Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14550
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAzevedo, Luciana Luiz de
dc.date.accessioned2023-12-22T03:03:06Z-
dc.date.available2023-12-22T03:03:06Z-
dc.date.issued2013-10-07
dc.identifier.citationAZEVEDO, Luciana Luiz de. Síntese e avaliação farmacológica de novas imidazolonas planejadas como inibidoras de cisteíno proteases para o tratamento da leucemia. 2013. 179 f. Dissertação (Programa de Pós-Graduação em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2013.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14550-
dc.description.abstractA palavra câncer é utilizada para designar um conjunto de mais de 100 doenças diferentes que têm, em comum, o crescimento desordenado de células anormais que invadem tecidos e órgãos, e é considerada pela Organização Mundial da Saúde um dos maiores problemas de saúde enfrentados pela humanidade neste século. As deubiquitinases (cisteíno proteases) encontram-se hoje como possíveis alvos terapêuticos no tratamento contra o câncer. Estas enzimas são responsáveis pela regulação de diversos processos celulares, dentre estes, o processo de multiplicação celular. Deste modo, o presente trabalho propõe o planejamento e a síntese de moléculas capazes de modular a ação destas enzimas, com a finalidade de impedir a proliferação de células tumorais. As moléculas aqui descritas são da classe das imidazolonas e foram planejadas a partir da classe das tirfostinas, que são comprovadamente ativas sobre linhagens celulares de leucemia mielóide crônica. Portanto, este trabalho tem por objetivo sintetizar as imidazolonas planejadas como inibidoras de deubiquitinases e avaliar farmacologicamente a atividade biológica desta classe frente a diferentes linhagens de células leucêmicas. Foram sintetizadas 3 séries de imidazolonas, estruturalmente relacionadas, para estudos de SAR através da reação de Erlenmeyer, seguida de reação com anilina e benzilamina em meio de piridina, e ácido acético, que se demonstrou essencial para esta síntese. Foi observada a formação de mistura diastereoisomérica para alguns produtos sintetizados, sendo que suas proporções isoméricas foram determinadas através da análise de espectros de RMN 1H, variando entre 85-100% para o isômero Z, que foi caracterizado por experimento de RMN de 13C acoplado a hidrogênio a longa distância. Algumas imidazolonas foram selecionadas para avaliação de atividade antitumoral através de ensaio colorimétrico de MTT. A eficácia dos produtos avaliados foi determinada através da observação dos valores de viabilidade celular na maior concentração testada, de 50μM, em culturas de células leucêmicas de duas linhagens diferentes, a K562 e Lucena-1. A viabilidade destas células variou entre 61,4-6,1%. As potências foram determinadas e os resultados variaram entre 57,8-20,4μM. Os produtos com os melhores resultados de atividade antitumoral foram 39h e 41a que apresentaram viabilidade celular de 16,7% e 19,7% para a K562, respectivamente, e 6,1% e 13,7% para a Lucena-1. Estes apresentaram CE50 de 20,4μM para o produto 39h e 24,1μM para o produto 41a, frente à K562, e 22,7μM para o produto 39h e 25μM pra o produto 41a, frente à Lucena-1. Observou-se que os resultados de atividade antitumoral para as duas linhagens celulares foi similar tanto em potência quanto em eficácia máxima, fato que não era esperado, já que a linhagem Lucena-1 apresenta fator de resistência a múltiplas drogas. Deste modo, os resultados obtidos tornam as séries das imidazolonas propostas neste trabalho interessantes como novos compostos protótipos para o tratamento da leucemia. Os resultados obtidos corroboram o planejamento deste trabalho, pois até o momento, as imidazolonas avaliadas possuem maior atividade antitumoral se comparada a protótipos que inspiraram o planejamento das mesmas.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectLeucemiapor
dc.subjectimidazolonaspor
dc.subjectatividade antitumoralpor
dc.subjectLeukemiaeng
dc.subjectimidazoloneseng
dc.subjectantitumor activityeng
dc.titleSíntese e avaliação farmacológica de novas imidazolonas planejadas como inibidoras de cisteíno proteases para o tratamento da leucemiapor
dc.title.alternativeSynthesis and pharmacological evaluation of new imidazolones planned as inhibitors of cysteine proteases for the treatment of leukemiaeng
dc.typeDissertaçãopor
dc.description.abstractOtherCancer is described as a set of more than 100 different diseases that have in common the uncontrolled growth of abnormal cells that invade tissues and organs, been considered by the World Health Organization as one of the biggest health problems facing humanity at this century. Deubiquitinases (cysteine proteases) are potential therapeutic targets in cancer treatment. These enzymes are responsible for the regulation of many cellular processes, among them, the cell multiplication one. Thus, this work proposes the design and synthesis of molecules that could modulate the action of these enzymes, aiming at preventing tumor cell proliferation. The molecules described herein belong to the class of imidazolones and were planned from the class of tyrphostins, which are remarkably active inhibiting cell lines from chronic myelogenous leukemia. For this purpose we synthesized 3 series of correlated imidazolone compounds planned as inhibitors of deubiquitinases and evaluated their biological activities against different leukemic cell lines. The imidazolones were synthesized by means of an Erlenmeyer reaction, followed by reaction with aniline or benzylamine in a pyridine and acetic acid medium, which was essential to our synthesis. It was observed the formation of diastereoisomeric mixture for some products synthesized, and their isomeric ratios were determined by analysis of 1H NMR spectra, ranging from 85-100% for the Z isomer, which was experimentally characterized by 13C NMR coupled to hydrogen over long distances. Some imidazolones were selected for antitumor activity evaluation by MTT colorimetric assay. The effectiveness of the compounds was determined by observation of cell viability at the highest concentration (50μM) in culture of two different leukemic cell lines, K562 and Lucena-1. The viability of these cells ranged from 61.4 to 6.1%. Their potencies were determined and the results ranged from 57.8 to 20.4μM. The products with the best antitumor activity were 39h and 41a, which showed cell viability of 16.7% and 19.7% for K562, respectively, and 6.1% and 13.7% for the Lucena-1. Compounds also presented CE50 of 20.4μM to 39h and 24.1μM for 41a in K562, and 22.7μM for 39h and 25μM for 41a in Lucena-1. The results of antitumor activity for both cell lines were similar both in potency and in maximum effectiveness. This fact was not expected, since the Lucena-1 cell presents multidrug resistance. Thus, the results obtained for our series of proposed imidazolones make them interesting as new lead compounds for the treatment of leukemia. The results supported the design of this work, once until now, the tested imidazolones presented greater antitumor activity compared to prototypes that inspired the design.eng
dc.contributor.advisor1Kümmerle, Arthur Eugen
dc.contributor.advisor1ID053.978.487-78por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5598000938584486por
dc.contributor.referee1Souza, Rodrigo Octavio Mendonça Alves
dc.contributor.referee2Lacerda, Renata Barbosa
dc.contributor.referee3Romeiro, Nelilma Correia
dc.creator.ID121.086.357-00por
dc.creator.Latteshttp://lattes.cnpq.br/5406657170572711por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesAHMADI, S. J.; SADJADI, S.; HOSSEINPOUR, M. A green protocol for Erlenmeyer Plöchl reaction by using iron oxide nanoparticles under ultra sonic irradiation. Ultrason Sonochem. v. 20, n. 1, p. 408-412, 2013. ALBERTS, B; JOHNSON, A.; LEWIS, J.; RAFF, M; ROBERTS, K; WALTER, P. Cancer: in molecular biology of the cell. 5 ed. London: Garland Science, 2009. AMERIK, A. Y.; HOCHSTRASSER, M. Mechanism and function of deubiquitinating enzymes. Biochimica et Biophysica Acta. v. 1695, p. 189-207, 2004. AVENDANO, C; MENENDEZ J. C. Medicinal chemistry of anticancer drugs. 1 ed. Amsterdam: The Netherlands Linacre House, 2008. BARILE, F. A.; DIERICKX, P. J.; KRISTEN, U. In vitro cytotoxicity testing for prediction of acute human toxicity. Cell Biol Toxicol. v. 10, p. 155-162, 1994. BEN-NERIAH, Y; DALEY, G. Q.; MES-MASSON, A. M.; WITTE, O. N.; BALTIMORE, D. The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science. v. 23, p. 212-214, 1986. BERGANTINI, A. B. F.; CASTRO, F. A.; SOUZA, A. M. Leucemia Mielóide Crônica. Bras Hematol Hemoter. v. 27, n. 2, 2005. BIPLAB, D.; KUMAR, G.; SAMPATH, S. Synthesis of some oxazolinones and imidazolinones and their antimicrobial screening. Acta Pharmaceutica. v. 55, n.3, p. 287-296, 2005. BISHOP, J. M. The discovery of proto-oncogenes. FASEB Journal. v. 10, p. 362-364, 1996. BLANCO-LOMAS, M.; CAMPOS, P. J.; SAMPEDRO, D. Benzylidene-Oxazolones as Molecular Photoswitches. Organic Letters. v. 14, n. 17, p. 4334-4337, 2012. BROWN, G; HUGHES, P. J.; CEREDIG, R; MICHELL, R. H. Versatility and nuances of the architecture of haematopoiesis – Implications for the nature of leukaemia. Leuk Res. v. 36, n. 1, p. 14-22, 2012. CALABRESI, P. CHABNER, B. A. Quimioterapia de doenças neoplásicas in: as bases farmacológicas da terapêutica. 8 ed. Rio de Janeiro: 1995. CAPDEVILLE, R.; BUCHDUNGER, E.; ZIMMERMANN, J.; MATTER, A. Glivec (STI571,imatinib), a rationally developed, targeted anticancer drug. Nature Reviews. v. 1, p. 493-502, 2002. CAREY, F.; SUNDBERG, R. J. Advanced Organic Chemistry. 5 ed. Spring Verlag, 2007. CARTER, H. E. Organic Reactions. 1 ed. New York: Ed. Wiley, v. 3, p. 198-239, 1946. 86 CAVALCANTI, A. S. Leucemia Mielóide Crônica: Orientações básicas aos pacientes e familiares. Rio de Janeiro: Hemorrio, 2009. CHANDRASEKHAR, S.; KARRI, P. Aromaticity in azlactone anions and its significance for the Erlenmeyer synthesis. Tetrahedron Letters. v. 47, p. 5763-5766, 2006. CHANDRASEKHAR, S.; KARRI, P. Erlenmeyer azlactone synthesis with aliphatic aldehydes under solvent-free microwave conditions. Tetrahedron Letters. v. 48, p. 785-786, 2007. CHAVEZ, F.; KENNEDY, N.; RAWALPALLY, R.; WILLIAMSON, T.; CLEARY, T. Substituents effect on the Erlenmeyer-Plöchl reaction: understanding an observed process reaction time. Organic Process Research and Development. v. 14, p. 579-584, 2010. CLEARY, T.; BRICE, J.; KENNEDY, N.; CHAVEZ, F. One-pot process to Z-α-benzoylamino-acrilic acid methyl esters via potassium phosphate-catalyzed Erlenmeyer reaction. Tetrahedron Letters. v. 51, p. 625-628, 2010. CLEARY, T.; RAWALPALLY, T.; KENNEDY, N.; CHAVEZ, F. Catalyzing the Erlenmeyer Plöchl reaction: organic bases versus sodium acetate. Tetrahedron Letters. v. 51, p. 1533-1536, 2010 COFFER, P. J.; KOENDERMAN, L.; DE GROOT, R. P. The Role of Stats in Myeloid Differentiation and Leukemia. Oncogene. v. 19, p. 2511-2522, 2000. COTRAN, R. S.; KUMAR, V.; ROBBINS, S. L. Robbins-Pathologic Basis of Disease. 5 ed. Rio de Janeiro: WB Saunders Company Edição, 1994. DAIRKEE, S. H.; SMITH, H. S. Genetic analysis of breast cancer progression. J Mammary Gland Biol Neoplasia. v. 1, p. 139-151, 1996. DARNELL, J. E. JR.; KERR, I. M.; STARK, G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. v. 264, p.1415-1421, 1994. DEININGER, M.; BUCHDUNGER, E.; DRUKER, B. J. The Development of Imatinib as a Therapeutic Agent for Chronic Myeloid Leukemia. Blood. v. 105, p. 2640-2653, 2005. DENIZOT, F.; LANG, R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. v. 89, p. 271-277, 1986. DE VITA, V. T.; HELLMANS, S.; ROSENBERG, S. A. Cancer, Principles & Practice of Oncology. 5 ed. Philadelphia: Lippincott-Raven Publishers, v.1, 1997. DRUKER, B. J.; TAMURA, S.; BUCHDUNGER, E.; OHNO, S.; SEGAL, G. M.; FANNING, S.; ZIMMERMANN, J.; LYDON, N. B. Effects of a Selective Inhibitor of the Abl Tyrosine Kinase on the Growth of Bcr-Abl Positive Cells. Nature Medicine. v. 2, p. 561-566, 1996. 87 DRUKER, B. J.; GUILHOT, F.; O'BRIEN, S. G.; GATHMANN, I.; KANTARJIAN, H.; GATTERMANN, N.; DEININGER, M. W. N.; SILVER, R. T.; GOLDMAN, J. M.; STONE, R. M.; CERVANTES, F.; HOCHHAUS, A.; POWELL, B. L.; GABRILOVE, J. L.; ROUSSELOT, P.; REIFFERS, J.; CORNELISSEN, J. J.; HUGHES, T.; AGIS, H.; FISCHER, T.; VERHOEF, G.; SHEPHERD, J.; SAGLIO, G.; GRATWOHL, A.; NIELSEN, J. L.; RADICH, J. P.; SIMONSSON, B.; TAYLOR, K.; BACCARANI, M.; SO, C.; LETVAK, L.; LARSON, R. A. Five-Year Follow-up of Patients Receiving Imatinib for Chronic Myeloid Leukemia. New England Journal of Medicine. v. 355, p. 2408-2417, 2006. DRUKER, B. J. Translation of the Philadelphia Chromosome into Therapy for Cml. Blood. v. 112, p. 4808-4817, 2008. ERLENMEYER, F. G. C. E. Ueber die Condensation der Hippursäure mit Phtalsäureanhydrid und mit Benzaldehyd. Ann. v. 275, p. 3, 1893. FADERL, S.; TALPAZ, M.; ESTROV, Z.; O'BRIEN, S.; KURZROCK, R.; KANTARJIAN, H. M. Mechanisms of Disease - the Biology of Chronic Myeloid Leukemia. New England Journal of Medicine. v. 341, p. 164-172, 1999. FAIVRE, S.; DEMETRI, G.; SARGENT, W.; RAYMOND, E. Molecular basis for sunitinib efficacy and future clinical development. Nature Reviews Drug Discovery. v. 6, p. 734-745, 2007. FERNANDES, M. S.; REDDY, M. M.; GONNEVILLE, J. R.; DEROO, S. C.; PODAR, K.; GRIFFIN, J. D.; WEINSTOCK, D. M.; SATTLER, M. Bcr-Abl Promotes the Frequency of Mutagenic Single-Strand Annealing DNA Repair. Blood. v. 114, p. 1813-1819, 2009. FRAZER, R.; IRVINE, A. E.; MCMULLIN, M. F. Chronic Myeloid Leukaemia in the 21st Century. The Ulster Medical Journal. v. 76, p. 8-17, 2007. FUNKE, V. M; SETUBAL, D. C; RUIZ, J.; AZAMBUJA, A. P.; LIMA, D. H.; KOJO, T. K.; PASQUIM, R. O tratamento da leucemia mielóide crônica com mesilato de imatinibe. Revista Brasileira de Hematologia e Hemoterapia. v. 30, p. 27-31, 2008. GHORESCHI, K.; LAURENCE, A.; O’SHEA, J. J. Janus kinases in immune cell signaling. Immunol Rev. v. 228, p. 273-287, 2009. GILMAN, A. The initial clinical trial of nitrogen mustard. Am J Surg. v. 105, p. 574-578, 1963. GOASGUEN, J. E.; BENNETT, J. M.; HENDERSON, E. S. Biologic Diagnosis of Leukemias, in: HENDERSON, E. S.; LISTER, T. A.; GREAVES, M. F. Leukemia. 6 ed. London: Editora WB Saunders, 1996. HABER D. Roads leading to breast cancer. N Engl J Med. v. 343, p. 1566-1568, 2000. HANAHAN, D; WEINBERG, R. A. The hallmarks of cancer. Cell. v. 100, p. 57-70, 2000. HANAHAN, D; WEINBERG, R. A. The hallmarks of cancer: the next generation. Cell. v. 144, p. 646-674, 2011. 88 HARRISON, D. A. The JAK/STAT Pathway. Cold Spring Harb Perspect Biol. v. 4, p. 1-3, 2012. HEHLMANN, R.; HOCHHAUS, A.; BACCARANI, M. Chronic myeloid leukaemia. The Lancet. v. 370, n. 9584, p. 342-350, 2007. HOCHHAUS, A.; O'BRIEN, S. G.; GUILHOT, F.; DRUKER, B. J.; BRANFORD, S.; FORONI, L.; GOLDMAN, J. M.; MULLER, M. C.; RADICH, J. P.; RUDOLTZ, M.; MONE, M.; GATHMANN, I.; HUGHES, T. P.; LARSON, R. A. Six-Year Follow-up of Patients Receiving Imatinib for the First-Line Treatment of Chronic Myeloid Leukemia. Leukemia. v. 23, p. 1054-1061, 2009. HOELLER, D; DIKIC, I. Targeting the ubiquitin system in cancer therapy. Nature. v.458, p. 438-444, 2009. HORITA, M.; ANDREU, E. J.; BENITO, A.; ARBONA, C.; SANZ, C.; BENET, I.; PROSPER, F.; FERNANDEZ-LUNA, J. L. Blockade of the Bcr-Abl Kinase Activity Induces Apoptosis of Chronic Myelogenous Leukemia Cells by Suppressing Signal Transducer and Activator of Transcription 5-Dependent Expression of Bcl-(Xl). Journal of Experimental Medicine. v. 191, p. 977-984, 2000. ISHIKAWA, H.; COLBY, D. A.; SETO, S.; VA, P.; TAM, A.; KAKEI, H.; RAYL, T. J.; HWANG, I.; BOGER, D. L. Total Synthesis of Vinblastine, Vincristine, Related Natural Products, and Key Structural Analogues. J. Am. Chem. Soc. v. 131, p. 4904-4916, 2009. JIANG, J.; JORDAN, S. J.; BARR, D. P.; GUNTHER, M. R.; MAEDA, H.; MASON, R. P. In Vivo Production of Nitric Oxide in Rats after Administration of Hydroxyurea. Mol Pharmacol. v. 52, p. 1081, 1997. JOHNSON, I. S. The vinca alkaloids: a new class of oncolytic agents. Cancer Res. v. 23, p. 1390-1427, 1963. JORDAN, M. A.; WILSON, L. Microtubules as a target for anticancer drugs Nat. Rev. Cancer. v. 4, p. 253-265, 2004. KANTARJIAN, H. M.; O'BRIEN, S.; CORTES, J. E.; SHAN, J. Q.; GILES, F. J.; RIOS, M. B.; FADERL, S. H.; WIERDA, W. G.; FERRAJOLI, A.; VERSTOVSEK, S.; KEATING, M. J.; FREIREIEH, E. J.; TALPAZ, M. Complete Cytogenetic and Molecular Responses to Interferon-Alpha-Based Therapy for Chronic Myelogenous Leukemia Are Associated with Excellent Long-Term Prognosis. Cancer. v. 97, p. 1033-1041, 2003. KANTARJIAN, H. M.; TALPAZ, M.; GILES, F.; O'BRIEN, S.; CORTES, J. New Insights into the Pathophysiology of Chronic Myeloid Leukemia and Imatinib Resistance. Annals of Internal Medicine. v. 145, p. 913-923, 2006. KANTARJIAN, H. M.; GILES, F.; QUINTAS-CARDAMA, A.; CORTES, J. Important Therapeutic Targets in Chronic Myelogenous Leukemia. Clinical Cancer Research. v. 13, p. 1089-1097, 2007. 89 KANTARJIAN, H.; SCHIFFER, C.; JONES, D.; CORTES, J. Monitoring the Response and Course of Chronic Myeloid Leukemia in the Modern Era of Bcr-Abl Tyrosine Kinase Inhibitors: Practical Advice on the Use and Interpretation of Monitoring Methods. Blood. v. 111, p. 1774-1780, 2008. KAPURIA, V.; PETERSON, L. F.; FANG, D.; BORNMANN, W. G.; TALPAZ, M.; DONATO, N. J Deubiquitinase inhibition by small-molecule WP1130 triggers agresome formation and tumor cell apoptosis. Cancer Research. V. 70, n. 22, p. 9256-9276, 2010. KHAN, K. M.; MUGHAL, U. R.; AMBREEN, N.; PERVEEN, S.; CHOUDHARY, M. I. Synthesis and leishmanicidal activity of 2,3,4-substituted-5-imidazolones. J Enzyme Inhib Med Chem. v. 25, N. 1, P. 29-37, 2010. KOMANDER, D.; BARFORD, D. Structure of the A20 OUT domain and mechanistic insights into deubiquitination. Society. v. 85, n. 2, p. 77-85, 2008. KOMANDER, D.; CLAGUE, M. J.; URBÉ, S. Breaking the chains: structure and function of the deubiquitinases. Nature Reviews. v. 10, p. 550-563, 2009. KÜMMERLE, A. E.; BARREIRO, E. J.; FRAGA, C. A. M. The Methylation Effect in Medicinal Chemistry. Chemical Reviews. v. 111, p. 5215–5246, 2011. LEE, C. Y.; CHEN, Y. C.; LIN, H. C.; JHONG, Y.; CHANG, C. W.; TSAI, C. H.; KAO, C. L.; CHIEN, T. C. Facile synthesis of 4-arylidene-5-imidazolinones as synthetic analogs of fluorescent protein chromophore. Tetrahedron. v. 68, p. 5898-5907, 2012. LEE, G. R. Hematologia Clínica. 1 ed. São Paulo: Manole, v. 1, p. 766-769, 1998. LI, J. J. Name Reactions. 3 ed. Berlin: Springer, p. 212-213, 2006. LI, X. R.; LIU, X.; WANG, G. F.; ZHU, X. H.; QU, X. H.; LI, X. M.; YANG, Y.; PENG, L.; LI, C. F.; LI, P.; HUANG, W.; MA, Q. J.; CAO, C. Non-Receptor Tyrosine Kinases C-Abl and Arg Regulate the Activity of C/Ebp Beta. Journal of Molecular Biology. v. 391, p. 729-743, 2009. LINGI, A.; ALFONSO, M.; PIERLUIGI, R.; AFRO, G.; ENZO, Z.; NICOLA, D. T.; WALTER, M. DERIVATIVES OF IMIDAZOLE. Synthesis and pharmacological activities of nitriles, amides, and carboxylic acid derivatives of imidazo[1,2-a]pyridine. J. Med. Chem. v.12, p. 12, 1969. LOZZIO, C. B.; LOZZIO, B. B. Human chronic myelogenous leucemia cell-line with positive Philadelphia chromosome. Blood. v. 45, p. 321-334, 1975. MADHAVI, K.; PRASAD, K.V.S.R.G.; BHARATHI, K. Synthesis and Medicinal Properties of 4-Benzylidene-1-phenyl-2-(substituted styryl)imidazolin-5-ones. Asian Journal of Chemistry. v. 22, n. 7, p. 5588-5594, 2010. MAIA, R. C.; WAGNER, K.; CABRAL, R.H.; RUMJANEK, V. M. Heparin reverses rhodamine 123 extrusion by multidrug resistance cells. Cancer Lett. v. 106, p. 101-108, 1996. 90 MANLEY, P. W.; COWAN-JACOB, S. W.; MESTAN, J. Advances in the structural biology, design and clinical development of Bcr-Abl Kinase inhibitors for the treatment of chronic myeloid leukaemia. Biochim. Biophys Acta. v. 1754, p. 3–13, 2005. MARCH, J. Advanced Organic Chemistry. New York: John Wiley, 1992. MINISTÉRIO DA SAÚDE/INCA. Câncer na criança e no adolescente no Brasil. Disponível em <http://www.inca.gov.br/tumores_infantis/pdf/livro_tumores_infantis_0 904.pdf> Acesso em: 23 de agosto de 2013. MINISTÉRIO DA SAÚDE/INCA. Estimativa 2012: Incidência de Câncer no Brasil. Disponível em <www.inca.gov.br/estimativa/2012/estimativa20122111.pdf> Acesso em: 15 de agosto de 2013. MOSMANN T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. v. 65, p. 55-63, 1983. NICHOLSON, B.; MARBLESTONE, J. G.; BUTT, T. R.; MATTERN, M. R. Deubiquitinating enzymes as novel anticancer targets. Future Oncol. v. 3, n. 2, p. 191–199, 2007. NIJMAN, S. M. B.; LUNA-VARGAS, M. P. A.; VELDS, A. A genomic and functional inventory of deubiquitinating enzymes. Cell. v. 123, n.5, p. 773-786, 2005. NOWELL, P. C.; HUNGERFORD, D. A. Chromosome studies in human leukemia. IV. Myeloproliferative syndrome and other atypical myeloid disorders. J Natl Cancer Inst. v. 29, p. 911-931, 1962. OETZEL, C.; JONULEIT, T.; GOTZ, A.; VAN DER KUIP, H.; MICHELS, H.; DUYSTER, J.; HALLEK, M.; AULITZKY, W. E. The Tyrosine Kinase Inhibitor Cgp 57148 (STI 571) Induces Apoptosis in Bcr-Abl-Positive Cells by Down-Regulating Bcl-X. Clinical Cancer Research. v. 6, p. 1958-1968, 2000. O’HARE, T.; WALTERS, D. K.; STOFFREGEN, E. P.; JIA, T.; MANLEY, P. W.; MESTAN, J.; COWAN-JACOB, S. W.; LEE, F. Y.; HEINRICH, M. C.; DEININGER, M. W. N.; DRUKER, B. J. In vitro activity of BCR-ABL inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant ABL kinase domain mutants. Cancer Res. v. 65, p. 4500–4505, 2005. PAVLOVSKY, C., KANTARJIAN, H. E CORTES, J. E. First-Line Therapy for Chronic Myeloid Leukemia: Past, Present, and Future. American Journal of Hematology. 84. 287-293, 2009. PENG, Z.; PAL, A.; HAN, D.; WANG, S.; MAXWELL ,D.; LEVITZKI ,A.; TALPAZ, M.; DONATO,N. J; BORNMANN, W. Tyrphostin-like compounds with ubiquitin modulatory activity as possible therapeutic agents for multiple myeloma. Bioorganic & Medicinal Chemistry. v. 19, p. 7194-7204, 2011. PERROTTI, D.; JAMIESON, C.; GOLDMAN, J.; SKORSKI, T. Chronic Myeloid Leukemia: Mechanisms of Blastic Transformation. Journal of Clinical Investigation. v. 120, p. 2254-2264, 2010. 91 PICKART, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. v. 70, p. 503–533, 2001. PLÖCHL J. Über einige Derivate der Benzoylimdozimtsäure. Ber. v. 17, p. 1623, 1893. PRATT, W. B.; RUDDON, R. W.; ENSMINGER, W. D.; MAYBAUM, J. The Anticancer Drugs. 2 ed. USA: Oxford University Press, 1994. PRITCHARD, J. R.; LAUFFENBURGER, D. A.; HEMANN, M .T. Understanding resistance to combination chemotherapy. Drug Resist Updat. v. 15, p. 249-257, 2012. PROKOF’EV, E. P.; KARPEISKAYA, E. I. The proton coupled 13C NMR determination of Z-, E-configuration of 4-benzyliden-2-phenyl(methyl)-Δ2-oxazolin-5-onas and products of their solvolysis. Tetrahedron Letters. n. 8, p. 737-740, 1979. QUINTAS-CARDAMA, A.; CORTES, J. E. Chronic Myeloid Leukemia: Diagnosis and Treatment. Mayo Clinic Proceedings. 81. 973-988, 2006. RAO, Y. S. A new stereospecific synthesis of the E isomers of 2-phenyl-4-arylmethylene-2-oxazolin-5-ones. J Org Chem. v. 41, n. 4, p. 722-724, 1976. ROBSON, M. E.; BOYD, J.; BORGEN, P. I.; CODY, H. S. Hereditary breast cancer. Curr Probl Surg, v. 38, n. 3, p. 387-480, 2001. ROHRBACHER, M.; HASFORD, J. Epidemiology of Chronic Myeloid Leukaemia (Cml). Best Practice & Research Clinical Haematology. v. 22, p. 295-302, 2009. ROWLEY, J. D. Chromosomal patterns in myelocytic leukemia. N Engl J Med. v. 289, p. 220-221, 1973. RUMJANEK, V. M.; TRINDADE, G .S.; SOUZA, K. W.; OLIVEIRA, M. C. M.; SANTOS, L. F. M.; MAIA, R. C.; CAPELLA, M. A. M. Multidrug resistance in tumour cells: characterization of the multidrug resistance cell line K562-Lucena 1. An Acad Bras Cienc. v. 73, p. 57-69, 2001. SALUSTIANO, E. J. S. Caracterização do Efeito Antitumoral de Novas Moléculas Sintéticas em Linhagens Tumorais Resistentes a Múltiplas Drogas. Dissertação (Mestre em Química Biológica) – Universidade Federal do Rio de Janeiro- Rio de Janeiro , 2008. SATTLER, M.; MOHI, M. G.; PRIDE, Y. B.; QUINNAN, L. R.; MALOUF, N. A.; PODAR, K.; GESBERT, F.; IWASAKI, H.; LI, S. G.; VAN ETTEN, R. A.; GU, H. H.; GRIFFIN, J. D.; NEEL, B. G. Critical Role for Gab2 in Transformation by Bcr/Abl. Cancer Cell. v. 1, p. 479-492, 2002. SCHINDLER, C.; PLUMLEE, C. Inteferons pen the JAK-STAT pathway. Semin Cell Dev Biol. v. 19, p. 311-318, 2008. SCHINDLER, T.; BORNMANN, W.; PELLICENA, P.; MILLER, W. T.; CLARKSON, B.; KURIYAN, J. Structural Mechanism for Sti-571 Inhibition of Abelson Tyrosine Kinase. Science. v. 289, p. 1938-1942, 2000. 92 SHURIN, M. R.; NAIDITCH, H.; GUTKIN, D. W.; UMANSKY, V; SHURIN, G. V. ChemoImmunoModulation: immune regulation by the antineoplastic chemotherapeutic agents. Curr Med Chem. v. 19, n. 12, p. 1792-1803, 2012. SILVA, V. P. N. Contributo para os estudos dos mecanismos de resistência ao Imatinib em Leucemia Mielóide Crónica. Dissertação (Mestre em Genética Molecular e Biomedicina) - Universidade de Lisboa – Lisboa, 2011. SILVERSTEIN, R. M.; WEBSTER, F. X.; KIEMLE, D. J. Identificação espectrométrica de compostos orgânicos. 7 ed. Tradução: Ricardo Bicca de Alancastro. Rio de Janeiro: LTC, 2007. STEELMAN, L. S.; POHNERT, S. C.; SHELTON, J. G.; FRANKLIN, R. A.; BERTRAND, F. E.; MCCUBREY, J. A. Jak/Stat, Raf/Mek/Erk, Pi3k/Akt and Bcr-Abl in Cell Cycle Progression and Leukemogenesis. Leukemia. v. 18, p. 189-218, 2004. SUN, H.; KAPURIA, V.; PATERSON, L. F.; FANG, D.; BOMMANN, W. G.; BARTHOLOMEUSZ, G.; TALPAZ, M.; DONATO, N. J. BCR-ABL ubiquitination an d Usp9X inhibition block kinase signaling and promote CML cell apoptosis. Blood. v. 117, p. 3151-3162, 2011. SWORDS, R.; MAHALINGAM, D.; PADMANABHAN, S.; CAREW, J.; GILES, F. Nilotinib: optimal therapy for patients with chronic myeloid leukemia and resistance or intolerance to imatinib. Drug Des Devel Ther. v. 3, p. 89-101, 2009. TEAGUE, S. J.; DAVIS, A. M.; LEESON, P. D. The design of leadlike combinatorial libraries. Angew. Chem. Int. Edn Eng. v. 38, p. 3743–3748, 1999. VERSTOVSEK, S; AKIN, C.; MANSHOURI, T.; QUINTÁS-CARDAMA, A.; HUYNH, L.; MANLEY, P.; TEFFERI, A.; CORTES, J.; GILES, F. J.; KANTARJIAN, H. Effects of AMN107, a novel aminopyrimidine tyrosine kinase inhibitor, on human mast cells bearing wild-type or mutated codon 816 c-kit. Leukemia Res. 30, 1365–1370, 2006. WEINBERG, R. A.; BARGMANN, C. I.; HUNG, M. C. The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature. v. 319, p. 226-230, 1986. WEISBERG, E.; MANLEY, P.; MESTAN, J.; COWAN-JACOB, S.; RAY, A.; GRIFFIN, J. D. AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br. J. Cancer. v. 94, p. 1765–1769, 2006. WEISBERG, E.; MANLEY, P. W.; COWAN-JACOB, S. W.; HOCHHAUS, A.; GRIFFIN, J. D. Second Generation Inhibitors of Bcr-Abl for the Treatment of Imatinib-Resistant Chronic Myeloid Leukaemia. Nature Reviews Cancer. 7. 345-U345, 2007. WEISSMAN, A. M. Themes and variations on ubiquitylation, Nat. Rev. Mol. Cell. Biol. v. 2, p. 169-178, 2001. WERMUTH, C. G. The pratice of medicinal chemistry. 3 ed. Amsterdam: Elsevier, 2008. WONG, S; WITTE, O. N. The Bcr-Abl Story: Bench to Bedside and Back. Annual Review of Immunology. v. 22, p. 247-306, 2004. 93 YUNES, N. D. Resistência, agressividade e diferenciação celular: uma tríade dissonante em células de leucemia mielóide crônica. Dissertação (Doutor em Química Biológica) – Universidade Federal do Rio de Janeiro – Rio de Janeiro, 2013. ZIMMERMANN, J.; BUCHDUNGER, E.; METT, H.; MEYER, T.; LYDON. (Phenylamino)pyrimidine (PAP) derivatives: a new class of potent and highly selective PDGF-receptor autophosphorylation inhibitors. Bioorg. Med. Chem. Lett. v. 6, p. 1221–1226, 1996. ZIMMERMANN, J.; BUCHDUNGER, E.; METT, H.; MEYER, T.; LYDON. Potent and selective inhibitors of the ABL-kinase: phenylaminopyrimidine (PAP) derivatives. Bioorg. Med. Chem. Lett. v. 7, p. 187–192, 1997.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/54408/2013%20-%20Luciana%20Luiz%20de%20Azevedo.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/2747
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2019-06-17T14:09:30Z No. of bitstreams: 1 2013 - Luciana Luiz de Azevedo.pdf: 10346341 bytes, checksum: c6e7a87f58b132eb9f491e828c8aab06 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2019-06-17T14:09:31Z (GMT). No. of bitstreams: 1 2013 - Luciana Luiz de Azevedo.pdf: 10346341 bytes, checksum: c6e7a87f58b132eb9f491e828c8aab06 (MD5) Previous issue date: 2013-10-07eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2013 - Luciana Luiz de Azevedo.pdf5.94 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.