THF à temp. amb. por 20h (R=93-79%). A segunda é a produção dos derivados de ácido hipúrico produzidos a partir do intermediário succinimídico sintetizado na etapa anterior com glicina em meio básico (R=76-66%). A terceira é a obtenção das azalactonas seguindo a metodologia de Erlemmeyer – Ploch onde são reunidos o derivado do ácido hipúrico, benzaldeído substituído, acetato de sódio em anidrido acético à 120ºC/20 min (R=59-49%). A última etapa é a hidrólise da azalactona com hidróxido de sódio em acetonitrila à temp. amb. (R=96-92%). A rota de síntese para a obtenção do ácido-(Z)-2-benzamido-3- fenilacrílico mostrou-se promissora, visto que passa por intermediários reacionais estáveis e de fácil armazenamento.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.description.sponsorshipFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiropor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectDPOCpor
dc.subjectAsmapor
dc.subjectPDE4por
dc.subjectInflamaçãopor
dc.subjectÁcido-(Z)-2-benzamido-3-fenilacrílicopor
dc.subjectAsthmaeng
dc.subjectInflammationeng
dc.subjectAcid-(Z)-2-benzamido-3- phenylacryliceng
dc.titleSíntese de novos derivados ácido (Z)-2-benzamido-3-fenilacrílicos planejados como inibidores da fosfodiesterase 4por
dc.title.alternativeSynthesis of new derivatives (Z)-2-benzamido-3-phenylacrylic acid designed as phosphodiesterase 4 inhibitorseng
dc.typeDissertaçãopor
dc.description.abstractOtherAsthma is a chronic inflammatory disease with varying degrees of airflow obstruction may present in different ways. The recognition of the critical role of inflammation in this case has shifted the treatment for the prevention or blocking the inflammation. New drugs have been studied, including, specific inhibitors of phosphodiesterases (PDEs) that have shown promising results. The Chronic Obstructive Pulmonary Disease (COPD) is a disease characterized by progressive development of airflow limitation that is not fully reversible. Bronchodilators are the most important drugs in the treatment of COPD. PDEs are described in the literature as a class enzyme capable of promoting the selective hydrolysis of specific phosphodiester bonds substrates such as cAMP and cGMP, which act on various cell signaling pathways. The enzyme phosphodiesterase type IV (PDE4) is an isoform among eleven phosphodiesterases currently known, is responsible for maintaining the cytoplasmic levels of cAMP in smooth muscle cells, inflammatory and immune. The second messenger cAMP controls many cellular functions and it is known that a high level of cAMP can inhibit several inflammatory processes. Thus, inhibition of this enzyme may be one of the primary means of inducing relaxation of smooth muscle and treat pulmonary diseases related to bronchoconstriction. The first generation inhibitors of PDE 4 xanthine and theophylline have been used for years in the treatment of asthma by its bronchodilating effect. However, the use of these drugs has been limited due to side effects and low efficacy. The second generation inhibitors, cilomilast and roflumilast, more selective and improved profiles of side effects and have demonstrated clinical efficacy in patients with COPD and asthma. These drugs also cause vomiting, but were released for clinical use in 2011 due to lack of effective treatments for COPD. This work aims at the synthesis of new-acids (Z) -2-benzamido-3-fenilacrílicos as PDE4 inhibitors, based on pharmacophore present in cilomilast and roflumilast. The objective is to develop novel inhibitors of this enzyme increasingly seeking selectivity and fewer side effects. The new compounds are obtained by a synthetic route and subsequently evaluated as potential agents against COPD. The main structural feature responsible for the pharmacological activity of the second generation inhibitors are carboxylic acid groups in the cilomilast and roflumilast pyridinyl capable of interacting with the intracellular water and the metal site. This feature is preserved in the seriesacids of (Z) -2-benzamido-3-fenilacrílicos to maintain the character of the pharmacophore. Substituents (3,4-dimethoxy, 4-chloro, 4-methoxy, 4-phenyl) connected to the benzylidene ring have been chosen so as to vary the physical - chemical properties of the compounds, exploiting the hydrophobic pocket of the enzyme and the polar cavities. The synthesis to obtain the new acid goes through four steps. The first is a series of succinimídicos derivatives that are obtained from the reaction of a substituted benzoic acid with N-hydroxysuccinimide, DCC in THF at room temp. amb. for 20h (Yield = 93-79%). The second is the production of the derivative of hippuric acid produced from succinimídico intermediate synthesized in the previous step with glycine under basic conditions (Y= 76-66%). The third is to achieve the following azalactonas Erlemmeyer methodology - which are joined Ploch derivative of hippuric acid, substituted benzaldehyde, sodium acetate in acetic anhydride at 120°C / 20 min (Y= 59-49%). The last step is the hydrolysis of azalactone with sodium hydroxide in acetonitrile at room temp. amb. (Y= 96-92%). A synthesis route for obtaining acid- (Z) -2-benzamido-3-phenylacrylic showed promise, since undergoes reaction intermediate stable and easy storage.eng
dc.contributor.advisor1Kümmerle, Arthur Eugen
dc.contributor.referee1Kümmerle, Arthur Eugen
dc.creator.Latteshttp://lattes.cnpq.br/2576311429133890por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Químicapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesAHMAD, R. KHOSROPOUR. C6(Mim)2]2W10O32.2H2O: A novel and powerful catalyst for the synthesis of 4-arylidene-2-phenyl-5(4)-oxazolones under ultrasonic condition. University of Isfahan, 2010. ALONSO, H.; BLIZBYUK, A. A.; GREADY. Combining docking simulation in drug design. Medical Research Reviews, v. 9, p. 531-568, 2006. ANDRADE G. A. , PISTNER A. J., YAP G. P. A. , LUTTERMAN D., ROSENTHAL J. Photocatalytic Conversion of CO2 to CO Using Rhenium Bipyridine Platforms Containing Ancillary Phenyl or BODIPY Moieties. ACS Catalisys, v. 3, n. 8, p. 1685 – 1692, 2013. Asian-Development-Bank. Toward an Environmentally Sustainable Future: Country Environmental Analysis of the People’s Republic of China, 2013. Associação Médica Brasileira e Conselho Federal de Medicina. Doença Pulmonar Obstrutiva Crônica, 2001. ATHANAZIO, R., Airway disease: similarities and differences between asthma, COPD and bronchiectasis. Clinics, v. 67, n. 11, p. 1335 – 1343, 2012. BANNER K. H., TREVETHICK M. A. PDE4 inhibition: a novel approach for the treatment of inflammatory bowel disease. Trends Pharmacol. Sci., v. 25, n. 8, p. 430 – 436, 2004. BANNER, K. H., PRESS, N. J. Dual PDE3/4 inhibitors as therapeutic agents for chronic obstructive pulmonary disease. British journal of pharmacology, v. 157, n. 6, p. 892 - 906, 2009. BARJAKTAREVIC, I. Z., ARREDONDO, A. F., COOPER, C. B. Positioning new pharmacotherapies for COPD. International Journal of COPD, v. 10, p. 1427 – 1442, 2015. 88 BARNES, P. J. Immunology of asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol., v. 8, n. 3, p. 183 – 192, 2008. BARNES, P. J. Mechanisms in COPD: differences from asthma. Chest, v. 117, p. 10 – 14, 2000. BARNETTE M. S. Phosphodiesterase 4 (PDE4) inhibitors in asthma and chronic obstructive pulmonary disease (COPD). Prog. Drug Res., v. 53, p. 193 – 229, 1999. BARNETTE M. S., CHRISTENSEN S. B., UNDERWOOD D.C. Phosphodiesterase 4: Biological underpinnings for the design improved inhibitors. Pharmacol. Rev. Commun., v. 8,n. 1, p. 65 – 73, 1995. BARNETTE M.S., BARTUS J.O., BURMAN M. Association of the anti-inflammatory activity of phosphodiesterase 4 (PDE4) inhibitors with either inhibition of PDE4 catalytic activity or competition forrolipram binding. Biochem. Pharmacol., v. 51, n. 7, p. 949 – 956, 1996. BÁRTHOLO, R. M. Diferenças clínicas entre asma e DPOC. Revista HUPE, UERJ, v. 12, n. 2, p. 62 – 70, 2013. BOLGER G.B., ERDOGAN S., JONES R.E. Characterization of five different proteins produced by alternatively spliced mRNAs from the human cAMP-specific phosphodiesterase PDE4D gene. Biochem. J., v.328, pt. 2, p. 539 – 548, 1997. BORGES, W., BURNS, D., VIEIRA, S. E. Asthma in childhood: drug therapy. Ver. Assoc. Med., v.57, n. 4, p. 369 – 376, 2011. BUTCHER R. W.; SUTHERLAND E. W. Adenosine 3',5'-Phosphate in Biological. The jornal of Biological Chemistry, v. 237, n. 4, 1962. CAMPOS H., XISTO D., ZIN W.A., ROCCO P.R.M. Inibidores de fosfodiesterases: novas perspectivas de uma antiga terapia na asma? J. Pneumol, v.29, n. 3, 2003. 89 CAMPOS, H. S., CAMARGOS, P. A. M. Broncodilatadores. Pulmao RJ, v. 21, n. 2, p. 60 – 64, 2012. CAREY, F.; SUNDBERG, R. J. Advanced Organic Chemistry. 5 ed. Spring Verlag, 2007. CARTER, H. E. Azalactones. Org react., v. 3, p. 198 – 239, 1946. CAVALLA D., FRITH R. Phosphodiesterase IV inhibitors: structural diversity and therapeutic potential in asthma. Curr. Med. Chem., v. 2, p. 561 – 572, 1995. CAZZOLA, M., SEGRETI, A., MATERA, M. G. Novel bronchodilators in asthma. Curr. Opin. Pulm. Med., v. 16, n. 1, p. 6 – 12, 2010. CHANDRASEKHAR, S.; KARRI, P. Aromaticity in azlactone anions and its significance for the Erlenmeyer synthesis. Tetrahedron Letters. v. 47, p. 5763-5766, 2006. CHANDRASEKHAR, S.; KARRI, P. Erlenmeyer azlactone synthesis with aliphatic aldehydes under solvent-free microwave conditions. Tetrahedron Letters. v. 48, p. 785- 786, 2007. CHOUDHARY, M. I. Oxazolones: New tyrosinase inhibitors; synthesis and their structure–activity relationships. Bioorg. Med. Chem., v. 14, n. 17, p. 6027-6033, 2006. CLEARY, T.; RAWALPALLY, T.; KENNEDY, N.; CHAVEZ, F. Catalyzing the Erlenmeyer Plöchl reaction: organic bases versus sodium acetate. Tetrahedron Letters. v. 51, p. 1533-1536, 2010. COMPTON C. H., GUBB J., NIEMAN R. Cilomilast, a selective phosphodiesterase-4 inhibitor for treatment of patients with chronic obstructive pulmonary disease: a randomised, dose-ranging study. The Lancet., v. 358, p. 265 – 70, 2001. 90 COSTA C. H., RUFINO R.; Tratamento da doença pulmonar obstrutiva crônica. Revista HUPE RJ, v. 12, n. 2, p. 71 – 77, 2013. CROCKER I. C., TOWNLEY R. G. Therapeutic potential of phosphodiesterase 4 inhibitors in allergic diseases. Drugs Today., v. 35, n. 7, p. 519 – 535, 1999. Da SILVA, V. B. Estudos de modelagem molecular e relação estrutura atividade da oncoproteína hnRNP K e ligantes. 2007. Dissertação – USP. DE AZEVEDO, L. L. Síntese e avaliação farmacológica de novas imidazolonas planejadas como inibidoras de cisteíno proteases para o tratamento da Leucemia. 2013. Dissertação (Mestrado) – UFRRJ. DE AZEVEDO, L. L.; KUMMERLE, A. E. Inibidores da PDE4: da Descoberta e Fracasso Anunciado ao seu Ressurgimento. Rev. Virtual Quím., v. 7, n. 2, p. 465 – 494, 2014. DETHLEFSEN, U., REPGAS, R. Ein neues therapieprinzip bei nechtlichen asthma. Klin Med., v. 80, p. 44 – 47, 1985. ERLENMEYER, F. G. C. E. Ueber die Condensation der Hippursäure mit Phtalsäureanhydrid und mit Benzaldehyd. Ann. v. 275, n. 3, 1893. ERTEKIN, K.; ALP, S.; KARAPIRE, C.; YENIGÜL, B.; HENDEN, E.; IÇLI, S. Fluorescence emission studies of an azlactone derivative embedded in polymer films: an optical sensor for pH measurements. J. Photochem, Photobiol. A, v. 137, p. 155-161, 2000. ERTEKIN, K.; ALP, S.; YALCIN, I. Photophysical and photochemical characteristics of an azlactone dye in sol-gel matrix; a new fluorescent pH indicator. Dyes & Pigm., v. 56, n. 2, p. 125-133, 2003. 91 ERTEKIN, K.; CINAR, S.; AYDEMIR, T.; ALP, S. Glucose sensing employing fluorescent pH indicator: 4-[(p-N,N-dimethylamino)benzylidene]-2- phenyloxazole-5- one. Dyes & Pigm., v. 67, n. 2, p. 133-138, 2005. EUQUERES, J. S. Estimativa do pKa da Rutina empregando modelos semi-empíricos de cálculo mecânico-quântico. 2009. Dissertação – Universidade Federal de Uberlândia. FANG, X., WANG, C. X. COPD in China: the burden and importance of proper management. Chest, v. 139, n. 4, p. 920 – 929, 2011. FERREIRA, C.; ARROIO, A.; RESENDE, D. B. Uso de modelagem molecular no estudos de conceito de nucleofilicidade e basicidade. Quim. Nov., v. 34, n. 9, p. 1661- 1664, 2011. G. MARIAPPAN, B. P. SAHA, SRIPARNA DATTA, DEEPAK KUMAR; P. K. HALDAR. Design, synthesis and antidiabetic evaluation of oxazolone derivatives. J. Chem. Sci., v. 123, n. 3, p. 335 – 341, 2011. GIEMBYCZ, M. A., NEWTON, R. How Phosphodiesterase 4 Inhibitors Work in Patients with Chronic Obstructive Pulmonary Disease of the Severe, Bronchitic, Frequent Exacerbator Phenotype. Clin. Chest. Med., v. 35, p. 203 – 217, 2014. GURNEY, M. E., D’AMATO, E. C., BURGIN, A. B. Phosphodiesterase-4 (PDE4) Molecular Pharmacology and Alzheimer’s Disease. Neurotherapeutics, v. 12, p. 49 – 56, 2015. HEILMANN, S. M.; DRTINA, G. J.; HADDAD, L. C.; RASMUSSEN, J. K., GADDAM, B. N.; LIU, J. J.; FITZSIMONS, R. T.; FANSLER, D. D.; VYVYAN, J. R.; YANG, Y. N.; BEAUCHAMP T. J. Azlactone-reactive polymer supports for immobilizing synthetically useful enzymes (Part I - Pig liver esterase on dispersion polymer supports). J. Mol. Cat. B, v. 30, n. 1, p. 33-42, 2004. 92 HISASHI SHINKAI, KOJI TOI, KUMASHIRO IZUMI, YOSHIKO SETO, MARIKO SETO. N-Acylphenylalanines and Related Compounds. A New Class of Oral Hypoglycemic Agents. J. Med. Chem., n. 31, p. 2092 - 2097, 1988. HORTON Y.M., SULLIVAN M., HOUSLAY M. D. Molecular cloning of a novel splice variant of human type IVa (PDE-IVa) cyclic AMP phosphodiesterase and localization of the gene to the p13.1-q12 region of human chromosome 19. Biochem. J., v. 308, pt. 3, p. 683 – 691, 1995. HUSTON E., HOUSLAY T.M., BAILLIE G. S. cAMP phosphodiesterase-4A1 (PDE4A1) has provided the paradigm for the intracellular targeting of phosphodiesterases, a process that underpins compartmentalized cAMP signalling. Biochem. Soc. Trans., v. 34, pt. 4, p. 504 – 509, 2006. Insight II User Guide, version 2005, Accelrys: CA, USA, 2005. JACOBITZ S., McLAUGHLIN M. M., LIVI G.P. Mapping the functional domains of human recombinant phosphodiesterase 4A: structural requirements for catalytic activity and rolipram binding. Mol. Pharmacol., v. 50, n. 4, p. 891 – 899, 1996. KARLSSON J. A., ALDOUS D. Phosphodiesterase 4 inhibitors for the treatment of asthma. Expert Opinion on Therapeutic Patents., v. 7, n. 9, p. 989 – 1003, 1997. KHAN, K. M.; MUGHAL, U. R., KHAN, M. T. H., ULAAH, Z., PERVEEN, S.; KODGULE, R., VAIDYA, A., SALVI, S. Newer Therapies for Chronic Obstructive Pulmonary Disease. Journal of the Association of Physicians of India, v. 60, p. 8 – 13, 2012. KÜMMERLE, A. E. Uma quimioteca de N-acilidrazonas (NAH): a influência da metila na modulação das propriedades analgésicas e anti-inflamatórias de novos candidatos a fármacos. 2009. Tese – UFRJ. KÜMMERLE, A. E.; BARREIRO, E. J.; FRAGA, C. A. M. The Methylation Effect in Medicinal Chemistry. Chemical Reviews. v. 111, p. 5215–5246, 2011. 93 KÜMMERLE, A. E.; SCHMITT, M.; LOPES, A. B. et. al. Design, Synthesis, and Pharmacological Evaluation of N-Acylhydrazones and Novel Conformationally Constrained Compounds as Selective and Potent Orally Active Phosphodiesterase-4 Inhibitors. J. Med. Chem., n. 55, p. 7525−7545, 2012. LAPERRE, T. S. Airway pathology in COPD: smoking cessation and pharmacological treatment intervention. Results from the GLUCOLD study, Universiteit Leiden. p. 169, 2010. LEHNINGER, Princípios de Bioquímica. 4ª EDIÇÃO; CAPÍTULO 6 - ENZIMAS, p. 190 - 200. LI, J. J. Name Reactions. 3 ed. Berlin: Springer, p. 212-213, 2006. LIMA, M. M. Síntese de peptídeo modificado contendo grupo 1,2,3-triazol 1,4- dissubstituído. 2013. Dissertação – USP. LIPWORTH B. J. Pharmacological interventions and outcome measurements in the unified airway. Clinical & Experimental Allergy Reviews, v. 5, n. 1, p. 26 – 31, 2005. LOBBAN M., SHAKUR Y., BEATTIE J. Identification of two splice varient forms of type IVB cyclic AMP phosphodiesterase, DPD (rPDE-IVB1) and PDE-4 (rPDE-IVB2) in brains; selective localization in membrane and cytosolic compartments and differential expression in various brain regions. Biochem. J., v. 304, p. 399–406, 1994. LÓPEZ, O. B. G. Presence of bronchial asthma and the use of peak flow meter in children and adolescents living at more than 3 000 meters of altitude. Rev. Peru. pediatr., v. 61, n. 4, p. 207 – 214, 2008. Lu, K., QIN, Y., HE, G. X. The impact of haze weather on health: a view to future. Biomed. Environ. Sci., v. 26, p. 945 – 946, 2013. 94 MAK, G., HANANIA, N. A., New bronchodilators. Curr. Opin. Pharmacol., v. 12, n. 3, p. 238 – 245, 2012. MANGANIELLO V. C., MURATA T., TAIRA M. Diversity in cyclic nucleotide phosphodiesterase isoenzyme families. Arch. Biochem. Biophys., v. 322, n. 1, p. 1 – 13, 1995. MANNING C. D., BURMAN M., CHRISTENSEN S. B. Suppression of human inflammatory cell function by subtype-selective PDE4 inhibitors correlates with inhibition of PDE4A and PDE4B. Br J. Pharmacol., v.128, n. 7, p. 1393 – 1398, 1999. MARCHIORI, R. C., SUSIN, C. F., LAGO, L. D. Diagnosis and treatment of exacerbated COPD in emergency care. Revista da AMRIGS, RS, v. 54, n. 2, p. 214 - 223, 2010 MARSHALL, G. R. Introduction to chemoinformatics in drug discovery - A personal view. In: OPREA, T. I. Chemoinformatics in drug discovery. Weinheim: WILEY - VHC, 2004. p. 1-22. MARTIN - CHOULY C. A., ASTIER A., JACOB C. Modulation of matrix metalloproteinase production from human lung fibroblasts by type 4 phosphodiesterase inhibitors. Life Sci., v. 75, n. 7, p. 823 – 840, 2004. MASTBERGEN, V. J. The mechanism of action of doxofylline is unrelated to HDAC inhibition, PDE inhibition or adenosine receptor antagonism. Pulm Pharmacol Ther, v. 25, n. 1, p. 55 – 61, 2012. McCONKEY, B. J., SOBOLEV, V., EDELMAN, M. The performance of current methods in ligand-protein docking. Current Science, v. 83, n. 7, p. 845-856, 2002. MEHATS C., JIN S. L., WAHLSTROM J. PDE4D plays a critical role in the control of airway smooth muscle contraction. FASEB J., v. 17, n. 13, p. 1831 – 1841, 2003. 95 MENDONÇA, E. M., ALGRANTI, E., de FREITAS J. B., ROSA, E. A., SANTOS, F. J. A., SANTOS, P. U. D. Occupational asthma in the city of Sao Paulo. Am. J. Ind. Med., v. 43, n. 6, p. 611 – 617, 2003. MITRA, A., BASSLER, D., GOODMAN, K., LASSERSON, T. J., DUCHARME, F. M. Intravenous aminophylline for acute asthma in children over two years receiving inhaled bronchodilators. Cochrane Database Syst Rev., v. 2, p. 1276, 2005. MULLER T., ENGELS P., FOZARD J.R. Subtypes of the type 4 cAMP phosphodiesterases: structure, regulation and selective inhibition. Trends Pharmacol. Sci., v. 17, n. 8, p. 294 – 298, 1996. NICHOLSON C. D., SHAHID M. Inhibitors of cyclic nucleotide phosphodiesterase isoenzymes their potential utility in the therapy of asthma. Pulm. Pharmacol, v. 7, n. 1, p. 1 – 17, 1994. OBERNOLTE R., RATZLIFF J., BAECKER P. A. Multiple splice variants of phosphodiesterase PDE4C cloned from human lung and testis. Biochim Biophys Acta., v. 1353, n. 3, p. 287 – 97, 1997. OLIVEIRA J. C. A. Doença Obstrutiva Crônica Pulmonar. J. Bras. Pneumol., v.24, n. 6, 1998. OPPENHEIMER, J., NELSON, H. S. Skin testing. Ann Allergy Asthma Immunol., v. 96, n. 2, p. 6 – 12, 2006. OZTURK, G.; ALP, S.; ERTEKIN, K. Fluorescence emission studies of 4-(2- furylmethylene)-2-phenyl-5-oxazolone embedded in polymer thin film and detection of Fe3+ ion. Dyes & Pigm., v. 72, n.2, p. 150-156, 2007. PALFREYMAN M. N. SOUNESS J. E. Phosphodiesterase type IV inhibitors. Prog. Med. Chem., v. 33, n. 1, p. 1 – 52, 1996. 96 PARIKH, N., CHAKRABORTI, A. K. Phosphodiesterase 4 (PDE4) Inhibitors in the treatment of COPD: Promising drug candidates and future directions. Current Medicinal Chemistry, v. 23, p. 129 – 141, 2016. PATEL, J. G., NAGAR, S. P. Indirect costs in chronic obstructive pulmonar disease: a review of the economic burden on employers and individuals in the United States. Int. J. chronic Obstr. Pulm. Dis., v. 9, p. 289 – 300, 2014. PLÖCHL J. Über einige Derivate der Benzoylimdozimtsäure. Ber. v. 17, p. 1623, 1893. PRI-BARA, I., SCHWARTZ, J. N,N-Dialkylcarbodiimide synthesis by palladiumcatalysed coupling of amines with isonitriles. Chem. Commun., v. 4, p. 347, 1997. PROFITA, M., CHIAPPARA, G., MIRABELLA, F. Effect of cilomilast (Ariflo) on TNF-alpha, IL-8, and GM-CSF release by airway cells of patients with COPD. Thorax, v. 58, p. 573 – 579, 2003. RABE K. F., MAGNUSSEN H., DENT G. Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relaxants. European Respiratory Journal, v.8, n. 4, p. 637 – 642, 1995. RANG, H. P.; DALE, M. M.; RITTER, J. M.; FLOWER, R. J. Farmacologia. 6º Ed. Rio de Janeiro: Elsevier Editora Ltda., 2007. RIBEIRO L. V. F. S. F., PINTO, L. A., STEIN, T. R. Uso de macrolídeos em doenças pulmonares: controvérsias da literatura recente. J. Pediatr. RJ, v.91, n.6, 2015. Roberta Ricciarelli, Ernesto Fedele. Phosphodiesterase 4D: na enzyme to remember. British Journal of Pharmacology (2015) 172 p. 4785 – 4789. ROBICHAUD A., SAVOIE C., STAMATIOU P.B., TATTERSALL F.D., CHAN C.C. PDE4 inhibitors induce emesis in ferrets via a noradrenergic pathway. Neuropharmacology., v. 40, n. 2, p. 262 – 269, 2001. 97 SCHNEIDER, G.; BOHM, H. Virtual screening and fast automated docking methods. Drug Discovery Today, v. 7, p. 64-70, 2002. Secretaria Nacional de Ações Básicas de Saúde. Estatísticas de Mortalidade. Ministério da Saúde; 2014. SERAFIN, W. E. Drugs used in the treatment of asthma. The pharmacological basis of therapeutics., 9ª Ed., p. 659 – 682, 1996. SILVER P. J., HAMEL L. T., PERRONE M. H. Differential pharmacologic sensitivity of cyclic nucleotide phosphodiesterase isozymes isolated from cardiac muscle, arterial and airway smooth muscle. Eur. J. Pharmacol., v. 150, n. 1 – 2, p. 85 – 94, 1988. SOUNESS J.E., HOUGHTON C., SARDAR N. Evidence that cyclic AMP phosphodiesterase inhibitors suppress interleukin-2 release from murine splenocytes by interacting with a ‘low-affinity’ phosphodiesterase 4 conformer. Br J. Pharmacol., v. 121, n. 4, p. 743 – 750, 1997. SOUZA, D. S., NOBLAT, L. A. C. B., SANTOS, P. M. Factors associated with quality of life in patients with severe asthma: the impact of pharmacotherapy J. bras. Pneumol. v.41, n.6, 2015. SOUZA, R.O.M.A; MIRANDA, LSM. Irradiação de micro-ondas aplicada à síntese orgânica: Uma história de sucesso no Brasil. Quím. Nova, v. 34, n. 3, p. 497 – 506, 2011. SUTHERLAND E. W.; RALL T. W. Earl W. Sutherland’s Discovery of Cyclic Adenine Monophosphate and the Second Messenger System. The jornal of Biological Chemistry, v. 280, n. 42, 1958. TANG, J., MOHAN, T., VERKADE, J. G. Selective and Efficient Syntheses of Perhydro-1 ,3,5-triazine-2,4,6-triones and Carbodiimides from Isocyanates Using ZP(MeNCH2CH2)sN Catalysts. J. Org. Chem., v. 59, p. 4931 – 4938, 1994. 98 TORPHY T. J. Phosphodiesterase isozymes: molecular targets for novel antiasthma agents. Am. J. Respir. Crit. Care Med., v. 157, n. 2, p. 351 – 370, 1998. TORPHY T.J. Beta-Adrenoceptors, cAMP and airway smooth muscle: challenges to the dogma. Trends Pharmacol. Sci., v. 15, n.10, p. 370–374, 1994. TORPHY T.J., STADEL J. M., BURMAN M. Coexpression of human cAMP-specific phosphodiesterase activity and high affinity rolipram binding in yeast. J. Biol. Chem., v. 267, n. 3, p. 1798 – 804, 1992. TORPHY, T. J., BARNETTE, M. S., UNDERWOOD, D. C. A second generation phosphodiesterase 4 inhibitor for the treatment of asthma and COPD: from concept to clinic. Pulm. Pharmacol. Ther., v. 12, p. 131 – 135, 1999. TURNER-WARWICK, M. Epidemiology of nocturnal asthma. Am J. Med., v. 85, p. 6 – 8, 1988. VANDENPLAS, O., MALO, J. L. Inhalation challenges with agents causing occupational asthma. Eur Respir. J., v. 10, n. 11, p. 2612 – 2629, 1999. VANDEPLAS, O., MALO, J. L. Definitions and types of work-related asthma: a nosological approach. Eur Respir. J., v. 21, n. 4, p. 706 – 712, 2003. VIGNOLA, A. M. PDE4 inhibitors in COPD, a more selective approach to treatment. Respiratory Medicine, v. 98, p. 495 – 503, 2004. WALLACK, Z. R.L. Salmeterol plus theophylline combination therapy in the treatment of COPD. Chest, v. 119, n. 6, p. 1661-70, 2001. WANG P., WU P., OHLETH K. M. Phosphodiesterase 4B2 is the predominant phosphodiesterase species and undergoes differential regulation of gene expression in human monocytes and neutrophils. Mol. Pharmacol., v. 56, n. 1, p. 170 – 174, 1995. 99 WEINBERGER M., HENDELES L. Theophylline in asthma. N. Eng. I. J. Med., v. 334, n. 21, p. 1380 – 1388, 1996. www.fda.gov (acessado em maio de 2016). ZEITOUN M., WILK B., MATSUZAKA, A., KNOPFLI, B.H., WILSON B., Facial cooling enhaces exercise-induced bronchoconstriction in asthmatic children. Med Sci Sports Exerc., v. 36, n. 5, p. 767 – 771, 2004. ZHANG, X.Y., WANG, Y. Q., NIU, T. Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys., v. 12, p. 779 – 799, 2012. ZHU, J., MIX, E., WINBLAD, B. The antidepressant and antiinflammatory effects of rolipram in the central nervous system. CNS Drug Reviews, v. 7, n. 4, p. 387 – 398, 2001. ZUO, L., KURT, L., FORTUNA, C. A., CHUANG, C. C., THOMAS, M. B. Molecular Regulation of Toll-like receptors in Asthma and COPD. Frontiers in Physiology, v. 6, p. 312, 2015.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/68078/PEDRO%20PENETRA.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5362
dc.originais.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2022-02-11T13:50:58Z No. of bitstreams: 1 PEDRO PENETRA.pdf: 8183466 bytes, checksum: b2f924450588e660d4f08316caa2234d (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-02-11T13:50:58Z (GMT). No. of bitstreams: 1 PEDRO PENETRA.pdf: 8183466 bytes, checksum: b2f924450588e660d4f08316caa2234d (MD5) Previous issue date: 2016-07-21eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
PEDRO PENETRA.pdf2016 - Pedro Lessa Penetra7.99 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.