Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14219
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArrais, Aline Matos
dc.date.accessioned2023-12-22T02:57:37Z-
dc.date.available2023-12-22T02:57:37Z-
dc.date.issued2016-08-22
dc.identifier.citationARRAIS, Aline Matos. Efeito da inibição da fosfolipase C pelo U73122 sobre o sêmen ovino. 2016. 50 f. Dissertação (Programa de Pós-Graduação em Medicina Veterinária, Patologia e Ciências Clínicas) - Universidade Federal Rural do Rio de Janeiro, Seropédica, 2016.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14219-
dc.description.abstractO objetivo do presente trabalho foi avaliar o efeito do U73122 sobre a congelabilidade do sêmen ovino, uma vez que este reagente pode evitar a capacitação prematura e reação acrossomal induzidas durante o processo de criopreservação. Para isso, ejaculados de quatro carneiros da raça Santa Inês foram obtidos com auxílio de vagina artificial. No ensaio I, espermatozoides de quatro ejaculados, in natura, foram submetidos à incubação de 4h a 37°C, suplementados ou não com as concentrações de 10, 20 ou 30μM do U73122, na presença ou ausência do glicerol. Parâmetros cinéticos foram avaliados ao decorrer da incubação, a fim de verificar o comportamento dos espermatozoides pelo uso do reagente, e selecionar doses a serem utilizadas durante a criopreservação. Dezesseis ejaculados foram utilizados no ensaio II, os quais foram criopreservados com diluentes Botubov® fração única, acrescidos ou não do reagente U73122 nas concentrações de 10 e 20μM. As amostras descongeladas foram avaliadas quanto à cinética espermática, pelo sistema “Computer Assisted Sperm Analysis” (CASA), e quanto à integridade de membranas pela associação de sondas fluorescentes iodeto de propídeo, PSA-FITC e JC-1. Adicionalmente, foram realizadas avaliações da capacitação espermática e reação acrossomal com o uso da sonda fluorescente hidrocloreto de clortetraciclina (CTC) antes e após as amostras de sêmen criopreservadas serem submetidas à indução da capacitação in vitro durante 4h de incubação a 37°C. Todos os resultados foram submetidos à análise de variância e ao teste de diferença mínima significativa (DMS) de Tukey ao nível de 5% de probabilidade. O tratamento dos espermatozoides in natura com diferentes concentrações do U73122, durante incubação de 4h a 37°C, revelou um efeito dose e tempo-dependente sobre a utilização deste reagente em espermatozoides. Além disso, a presença do glicerol potencializou o efeito tóxico do U73122 sobre as células. Nos espermatozoides criopreservados, o U73122 não afetou nenhum dos parâmetros cinéticos avaliados pelo sistema CASA, nem o número dos espermatozoides com as membranas plasmáticas, acrossomais e mitocondriais íntegras (PIAIC) ou lesadas (PLALS). As avaliações realizadas imediatamente após o descongelamento mostraram que a utilização de 10 ou 20μM do inibidor reduziu o percentual de espermatozoides capacitados e com acrossoma reagido em relação ao grupo controle (p<0,05). Após a indução da capacitação in vitro, houve uma redução (p<0,05) do número de espermatozoides não capacitados em todos os tratamentos sugerindo um efeito reversível do U73122 sobre os processos de capacitação espermática e reação acrossomal. Conclui-se que o uso de 10 μM do reagente U73122 não altera a cinética dos espermatozoides in natura, e que, concentrações de 10 ou 20 μM deste reagente podem ser utilizadas em diluentes para criopreservação, uma vez que previnem a capacitação prematura e reação acrossomal induzidas durante este processo, sem alterar a cinética e a integridade das membranas espermáticas.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiropor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectespermatozoidespor
dc.subjectcongelamentopor
dc.subjectcarneiropor
dc.subjectspermeng
dc.subjectfreezingeng
dc.subjectrameng
dc.titleEfeito da inibição da fosfolipase C pelo U73122 sobre o sêmen ovinopor
dc.title.alternativeEffect of U73122 inhibitor on freezing ability of ram semeneng
dc.typeDissertaçãopor
dc.description.abstractOtherThe aim of this study was to evaluate the effect of U73122 on freezing ability of ram semen, since this reagent could prevent premature capacitation and acrosome reaction induced during the cryopreservation process. For this, ejaculates from 4 Santa Ines rams were obtained with the aid of artificial vagina and were used in two experiments. In experiment I, in natura sperm from 4 ejaculated were subjected to incubation at 37°C during 4h, supplemented or not with concentrations of 10, 20 or 30μM of U73122 in the presence or absence of glycerol. Kinetic parameters were evaluated during the incubation, in order to verify the behavior of sperm by the use of the reagent, and selecting doses to be used during cryopreservation. Sixteen ejaculates were used in the experiment II, which were cryopreserved with Botubov® extender only fraction increased or not U73122 reagent in concentrations of 10 and 20μM. Thawed samples were evaluated for sperm kinetics using the "Computer Assisted Sperm Analysis (CASA) system, and for membranes integrity by the association of fluorescent probes propidium iodide, PSA-FITC and JC-1. In addition, capacitation and acrosome reaction were evaluated using fluorescent probe hydrochloride chlortetracycline (CTC) before and after the cryopreserved semen samples undergoing induction in vitro capacitation for 4h of incubation at 37°C. The data were submitted to analysis of variance and least significant difference test (DMS) of Tukey at 5% probability. The treatment of in nature spermatozoa with different concentrations of U73122 for 4h incubation at 37°C, revealed a dose-effect and time dependent on the use of this reagent in spermatozoa. Furthermore, the presence of glycerol potentiated the toxic effect of U73122 on the cells. In cryopreserved sperm, the U73122 did not affect any of the kinetic parameters evaluated by CASA system, nor the number of sperm with the plasma membrane, acrosomal and mitochondrial you merge (PIAIC) or injured (PLALS). The evaluations carried out immediately after thawing showed that the use of 10 or 20μM of inhibitor reduced the percentage of capacitated sperm and acrosome reacted in the control group (p>0.05). After induction of in vitro capacitation, there was a decrease (p<0.05) in the number of uncapacitated sperm in all treatments suggesting a reversible effect of U73122 on sperm capacitation process and acrosome reaction. In conclusion, that the use of 10 uM of U73122 reagent does not alter the kinetics of sperm in natura and, 10 or 20 uM concentrations of this reagent can be used in diluents for cryopreservation, since they prevent premature capacitation and acrosome reaction induced during this process, without altering the kinetics and the integrity of the sperm membrane.eng
dc.contributor.advisor1Mello, Marco Roberto Bourg de
dc.contributor.advisor1ID190.517.028-92por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3560332978218414por
dc.contributor.advisor-co1Dias, Ângelo José Burla
dc.contributor.advisor-co1ID641.157.986-53por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/9765923327693409por
dc.contributor.referee1Brandão, Zandonadi
dc.contributor.referee2Oliveira, Rodrigo Vasconcelos de
dc.creator.ID134.435.077-19por
dc.creator.Latteshttp://lattes.cnpq.br/7787990176602881por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Veterináriapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Medicina Veterinária (Patologia e Ciências Clínicas)por
dc.relation.referencesABDEL-LATIF, A. T. A. A. Biochemical and functional interactions between the inosito l 1,4, 5 - trisphosphate - calcium and cyclic amp signalling systems in smooth muscle. Cellular Signalling, v. 3, p. 371–385, 1991. ALASMARI, W. et al. Copyright 2013 by The American Society for Biochemistry and Molecular Biology, Inc. American Society for biochemistry and Molecular biology, p. 1– 23, 2013. AMANN, R. P.; KATZ, D. F. Reflections on CASA After 25 Years. v. 25, n. 3, p. 317–325, 2004. ARRUDA, R. P. et al. Métodos de avaliação da morfologia e função espermática : momento atual e desafios futuros. Revista Brasileira de Reprodução Animal, p. 145–151, 2011. BABA, D. et al. Mouse Sperm Lacking Cell Surface Hyaluronidase PH-20 Can Pass through the Layer of Cumulus Cells and Fertilize the Egg *. Journal of Biological Chemistry, v. 277, n. 33, p. 30310–30314, 2002. BAILEY, J. L.; BILODEAU, J.-F.; CORMIER, N. Semen Cryopreservation in Domestic Animals : A Damaging and Capacitating Phenomenon Minireview. Journal of Andrology, v. 21, n. 1, p. 7, 2000. BALDI, E. et al. Intracellular events and signaling pathways involved in sperm acquisition of. Frontiers in Bioscience, v. 5, p. 110–123, 2000. BANERJEE, S.; HASAN, G. The InsP 3 receptor : its role in neuronal physiology and neurodegeneration. BioEssays, v. 27, p. 1035–1047, 2005. BANSAL, A. K.; BILASPURI, G. S. Impacts of Oxidative Stress and Antioxidants on Semen Functions. Veterinary Medicine International, p. 7, 2011. BARBAS, J. P.; MASCARENHAS, R. D. Cryopreservation of domestic animal sperm cells. Cell Tissue Bank, v. 10, p. 49–62, 2009. BIN, A. et al. Replacing chicken yolk with yolks from other sources in ram semen diluents and their effects on fertility in vitro. Small Ruminant Research, v. 113, p. 405–410, 2013. BLEASDALE, J. E. et al. Selective Inhibition of Receptor-Coupled Phospholipase Dependent Processes in Human Platelets and Polymorphonuclear Neutrophils C-. Journal of Pharmacology and Experimental Therapeutics, v. 255, p. 756–768, 1990. BLESBOIS, E.; GRASSEAU, I.; SEIGNEURIN, F. Membrane fluidity and the ability of domestic bird spermatozoa to survive cryopreservation. Reproduction, v. 129, p. 371–378, 2005. BREITBART, H. Role and regulation of intracellular calcium in acrosomal exocytosis. Journal of Reproductive Immunology, v. 53, p. 151–159, 2002a. 32 BREITBART, H. Intracellular calcium regulation in sperm capacitation and acrosomal reaction. Molecular and Cellular Endocrinology, v. 187, p. 139–144, 2002b. BREITBART, H.; COHEN, G.; RUBINSTEIN, S. Role of actin cytoskeleton in mammalian sperm capacitation and the acrosome reaction. Reproduction, v. 129, p. 263–268, 2005. BREITBART, H.; ETKOVITZ, N. Role and regulation of EGFR in actin remodeling in sperm capacitation and the acrosome reaction. Asian Journal of Andrology, v. 13, p. 106–110, 2011. BREITBART, H.; FINKELSTEIN, M. Regulation of sperm capacitation and the acrosome reaction by PIP 2 and actin modulation. Asian Journal of Andrology, p. 597–600, 2015. BREITBART, H.; RUBINSTEIN, S.; LAX, Y. Regulatory mechanisms in acrosomal exocytosis. Reviewes of Reproduction, v. 2, p. 165–174, 1997. BRENER, E. et al. Remodeling of the Actin Cytoskeleton During Mammalian Sperm Capacitation and Acrosome Reaction 1. Biology of Reproduction, v. 845, p. 837–845, 2003. BRENKER, C. et al. The CatSper channel : a polymodal chemosensor in human sperm. European Molecular Biology Organization, v. 31, n. 7, p. 1654–1665, 2012. CBRA (ED.). Manual para exame andrológico e avaliação de sêmen de animal. 3. ed. Belo Horizonte: [s.n.]. CELEGHINI, E. C. C. et al. Simultaneous assessment of plasmatic, acrosomal, and mitochondrial membranes in ram sperm by fluorescent probes [. Arquivo Brasileiro de Medicina veterinária e Zootecnia, v. 62, p. 536–543, 2010. CELEGHINI, E. C. C. Efeitos da criopreservação do sêmen bovino sobre as membranas plasmática, acrossomal e mitocondrial e estrutura da cromatina dos espermatozóides utilizando sondas fluorescentes. [s.l.] Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, 2005. CORDELLI, E. et al. Flow cytometry applications in the evaluation of sperm quality: semen analysis, sperm function and DNA integrity. Contraception, v. 72, p. 273–279, 2005. CORREIA, J.; MICHELANGELI, F.; PUBLICOVER, S. Regulation and roles of Ca 2 C stores in human sperm. Reproduction, v. 150, p. 65–76, 2015. CUMMINS, JAMES M. et al. A Test of the Human lonophore Acrosome Reaction Followig Ionophore Challenge. Jounal of andrology, v. 12, 1991. CUNHA, A. T. M.; CARVALHO, J. O.; DODE, M. A. N. Techniques for sperm evaluation using fluorescent probes. Semina: Ciências Agrárias, v. 36, p. 4365–4376, 2015. CURRY, M. R. Cryopreservation of semen from domestic livestock. Journals Reproduction and fertility, v. 5, p. 46–52, 2000. 33 DARIN-BENNETT, A.; WHITTE, I. . Influence of the Cholesterol Content of Mammalian Spermatozoa on Susceptibility to Cold-Shock. Cryobiology, v. 14, p. 466–470, 1977. ETKOVITZ, N. et al. Role of PI3-Kinase and PI4-Kinase in Actin Polymerization During Bovine Sperm. Biology of Reproduction, v. 77, p. 263–273, 2007. FANG, Y. et al. Effects of astaxanthin supplementation on the sperm quality and antioxidant capacity of ram semen during liquid storage. Small Ruminant Research, v. 130, p. 178–182, 2015. FERNANDES, L. C. Calcium Mobilisation in Human Sperm and its Effects on Mobility. [s.l.] Universidade de Coimbra, 2012. FILHO, D. W. Oxigênio, radicais livres de oxigênio e saúde. Biotemas, v. 7, p. 7–18, 1994. FINKELSTEIN, M. et al. Regulation of sperm motility by PIP 2 ( 4 , 5 ) and actin polymerization. Developmental Biology, v. 381, p. 62–72, 2013. FORERO- GONZALEZ, R. . et al. Effects of bovine sperm cryopreservation using different freezing techniques and cryoprotective agents on plasma , acrosomal and mitochondrial membranes. First International Journal of Andrology, v. 44, p. 154–159, 2012. FRASER, L. R. The “‘ Switching on ’” of Mammalian Spermatozoa : Molecular Events Involved in Promotion and Regulation of Capacitation. Molecular Reproduction and development, v. 77, p. 197–208, 2010. FRASER, L. R.; ABEYDEERA, L. R.; NIWA, K. Mechanisms That Modulate Bull Sperm Capacitation and Acrosomal Exocytosis as Determined by Chlortetracycline Analysis. Molecular Reproduction and development, v. 40, p. 233–241, 1995. GARCÍA, B. M. et al. Toxicity of glycerol for the stallion spermatozoa : Effects on membrane integrity and cytoskeleton , lipid peroxidation and mitochondrial membrane potential. Theriogenology, v. 77, p. 1280–1289, 2012. GILLAN, L.; EVANS, G.; MAXWELL, W. M. C. Capacitation status and fertility of fresh and frozen–thawed ram spermatozoa. Reproduction, Fertility and Development, v. 9, p. 481– 487, 1997. GIRAUD, M. N. et al. Membrane fluidity predicts the outcome of cryopreservation of human spermatozoa. Human Reproduction, v. 15, n. 10, p. 2160–2164, 2000. GOLDBERG, E. M. et al. Effects of Diacylglycerols and Ca2 + on Structure of Phosphatidylcholine / Phosphatidylserine Bilayers. Biophysical Journal, v. 66, p. 382–393, 1994. GÓMEZ-FERNÁNDEZ, J. C.; CORBALÁN- GARCÍA, S. Diacylglycerols , multivalent membrane modulators. Chemistri and Physics of Lipids, v. 148, p. 1–25, 2007. GRAHAM, J. K. Assessment of sperm quality : a flow cytometric approach. Animal Reproduction Science, v. 68, p. 239–247, 2001. GRAHAM, J. K.; MOCE, E. Fertility evaluation of frozen / thawed semen. Theriogenology, v. 64, p. 492–504, 2005. GRASA, P.; CEBRIÁN-PÉREZ, J. A.; MUINÕ-BLANCO, T. Signal transduction mechanisms involved in in vitro ram sperm capacitation ´. Reproduction, v. 132, p. 721–732, 2006. HEYTENS, E. et al. Reduced amounts and abnormal forms of phospholipase C zeta (PLC z) in spermatozoa from infertile men. Andrology, v. 24, n. 10, p. 2417–2428, 2009. HILDEBRAND, M. S. et al. Genetic male infertility and mutation of CATSPER ion channels. European Journal of Human Genetics, v. 18, n. July, p. 1178–1184, 2010. HO, H.; SUAREZ, S. S. An Inositol 1 , 4 , 5-Trisphosphate Receptor-Gated Intracellular Ca 2 ؉ Store Is Involved in Regulating Sperm Hyperactivated Motility 1. Biology of Reproduction, v. 65, p. 1606–1615, 2001. HORVATH, G.; SEIDEL, G. E. Vitrification of bovine oocytes after treatment with cholesterol-loaded methyl- b -cyclodextrin. Theriogenology, v. 66, p. 1026–1033, 2006. IBGE. Produção da Pecuária Mundial. Rio de Janeiro: [s.n.]. v. 32 IBGE. Produção da Pecuária Mundial. Rio de Janeiro: [s.n.]. v. 42 ICKOWICZ, D.; FINKELSTEIN, M.; BREITBART, H. Mechanism of sperm capacitation and the acrosome reaction : role of protein kinases. Asian Journal of Andrology, v. 14, p. 816– 821, 2012. ISACHENKO, E. et al. Article Vitrification of mammalian spermatozoa in the absence of cryoprotectants : from past practical difficulties to present success. Reproductive Biomedicine, v. 6, n. 2, p. 191–200, 2003. KIRK, E. S. Flow cytometric evaluation of stallion sperm. [s.l.] Colorado State University, 2001. KUMAR, D.; MOHAMMED, S.; NAQVI, K. Effect of time and depth of insemination on fertility of Bharat Merino sheep inseminated trans-cervical with frozen-thawed semen. Jounal of Animal Science and technology, v. 56, p. 1–6, 2014. KURODA, Y. et al. Are ther& inositol 1,4, s-triphosphate in human sperm ? Life Sciences, v. 65, n. 2, p. 135–143, 1999. LINDEMANN, C. B.; KANOUS, K. S. Regulation of mammalian sperm motility. Andrology, v. 22, p. 1–22, 1989. LOUX, S. C. et al. CatSper and the Relationship of Hyperactivated Motility to Intracellular Calcium and pH Kinetics in Equine Sperm 1. Biology of Reproduction, v. 89, n. 5, p. 1–15, 2013. LUNA, C. et al. Theriogenology Ram seminal plasma proteins contribute to sperm capacitation and modulate sperm – zona pellucida interaction. Theriogenology, v. 83, p. 670–678, 2015. 34 35 MACMILLAN, D.; MCCARRON, J. The phospholipase C inhibitor U-73122 inhibits Ca 2 + release from the intracellular sarcoplasmic reticulum Ca 2 + store by inhibiting Ca 2 + pumps in Abbreviations : British journal of pharmacology, v. 160, p. 1295–1301, 2010. MARQUEZ, B.; IGNOTZ, G.; SUAREZ, S. S. Contributions of extracellular and intracellular Ca 2 + to regulation of sperm motility : Release of intracellular stores can hyperactivate CatSper1 and CatSper2 null sperm. Developmental Biology, v. 303, p. 214–221, 2007. MARQUEZ, B.; SUAREZ, S. S. Bovine Sperm Hyperactivation Is Promoted by Alkaline- Stimulated Ca 2 + Influx 1. Biology of Reproduction, v. 76, p. 660–665, 2007. MARTECIKOVA, S. et al. Effect of acrosome reaction progress in frozen-thawed boar spermatozoa on the efficiency of in vitro oocyte fertilization. Veterinari Medicine, v. 55, n. 9, p. 429–437, 2010. MEDEIROS, C. M. O. et al. Current status of sperm cryopreservation: why isn’t it better? Theriogenology, v. 57, p. 327–344, 2002. MIKOSHIBA, K. IP 3 receptor / Ca 2 + channel : from discovery to new signaling concepts. Journal of Neurochemistry, v. 102, p. 1426–1446, 2007. MOCÉ, E.; PURDY, P. H.; GRAHAM, J. K. Treating ram sperm with cholesterol-loaded cyclodextrins improves. Animal Reproduction Science, v. 118, n. 100, p. 236–247, 2010. MOEL, M. P. D. E. et al. Effect of the aminosteroid , U73122 , on Ca2 + uptake and release properties of rat liver microsomes. European Journal of Biochemistry, v. 631, p. 626–631, 1995. MOORE, K. .; PERSAUD, T. V. . Embriologia Básica. 6° edição ed.Rio de Janeiro: Elsevier Inc, 2004. MORTIMER, S. T.; MAXWELL, W. M. C. Kinematic definition of sperm hiperactivation. Reproduction Fetility and Development, v. 11, p. 25–30, 1999. MOTAMEDI- MOJDEHI, R.; ROOSTAEI-ALI MEHR, M.; RAJABI- TOUSTANI, R. Effect of Different Levels of Glycerol and Cholesterol-Loaded Cyclodextrin on Cryosurvival of Ram Spermatozoa. Reproduction in Domestic Animals, v. 49, p. 65–70, 2014. MUKHERJEE, K. P. et al. Cryoprotective effect of EDTA , lactose , ascorbic acid and L- cysteine as additives on garole ram ( Ovis aries ) semen. International Journal of Advanced Reserch in Biological Sciences, v. 3, n. 7, p. 92–98, 2016. NAKANO, T.; KYOZUKA, K. Soluble sperm extract specifically recapitulates the initial phase of the Ca 2 + response in the fertilized oocyte of P . occelata following a G-protein / PLC ␤ signaling pathway. Zygote, p. 1–15, 2014. OKADA, A. et al. Cryopreservation-induced acrosomal vesiculation in live spermatozoa from cynomolgus monkeys ( Macaca fascicularis ). Human Reproduction, v. 16, n. 10, p. 2139– 2147, 2001. 36 OLMO, E. DEL et al. Theriogenology Estrous sheep serum enables in vitro capacitation of ram spermatozoa while preventing caspase activation. Theriogenology, v. 85, p. 351–360, 2016. PARODI, J. Motility, viability, and calcium in the sperm cells. Systems Biology in Reproductive Medicine, v. 60, n. 2, p. 65–71, 2014. PARRINGTON, J. et al. Phospholipase C isoforms in mammalian spermatozoa : Potential components of the sperm factor that causes Ca2 + release in eggs Phospholipase C isoforms in mammalian spermatozoa : Reproduction, v. 123, p. 31–39, 2002. PARTYKA, A.; NI, W. Methods of Assessment of Cryopreserved Semen. Current Frontiers in Cryobiology, p. 575, 2012. PATRAT, C.; SERRES, C.; JOUANNET, P. The acrosome reaction in human spermatozoa. Biology of the cell, v. 92, p. 255–266, 2000. PELUFO, V. et al. Theriogenology Effects of glycerol and sugar mixing temperature on the morphologic and functional integrity of cryopreserved ram sperm. Theriogenology, v. 83, p. 144–151, 2015. PÉREZ, L. . et al. Evidence that frozen/thawed ram spermatozoa show accelerated capacitation in vitro as assessed by chlotetracycline assay. Theriogenology, v. 46, p. 131–140, 1996. PIERAZOLI, G. F.; CAMPOS, L. P. DE P. M. O USO DE ADITIVOS NA MANIPULAÇÃO DE SÊMEN NOS ANIMAIS DOMÉSTICOS ( REVISÃO DE LITERATURA ). [s.l.] Pontifícia Universidade Católica de Minas Gerais, 2013. POLGE, C.; SMITH, A. U.; PARKES, A. S. Revival of Spermatozoa after vitrification and dehydration at low temperatures. Nature, v. 164, p. 1, 1949. PURDY, P. H. et al. The fertility of ram sperm held for 24 h at 5 ° C prior to cryopreservation. Animal Reproduction Science, v. 4320, n. 09, p. 9–10, 2016. QI, H. et al. All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. PNAS, v. 104, n. 4, p. 1219–1223, 2007. RAHMAN, S.; KWON, W.; PANG, M. Calcium Influx and Male Fertility in the Context of the Sperm Proteome : An Update. Biomed Research international, p. 13, 2014. RAMÓN, M. et al. Sperm Cell Population Dynamics in Ram Semen during the Cryopreservation Process. Plos One, v. 8, n. 3, p. 1–8, 2013. RAMU, S.; JEYENDRAN, R. S. The Hypo-osmotic Swelling Test for Evaluation of Sperm Membrane Integrity. Methods in molecular Biology, v. 927, p. 21–25, 2013. RASUL, Z.; AHMED, N.; ANZAR, M. Antagonist effect of DMSO on the cryoprotection ability of glycerol during cryopreservation of buffalo sperm. Theriogenology, v. 68, p. 813– 819, 2007. 37 REN, D. et al. A sperm ion channel required for sperm motility and male fertility. Nature, v. 413, p. 603–609, 2001. RICE, A. et al. Mammalian Sperm Contain a Ca 2 ؉ -Sensitive Phospholipase C Activity That Can Generate InsP 3 from PIP 2 Associated with Intracellular Organelles. Developmental Biology, v. 228, p. 125–135, 2000. ROBAYO, I.; MONTENEGRO, V.; VALDE, C. CASA Assessment of Kinematic Parameters of Ram Spermatozoa and their Relationship to Migration Efficiency in Ruminant Cervical Mucus. Reproduction in Domestic Animals, v. 399, p. 393–399, 2008. RODRÍGUEZ-MARTÍNEZ, H. Laboratory Semen Assessment and Prediction of Fertility : still Utopia ?* Outcomes from Routine Laboratory Sperm. Reproduction in Domestic Animals, v. 318, p. 312–318, 2003. ROLDAN, E. R. .; SHI, Q. . Sperm phospholipases and acrosomal exocytosis. Frontiers in Bioscience, v. 12, n. 6, p. 89–104, 2007. ROLDAN, E. R. S. ROLE OF PHOSPHOLIPASES DURING SPERM ACROSOMAL EXOCYTOSIS. Frontiers in Bioscience, v. 3, p. 1109–1119, 1998. ROTEM, R. et al. Protein kinase C is present in human sperm : Possible role in flagellar motility. cell biology, v. 87, p. 7305–7308, 1990. SALAMON, S.; MAXWELL, W. M. C. Storage of ram semen. Animal Reproduction Science, v. 62, n. 1-3, p. 77–111, 2000. SALICIONI, A. et al. Signalling pathways involved in sperm capacitation . PubMed Commons. Journals Reproduction and fertility, v. 65, p. 245–59, 2016. SANGEETA, S. et al. Role of amino acids as additives on sperm motility , plasma membrane integrity and lipid peroxidation levels at pre-freeze and post-thawed ram semen. Animal Reproduction Science, v. 161, p. 82–88, 2015. SARLÓS, P. et al. COMPARATIVE EVALUATION OF THE EFFECT OF ANTIOXIDANTS IN THE CONSERVATION OF RAM SEMEN. Acta Veterinaria Hungarica, v. 50, n. 2, p. 235–245, 2002. SILVA, P. F. N.; GADELLA, B. M. Detection of damage in mammalian sperm cells. Theriogenology, v. 65, p. 958–978, 2006. SINGH, A. P.; RAJENDER, S. CatSper channel , sperm function and male fertility. Reproductive Biomedicine, 2014. SINGH, V. K. et al. Assessment of Intracellular Ca 2 + , cAMP and 1 , 2-Diacylglycerol in Cryopreserved Buffalo ( Bubalus bubalis ) Spermatozoa on Supplementation of Taurine and Trehalose in the Extender. Reproduction in Domestic Animals, p. 1–7, 2011. 38 SMITH, R. J et al. Receptor-Coupled Signal Transduction in Human Polymorphonuclear Neutrophils : Effects of a Novel Inhibitor of Phospholipase Processes on Cell Responsiveness are. Journal of Pharmacology and Experimental Therapeutics, v. 253, p. 688–697, 1990. SPUNGIN, B.; MARGALIT, I.; BREITBART, H. Sperm exocytosis reconstructed in a cell- free system : evidence for the involvement of phospholipase C and actin filaments in membrane fusion. Journal of Cell Science, v. 108, p. 2525–2535, 1995. SUAREZ, S. S.; HO, H. Hyperactivated Motility in Sperm Introduction : Functions of Hyperactivation Initiation of Hyperactivation In Vivo. Reproduction in Domestic Animals, v. 124, p. 119–124, 2003. TANPHAICHITR, N. et al. Remodeling of the plasma membrane in preparation for sperm – egg recognition : roles of acrosomal proteins. Asian Journal of Andrology, v. 17, p. 574–582, 2015. TOMES, CLAUDIA N; MCMASTER, C. R.; SALING, PATRICIA M. Activation of Mouse Sperm Phosphatidylinositol-4 , 5 Bisphosphate-Phospholipase C by Zona Pellucida Is Modulated by Tyrosine Phosphorylation. Molecular Reproduction and development, v. 43, p. 196–204, 1996. TSAKMAKIDIS, I. A. Ram semen evaluation : Development and efficiency of modern. Small Ruminant Research, v. 92, n. 1-3, p. 126–130, 2010. TURNER, R. M. Moving to the beat : a review of mammalian sperm motility regulation. Reproduction Fetility and Development, v. 18, p. 25–38, 2006. VAZQUEZ-LEVIN, M. et al. AN OVERVIEW OF THE PROACROSIN / ACROSIN SYSTEM IN HUMAN SPERMATOZOA. Endocrinologia molecular, v. 56, p. 59–74, 2005. VERSTEGEM, J.; IGUER-OUADA, M.; ONCLIN, K. Computer Assisted Semen Analyzers in Andrology Reserach and Veterinary Practice. Theriogenology, v. 57, p. 149–179, 2002. WALENSKY, L. D; SNYDER, S. H. Inositol 1,4,5-Trisphosphate Receptors Selectively Localized to the Acrosomes of Mammalian Sperm. Journal of Cell Biology, v. 130, n. 4, p. 857–869, 1995. WASSARMAN, P. M.; GUSTAVE, O.; PLACE, L. L. Mammalian Fertilization : Molecular Aspects of Gamete Adhesion , Exocytosis , and Fusion. Cell, v. 96, p. 175–183, 1999. WATSON, P. F. The causes of reduced fertility with cryopreserved semen. Animal Reproduction Science, p. 481–492, 2000. WHITE, D.; LAMIRANDE, E. DE; GAGNON, C. Protein kinase C is an important signaling mediator associated with motility of intact sea urchin spermatozoa. Journal of Experimental Biology, v. 210, p. 4053–4064, 2007. WITTE, T. S.; SCHAFER- SOMI, S. Involvement of cholesterol , calcium and progesterone in the induction of capacitation and acrosome reaction of mammalian spermatozoa. Animal Reproduction Science, v. 102, p. 181–193, 2007. 39 WOLKERS, W. F.; WALKER, J. M. Cryopreservation and Freeze-Drying Protocols. Hannover: [s.n.]. WU, H. et al. Sperm Factor Induces Intracellular Free Calcium Oscillations by Stimulating the Phosphoinositide Pathway 1. Biology of Reproduction, v. 64, p. 1338–1349, 2001. YANAGIMACHI, R. Mammalian Sperm Acrosome Reaction : Where Does It Begin Before Fertilization ? Biology of Reproduction, v. 85, p. 4–5, 2011. YÁNIZ, J. LUIS et al. Effect of diluent composition on the dynamics of sperm DNA fragmentation and other sperm quality parameters in ram during incubation at 37 ◦ C. Small Ruminant Research, v. 129, p. 92–96, 2015. ZHANG, D. et al. Strontium promotes calcium oscillations in mouse meiotic oocytes and early embryos through InsP3 receptors , and requires activation of phospholipase and the synergistic action of InsP3. Human Reproduction, v. 20, n. 11, p. 3053–3061, 2005.por
dc.subject.cnpqMedicina Veterináriapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/54934/2016%20-%20Aline%20Matos%20Arrais.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/2920
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2019-09-25T17:50:30Z No. of bitstreams: 1 2016 - Aline Matos Arrais.pdf: 1298839 bytes, checksum: 34142cbe4d5bf5d300fb857a95dfdd34 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2019-09-25T17:50:30Z (GMT). No. of bitstreams: 1 2016 - Aline Matos Arrais.pdf: 1298839 bytes, checksum: 34142cbe4d5bf5d300fb857a95dfdd34 (MD5) Previous issue date: 2016-08-22eng
Appears in Collections:Mestrado em Medicina Veterinária (Patologia e Ciências Clínicas)

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2016 - Aline Matos Arrais.pdfAline Matos Arrais.1.27 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.