Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/13697
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSouza, Vinicius Miranda de
dc.date.accessioned2023-12-22T02:49:37Z-
dc.date.available2023-12-22T02:49:37Z-
dc.date.issued2010-02-25
dc.identifier.citationSOUZA, Vinicius Miranda de. Parâmetros cinéticos da absorção de amônio e expressão gênica dos transportadores OsAMT1 em variedades de arroz (Oryza sativa L.). 2010. 38 f. Dissertação (Programa de Pós-Graduação em Fitotecnia) - Universidade Federal Rural do Rio de Janeiro, Seropédica, 2010.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/13697-
dc.description.abstractVariedades de arroz (Oryza sativa) melhoradas e locais do Maranhão foram agrupadas geneticamente utilizando a técnica de RAPD. Dentre as variedades, quatro variedades contrastantes quando ao agrupamento pela técnica de RAPD foram selecionadas para estudos de cinética de absorção e expressão dos transportadores de amônio OsAMT1;1, OsAMT1;2 e OsAMT1;3, sob o sistema de alta afinidade (HATS). As variedades foram cultivadas em câmaras de crescimento, em sistema hidropônico. Para o experimento de cinética de absorção de amônio foram separados dois grupos de plantas ao 28 dias após germinação, e após 24 horas de deficiência de N, as plantas de arroz foram transferidas para potes com duas concentrações de amônio, 0,2 mM e 1,5 mM onde foram coletadas amostras de solução para a realização da cinética de depleção de amônio e após 24 horas para a concentração de 0,2 mM e 48 horas para a concentração de 1,5 mM, as plantas foram coletadas e amostras de raiz, bainha e folha foram avaliadas quanto ao peso fresco, teores de N-amino, açúcares solúveis e N-amônio. Em um segundo experimento, as mesma variedades foram transferidas para potes com solução nutritiva com concentração de 0,2 mM de amônio, e amostras de raiz foram coletadas as duas e quatro horas após inicio do experimento para avaliação por real-time RT-PCR da expressão dos transportadores de amônio OsAMT1;1, OsAMT1;2 e OsAMT1;3, e das enzimas de assimilação GS1.2 e NADH-GOGAT1. Os resultados indicam que as variedades locais apresentam uma maior expressão dos transportadores, o que está associado com maiores taxas de absorção (Vmáx) e afinidade pelo amônio em solução nutritiva (KM). Além disso, as variedades locais apresentaram menores valores de Cmín indicando que as variedades locais são adaptadas a solos com baixas concentrações de N. Destaque para a variedade Manteiga, que apresentou os maiores níveis de expressão entre os parâmetros analisados e teve o menor Cmín dentre as variedades analisadas.por
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectTransportadores de amôniopor
dc.subjectenzimas de assimilação de amôniopor
dc.subjectarrozpor
dc.subjectammonium transporterseng
dc.subjectammonium assimilationeng
dc.subjectriceeng
dc.titleParâmetros cinéticos da absorção de amônio e expressão gênica dos transportadores OsAMT1 em variedades de arroz (Oryza sativa L.)por
dc.title.alternativeKinetic parameters of ammonium uptake and genetic expression of OsAMT1 transporters in varieties of rice (Oryza sativa L.)eng
dc.typeDissertaçãopor
dc.description.abstractOtherVarieties of rice (Oryza sativa), improved and landrace of Maranhão, were genetically grouped using the RAPD technique. Among the varieties, four contrasting varieties for the grouping by RAPD were selected for studies of ammonium uptake kinetics and expression of ammonium transporters (OsAMT1;1, OsAMT1;2 and OsAMT1;3) under the high-affinity system (HATS). The varieties were grown in a growth chamber in hydroponic system. For the experiment of ammonium uptake kinetics, were separated two groups of plants at 28 days before seeding, and after 24 hours of N strarvation, rice plants were transferred to pots with two concentrations of ammonium, 0.2 mM and 1.5 mM, where we collected samples of solution for the measuring the kinetics of depletion of ammonium, and after 24 hours for the concentration 0.2 mM and 48 hours for the concentration 1.5 mM, the plants were collected and samples of root, sheath and leaves were assessed for fresh weight, amino-N, soluble sugars and N-ammonium. In a second experiment, the same varieties were transferred to pots with nutrient solution with a concentration of 0.2 mM ammonium and root samples were collected two and four hours after the beginning of the experiment for evaluation by real-time RT-PCR for expression of the ammonium transporters (OsAMT1;1, OsAMT1;2 and OsAMT1;3), and the enzymes to assimilate (GS1.2 and NADH-GOGAT1). The results indicate that local varieties have a higher expression of the transporters, which this is associated higher rates of uptake (Vmax) and affinity for ammonium in nutrient solution (KM). Moreover, local varieties had lower values of Cmin indicating that local varieties are adapted to soils with low concentrations of N. Focus on the variety Manteiga, which showed the highest levels of expression between the parameters analyzed and had the lowest Cmin among the varieties analyzed.eng
dc.contributor.advisor1Fernandes, Manlio Silvestre
dc.contributor.advisor1ID002.180.573-34por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6269004387821466por
dc.contributor.advisor-co1Souza, Sonia Regina de
dc.contributor.referee1Mauad, Munir
dc.contributor.referee2Salles, Cristiane Martins Cardoso de
dc.creator.ID091.318.707-08por
dc.creator.Latteshttp://lattes.cnpq.br/2566951939485398por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Fitotecniapor
dc.relation.referencesANDREWS, M.; LEA, P. J.; RAVEN, J. A.; LINDSEY, K. Can genetic manipulation of plant nitrogen assimilation enzymes result in increased crop yield and greater N-use efficiency? An assessment. Analytical Applied Biology, v.154, p.25-40, 2004. ANDREWS, M.; RAVEN, J. A.; SPRENT, J. I. Environmental effects of dry matter partitioning between shoot and root of crop plants: relations with growth and shoot protein concentration. Annals of Applied Biology, v.138, p.57-68, 2001. ARAÚJO, E. S.; SOUZA, S. R.; FERNANDES, M. S.. Características morfológicas e moleculares e acúmulo de proteína em grãos de variedades de arroz do Maranhão. Pesquisa Agropecuária Brasileira, v. 38, n. 11, p. 1281-1288, 2003. BAPTISTA J. A., FERNADES M. S., SOUZA S. R. Cinética de absorção de amônio e crescimento radicular das cultivares de arroz agulha e bico ganga. Pesquisa Agropecuária Brasileira, v.35, n.7, p.1325-1330, 2000. BAPTISTA J.A. Cinetica de absorção de amônio efluxo de prótons e partição de N em arroz. Tese Mestrado. UFRRJ, 1995. BAPTISTA J.A. Estudo da caracterização genética usando marcadores moleculares RAPD e eficiência de aquisição de N em genótipos de arroz (Oryza sativa L.). Tese (Doutorado em Agronomia (Ciências do Solo) - Universidade Federal Rural do Rio de Janeiro, 2002. BHUYAN, N; BORAH, B. K ; SARMA, R. N.Genetic diversity analysis in traditional lowland rice (Oryza sativa L.) of Assam using RAPD and ISSR markers. Current Science, v. 93, n. 7, p. 967-972, 2007. BONOW, S., VON PINHO E. V.R., VIEIRA M. G. C., VOSMAN B. Microsatellite Markers in and around Rice Genes: Applications in Variety Identification and DUS Testing. Crop Science, v.49, p.880-886, 2009. CAGAMPANG, G. B., CRUZ, L. T., ESPIRITU, S. G, JULIANO, B. O. Studies on the extraction and composition of Rice proteins. Cereal Chemistry., v.45 p.225-235, 1966. CASTLE, L. A.; WU, G.; MCELROY, D. Agricultural input traits: past, present and future. Current Opinion on Biotechnology, v.17, p.105–112, 2006. CHICHKOVA, S.; ARELLANO, J.; VANCE, C. P.; HERNANDEZ, G. Transgenic tobacco plants that overexpress alfalfa NADH-glutamate synthase have higher carbon and nitrogen content. Journal of Experimental Botany, v.52, p.2079-2087, 2001. 33 CLAASSEN, N.; BARBER, S.A. A method for characterizing the relation between nutrient and concentration and flux into roots of intact plant. Plant Physiology, v.54, p.564-568, 1974. DUAN Y. H., ZHANG Y. L., YE L. T., FAN X. R., XU G. H., SHEN Q. R. Responses of Rice Cultivars with Different Nitrogen Use Efficiency to Partial Nitrate Nutrition. Annals of Botany, v.99, p.1153–1160, 2007. DUBOIS, F.; TERCÉ-LAFORGUE, T.; GONZALEZ-MORO, M-B.; ESTAVILLO, J-M.; SANGWAN, R.; GALLAIS, A.; HIREL, B. Glutamate dehydrogenase in plants: is there a new story for an old enzyme? Plant Physiology and Biochemistry, p.41, 565–576, 2003. FAO. International year of rice 2004: Rice and nutrition. Disponível em: http://www.fao.org/rice2004/es/rice2.htm>. FARNDEN, K. J. S.; ROBERTSON, J. G. Methods for studying enzyme involved in metabolism related to nitrogen. In: BERGSEN, F. J. Ed. Methods for Evaluating Biological Nitrogen Fixation, 1980. FELKER, P. Micro determination of nitrogen in seed protein extracts. Analytical Chemistry, v.49, 1980, 1977. FERNANDES, M. S. N carriers, light and temperature influences on the free amino acid pool composition of rice plants. Turrialba, v.33, n.3, p.297-301, 1984. FERRARIO-MERY, S.; VALADIER, M.-H.; GODEFROY, N.; MIALLIER, D.; HIREL, B.; FOYER C. H.; SUZUKI, A. Diurnal changes in ammonia assimilation in transformed tobacco plants expressing ferredoxin-dependent glutamate synthase mRNA in the antisense orientation. Plant Science, v.163, n.1, p.59-67, 2002. FERRAZ JUNIOR, A.S.L; SOUZA S.R; STARK, E.M.L.M.; FERNANDES M.S. Crude protein in rice grown in different enviromental conditions. Physiology and Molecular Biology of Plants, v.7, n.2, p.149-157, 2001. FERREIRA, M. E & GRATTAPAGLIA, D. Introdução ao uso de marcadores moleculares em análise genética. 3ª ed. EMBRAPA – CENARGEN, 1998. FUENTES, S. I.; ALLEN, D. J.; ORTIZ-LOPEZ, A.; HERNÁNDEZ, G. Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. Journal of Experimental Botany, v.52, n.358, p.1071-1081, 2001. GAZZARRINI, S., LEJAY, L., GOJON, A., NINNEMANN, O., FROMMER, W.B. AND Von WIRE´ N. Three functional transporters for constitutive, diurnally regulated, and 34 starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell, v.11, p.937-947, 1999. GAO, J.; LIU, J.; LI, B.; LI, Z. Isolation and purification of functional total RNA from blue-grained wheat endosperm tissues containing high levels of starches and flavonoids. Plant Molecular Biology Reporter, 19:185-185, 2001. GLASS A. D. M. Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption. Critical Reviews in Plant Sciences, v.22, p.453–470, 2003. GLASS A. D. M.; BRITTO, D. T.; KAISER, B. N.; KINGHORN, J. R.; KRONZUCKER, H. J.; KUMAR, A.; OKAMOTO, M.; RAWAT, S.; SIDDIQI, M. Y.; UNKLES, S. E.; VIDMAR, J. J. The regulation of nitrate and ammonium transport system in plants. Journal of Experimental Botany, v.53, p.855-864, 2002. GOOD, A. G.; SHRAWAT, A. K.; MUENCH, D. G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science, v.9, n.12, p.597-605, 2004. HABASH, D. Z.; MASSIAH, A. J.; RONG, H. L.; WALLSGROVE, R. M.; LEIGH, R. A. The role of cytosolic glutamine synthetase in wheat. Annals of Applied Biology, v.138, n.1, p.83–89, 2001. HARRISON, J.; CRESCENZO, M.-A. P. DE; SENÉ, O.; HIREL, B. Does Lowering Glutamine Synthetase Activity in Nodules Modify Nitrogen Metabolism and Growth of Lotus japonicus? Plant Physiology, v.133, p.253-262, 2003. HIREL, B.; LEA, P. J. Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism, (eds. FOYER, C. H.; NOCTOR, G.). The biochemistry, molecular biology and genetic manipulation of primary ammonia assimilation, Kluwer Academic, p.71-92, 2002. HOAGLAND, D. R.; ARNON, D. I. The water-culture method for growing plants without soil. California Agricultural of Experimental Stn. Bull, v.347, p.1-32, 1950. HOQUE, M. S.; MASLE, J.; UDVARDI, M. K.; RYAN, P. R.; UPADHYAYA, N. M. Over-expression of the rice OsAMT1-1 gene increases ammonium uptake and content, but impairs growth and development of plants under high ammonium nutrition. Functional Plant Biology, v.33, p.153–163, 2006. ISHIYAMA, K.; KOJIMA, S.; TAKAHASHI, H.; HAYAKAWA, T. YAMAYA, T. Cell type distinct accumulation of mRNA and protein for NADH-dependent glutamate synthase in rice roots in response to the supply of NH4+. Plant Physiology and Biochemistry, v.41, p.643-647, 2003. 35 JACCARD, P. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin Société Vaudoise Science Nature, v.3, n.7, p.547-579, 1976. JENNER, C. F., UGALDE, T. D., ASPINAL, D. The physiology of starch and protein deposition in the endosperm of wheat. Journal Plant Physiology, v.18 p.211-226, 1991. KAISER, B. N.; RAWAT, S. R.; SIDDIQI, M. Y.; MASLE, J.; GLASS, A. D. M. Functional analysis of an Arabidopsis T-DNA ‘Knockout’ of the high-affinity NH4+ transporter AtAMT1;1. Plant Physiology, v.130, p.1263–1275, 2002. KRONZUCKER H. J.; SCHJOERRING, J. K.; ERNER, Y.; KIRK, G. J. D.; SIDDIQI, M. Y.; GLASS, A. D. M. Dynamic interactions between root NH4+ influx and long-distance N translocation in rice: Insights into feedback processes. Plant Cell Physiology, v.39, n.12, p.1287-1293, 1998. KRONZUCKER H. J.; BRITTO D. T.; DAVENPORT R. J.; TESTER M. Ammonium toxicity and the real cost of transport. Trends in Plant Science, v.6, p335-337. 2001. KUMAR, A.; SILIM, S. N.; OKAMOTO, M.; SIDDIQI, M. Y.; GLASS, A. D. M. Differential expression of three members of the AMT1 gene family encoding putative high-affinity NH4+ transporters in roots of Oryza sativa subspecies indica. Plant Cell and Environment, v.26, p.907–914, 2003. LAM, H.-M.; WONG, P.; CHAN, H.-K.; YAM, K.-M.; CHEN, L.; CHOW, C.-M.; CORUZZI, G. M. Overexpression of the ASN1 Gene Enhances Nitrogen Status in Seeds of Arabidopsis. Plant Physiology, v.132, p.926-935, 2003. LEA, P. J.; AZEVEDO, R. A. Nitrogen use efficiency. Uptake of nitrogen from the soil. Annals of Applied Biology, v.149, n.3, p.243-247, 2006. LEA, P. J.; MIFLIN, B. J. Glutamate synthase and the synthesis of glutamate in plants. Plant Physiology and Biochemistry, v.41, p.555-564, 2003. LIMAMI, A.; PHILLIPSON, B.; AMEZIANE, R.; PERNOLLET, N.; JIANG, Q.; ROY, R.; DELEENS, E.; CHAUMONT-BONNET, M.; GRESSHO, P. M.; HIRE, B. Does root glutamine synthetase control plant biomass production in Lotus japonicus L.? Planta, v.209, p.495-502, 1999. LOQUÉ D., YUAN l.; KOJIMA S.; GOJON A.; WIRTH J.; GAZZARRINI S.; ISHIYAMA K.; TAKAHASHO H.; von WIRÉN N. Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots. The Plant Jounal, v.48, p.522-534, 2006. 36 LOQUÉ, D.; von WIRÉN, N. Regulatory levels for the transport of ammonium in plant roots. Journal of Experimental Botany, v.55, p.1293–1305, 2004. MAYER, M.; LUDEWIG, U. Role of AMT1;1 in NH4+ acquisition in Arabidopsis thaliana. Plant Biology, v.8, p.522–528, 2006. MENGEL, DB.; BARBER, S. A. Rate of nutrient uptake per unit of root under field conditions. Agronomy Jornal, v.66, p.399-402, 1974. MIFLIN, B. J.; HABASH, D. Z. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. Journal of Experimental Botany, v.53, p.979, 987, 2002. MIGGE, A.; CARRAYOL, E.; HIREL, B.; BECKER, T. W. Leaf-specific overexpression of plastidic glutamine synthetase stimulates the growth of transgenic tobacco seedlings. Planta, v.210, v.252-260, 2000. ORTEGA, J. L.; TEMPLE, S. J.; SENGUPTA-GOPALAN, C. Constitutive Overexpression of Cytosolic Glutamine Synthetase (GS1) Gene in Transgenic Alfalfa Demonstrates That GS1 May Be Regulated at the Level of RNA Stability and Protein Turnover. Plant Physiology, v.126, n.1, p.109-121, 2001. PEOPLES, M. B.; HERRIDGE, D. F.; LADHA, J. K. Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production? Plant Soil, v.174, p.3–28, 1995. RABBANI, M. A ; PERVAIZ, Z. H ; MASOOD, M. S. Genetic diversity analysis of traditional and improved cultivars of Pakistani rice (Oryza sativa L.) using RAPD markers. Electronic Journal of Biotechnology. v.11, n.3, 2008. RAWAT, S. R.; SILIM, S. N.; KRONZUCKER, H. J.; SIDDIQI, M. Y.; GLASS, A. D. M. AtAMT1 gene expression and NH4+ uptake in roots of Arabidopsis thaliana: evidence for regulation by root glutamine levels. The Plant Journal, v.19, p.143–152, 1999. RUIZ, H. A.; FERNANDES FILHO, E. I. Cinética: software para estimar as constantes Vmáx e KM da equação de Michaelis-Menten. In: REUNIÃO BRASILEIRA DE FERTILIDADE DO SOLO E NUTRIÇÃO DE PLANTAS, n. 10, 1992, Piracicaba. Anais... Piracicaba: Sociedade Brasileira de Ciência do Solo, p.124-125. 1992. RUIZ, H. Estimativa dos parâmetros cinéticos Km e Vmáx por uma aproximação gráfico – matemática. Revista Ceres, Viçosa, v.32, n.179, p.79-84, 1985. 37 RUIZ, H.A. Estimativa dos parâmetros cinéticos em kM e Vmáx por uma aproximação gráfico-matemática. Revista Ceres. v.32, p.79-84. 1985. SAMBROOK, J.; RUSSEL, D.W. Molecular cloning. A laboratory manual. 3ª Ed. CSHL PRESS, 2001. SHI, W. M.; XU W. F.; LI S. M.; ZHAO X. Q.; DONG G.Q. Responses of two Rice cultivars differing in seedling-stage nitrogen use to growth under low-nitrogen conditions. Plant Soil, v.326, p.291-302, 2010. SAITOU, N. e NEI, M. The neighbor-joining method a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution., v.4, p.406-425.. 1987. SONODA, Y.; IKEDA, A.; SAIKI, S.; von WIRÉN, N.; YAMAYA, T.; YAMAGUCHI, J. Distinct expression and function of three ammonium transporter genes (OsAMT1;1–1;3) in rice. Plant Cell Physiology, v.44, p.726–734, 2003a. SONODA, Y., IKEDA, A., SAIKI, S., YAMAYA, T. AND YAMAGUCHI, J. Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice. Plant Cell Physiol, v.44, p.1396-1402, 2003b. SUÁREZ, R.; MÁRQUEZ, J.; SHISHKOVA, S.; HERNÁNDEZ, G. Overexpression of alfalfa cytosolic glutamine synthetase in nodules and flowers of transgenic Lotus japonicus plants. Physiologia Plantarum, v.117, p.326–336, 2003. SUENAGA, A.; MORIYA, K.; SONODA, Y.; IKEDA, A.; von WIRÉN, N.; HAYAKAWA, T.; YAMAGUCHI, J.; YAMAYA, T. Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant and Cell Physiology, v.44, p.206–211, 2003. TABUCHI, M.; ABIKO, T.; YAMAYA, T. Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). Journal of Experimental Botany, v.58, n.9, p.2319–2327, 2007. TABUCHI, M.; SUGIYAMA, K.; ISHIYAMA, K.; INOUE, E.; SATO, T.; TAKAHASHI, H.; YAMAYA, T. Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. The Plant Journal, v.42, p.641–651, 2005. WILLIANS, J. G. K.; KUBELIK; A . R.; LIVAK, K.J.; RAFALSKI, J. A; TINGEY, S.V. DNA poloymorphisms amplified by arbithary primers are useful a genetic marker. Nucleics Acids Research, v.18, 6531-6355, 1990. 38 YAN, F.; ZHU, Y.; MULLER, C.; ZORB, C.; SCHUBERT, S. Adaptation of H+-pumping and plasma membrane H+ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiology, v.129, p.50-63, 2002. YAO, S.; SONODA, Y.; TSUTSUI, T.; NAKAMURA, H.; ICHIKAWA, H.; IKEDA, A.; YAMAGUSHI, J. Promoter analysis of OsAMT1;2 and 1;3 implies their distinct roles in nitrogen utilization in rice. Breeding Science. v.58, p.201-207, 2008. YEMM, E. W. & COCKING, E. C. The determination of amino-acid with ninhydrin. Analytical Biochemistry, v.80, p.209-213, 1955. YEMM, E. W. e WILLIS, A. J. The estimation of carbohydrate in plants extracts by anthrone. Biochemistry, v.57, p.508-514, 1954. YUAN, L.; LOQUÉ, D.; YE, F.; FROMMER, W. B.; von WIRÉN, N. Nitrogen-dependent post-transcriptional regulation of the ammonium transporter AtAMT1;1. Nature, v.143, p.732–744, 2007. ZHANG Y. H.; ZHANG Y.L.; SHEN Q.R. Nitrogen accumulation and translocation of different Japonica rice cultivars under different nitrogen application rates. Pedosphere, 2007 ZHAO, X.-Q., SHI, W.-M. Expression analysis of the glutamine synthetase and glutamate synthase gene families in young rice (Oryza sativa) seedlings. Plant Science, v.170, p.748-754, 2006.por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/63457/2010%20-%20Vinicius%20Miranda%20de%20Souza%20.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4257
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-12-14T00:05:05Z No. of bitstreams: 1 2010 - Vinicius Miranda de Souza .pdf: 1202821 bytes, checksum: 7e37c98b6c9ac7587812ebf3ed48136a (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-12-14T00:05:05Z (GMT). No. of bitstreams: 1 2010 - Vinicius Miranda de Souza .pdf: 1202821 bytes, checksum: 7e37c98b6c9ac7587812ebf3ed48136a (MD5) Previous issue date: 2010-02-25eng
Appears in Collections:Mestrado em Fitotecnia

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2010 - Vinicius Miranda de Souza .pdf2010 - Vinicius Miranda de Souza1.17 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.