Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/13470
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSantos, Antonia Mônica Neres
dc.date.accessioned2023-12-22T02:47:07Z-
dc.date.available2023-12-22T02:47:07Z-
dc.date.issued2019-01-23
dc.identifier.citationSANTOS, Antonia Mônica Neres. Blendas de PVA – polímeros naturais carregados com mel de manuka. 2019. 51 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/13470-
dc.description.abstractBlendas de PVA combinados com polímeros naturais carregados com mel de Manuka foram desenvolvidos com intuito de tratamento de úlceras de pressão, visto que a maioria dos curativos voltados para esse tratamento são hidrogéis. O amido, carboximetil cellulose sódica (NaCMC) e a gelatina são atóxicos, biocompatíveis, biodegradavéis e apresentam baixo custo, estes por sua vez podem alterar as propriedades do PVA quando formam blendas. O mel de Manuka foi usado pois ele apresenta atividade antibacteriana e acelera a cicatrização do ferimento. Os hidrogéis deste trabalho foram desenvolvidos pelo método de casting, e caracterizados via FTIR, DSC, grau de intumescimento, cinética de liberação de mel e ensaio microbiológico. As análises de FTIR mostraram que houve interação física entre os polímeros em todas as blendas analisadas. Os maiores graus de intumescimento (GI) foram encontrados nas amostras de PVA/NaCMC e PVA/NaCMC/Mel e os menores nas amostras PVA/Amido e PVA/Mel. A diferença no GI pode ser correlacionada à formação de cristalitos, bem como à presença de mel, os quais podem atuar como impedimento à entrada de fluido. As amostras PVA/Amido e PVA/Gel/Mel apresentaram os maiores valores de fração gel e os menores valores de perda de massa. As análises de DSC mostraram que nas amostras com mel, o mel pode não só interferir no movimento das cadeias amorfas, como também no empacotamento das cadeias de PVA. Na análise de liberação de mel, observou-se que há o máximo de liberação em 48 h. No modelo cinético, observou-se expoente de difusão n<1, atestando que a reticulação física foi favorável, onde o desvio relativo médio (DRM) estava entre 2,5 % e 17,65 %. Os géis não apresentaram atividade contra S. aureus, porém o mel puro apresentou atividade antibacteriana e diluições de mel superiores à 25 % mel apresentaram atividade bacteriostática.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectHidrogéispor
dc.subjectMel de Manukapor
dc.subjectPVApor
dc.subjectGelatinapor
dc.subjectNaCMCpor
dc.subjectAmidopor
dc.subjectHydrogelseng
dc.subjectManuka honeyeng
dc.subjectPoly (vinyl alcohol)eng
dc.subjectGelatineng
dc.subjectNaCMCeng
dc.subjectStarcheng
dc.titleBlendas de PVA – polímeros naturais carregados com mel de manukapor
dc.title.alternativePVA blends – natural polymers loaded with manuka honeyeng
dc.typeDissertaçãopor
dc.description.abstractOtherPVA blends with natural polymers loaded with Manuka honey were developed for the treatment of pressure ulcers/bed sores, since most bandages used for this treatment are hydrogels. Starch and sodium Carboxymethyl cellulose (NaCMC) and gelatin are non-toxic, biocompatible, biodegradable polymers that have low cost and they can alter the properties of PVA, when mixed to it. Manuka honey was used because it presents antibacterial activity and it accelerates the wound healing. The hydrogels were manufactured by the casting method and they were characterized by FTIR, DSC, swelling degree, honey release kinetics analysis, and microbiological analysis. The FTIR analysis showed that physical interaction occurred between the blends’ materials. The highest swelling rates were found in PVA/NaCMC and PVA/NaCMC/Honey samples and the lowest in PVA/Starch and PVA/Honey samples. The difference of the swelling degree can be related to the crystallites’ formation as well as to the presence of honey, both acting as barrier to fluid entrance. The PVA/Starch and PVA/Gel/Honey samples presented the highest values of gel fraction and the lowest values of weight loss. DSC analysis showed that in samples containing honey, the honey can not only interfere with the movement of amorphous chains, but also in the packaging of PVA chains. In honey release analysis, it was observed that there is a maximum release in 48 h. It was observed a diffusion exponent n<1 in the kinetic model, showing that physical cross-linking occurred, and the average relative deviation was between 2.5 % and 17.65 %. The gels showed no activity against S. aureus, but pure honey showed antibacterial activity and honey dilutions above 25 % presented bacteriostatic activity.eng
dc.contributor.advisor1Oliveira, Renata Nunes
dc.contributor.advisor1IDCPF: 055.175.607-17por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9026953896544145por
dc.contributor.advisor-co1Mendes, Marisa Fernandes
dc.contributor.advisor-co1IDCPF: 023.918.187-50por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/3233683706295801por
dc.contributor.referee1Oliveira, Renata Nunes
dc.contributor.referee1IDCPF: 055.175.607-17por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/9026953896544145por
dc.contributor.referee2Mendes, Marisa Fernandes
dc.contributor.referee2IDCPF: 023.918.187-50por
dc.contributor.referee2Latteshttp://lattes.cnpq.br/3233683706295801por
dc.contributor.referee3Balbino, Tiago Albertini
dc.contributor.referee3Latteshttp://lattes.cnpq.br/7922519072204589por
dc.contributor.referee4Machado Júnior, Hélio Fernandes
dc.contributor.referee4Latteshttp://lattes.cnpq.br/3462534255321209por
dc.contributor.referee5Moreira, Ana Paula Duarte
dc.contributor.referee5Latteshttp://lattes.cnpq.br/3095636219911661por
dc.creator.IDCPF: 035.301.143-67por
dc.creator.Latteshttp://lattes.cnpq.br/4514725208130583por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Químicapor
dc.relation.referencesAFSHARI, M. J.; SHEIKH, N.; AFARIDEH, H. PVA/CM-chitosan/honey hydrogels prepared by using the combined technique of irradiation followed by freeze-thawing. Radiation Physics and Chemistry, v. 113, p. 28-35, 2015. AHMAD, Zuraida et al. Swelling properties of gamma irradiated starch-based hydrogel dressing. International Journal of Innovative Science, Engineering & Technology, v. 2, n. 8, p. 933-936, 2015. AJOVALASIT, Alessia et al. Xyloglucan-based hydrogel films for wound dressing: Structureproperty relationships. Carbohydrate polymers, v. 179, p. 262-272, 2018. ALAMARIA, Abdulhakim M.; NAWAWI, M. Ghazali M.; ZAMRUD, Zafifah. Sago/PVA blend membranes for the recovery of ethyl acetate from water. Arabian Journal of Chemistry, 2015. ALANDEJANI, Talal et al. Effectiveness of honey on S. aureus and P. aeruginosa biofilms. Otolaryngology–Head and Neck Surgery, v. 139, n. 2_suppl, p. P107-P107, 2008. ALANDEJANI, Talal et al. Effectiveness of honey on Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Otolaryngology—Head and Neck Surgery, v. 141, n. 1, p. 114-118, 2009. ALVES, Claudio Nahum et al. Ácidos fenólicos, flavonoides e atividade antioxidante em méis de Melipona fasciculata, M. flavolineata (Apidae, Meliponini) e Apis mellifera (Apidae, Apini) da Amazônia. 2012. AMBROSIO, L.; DEMITRI, C.; SANNINO, A. Superabsorbent cellulose-based hydrogels for biomedical applications. In: Biomedical Hydrogels. 2011. p. 25-50. ASTM - American Society for Testing and Materials. E2180-7: Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent (s) In Polymeric or Hydrophobic Materials, 2012 BAKER, Richard William. Controlled release delivery system by an osmotic bursting mechanism. U.S. Patent n. 3,952,741, 27 abr. 1976. BARBA, Bin Jeremiah D. et al. Hemostatic granules and dressing prepared from formulations of carboxymethyl cellulose, kappa-carrageenan and polyethylene oxide crosslinked by gamma radiation. Radiation Physics and Chemistry, v. 144, p. 180-188, 2018. BAUER, A. W. et al. Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology, v. 45, n. 4_ts, p. 493-496, 1966. BISPO, Viviane Mota. Estudo do efeito da reticulação por genipin em suportesbiocompatíveis de quitosana-PVA. 2009. Tese de Doutorado. Universidade Federal de Minas Gerais. BISWAL, D. R.; SINGH, R. P. Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydrate polymers, v. 57, n. 4, p. 379-387, 2004. 43 BURSALI, Elif Ant et al. Synthesis, characterization and in vitro antimicrobial activities of boron/starch/polyvinyl alcohol hydrogels. Carbohydrate polymers, v. 83, n. 3, p. 1377-1383, 2011. CAPANEMA, Nádia SV et al. Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. International journal of biological macromolecules, v. 106, p. 1218-1234, 2018. CASABURI, Agustina et al. Carboxymethyl cellulose with tailored degree of substitution obtained from bacterial cellulose. Food Hydrocolloids, v. 75, p. 147-156, 2018. CHARERNSRIWILAIWAT, Natthan et al. Electrospun chitosan/polyvinyl alcohol nanofibre mats for wound healing. International wound journal, v. 11, n. 2, p. 215-222, 2014. CHEN, Yong Mei et al. Self-healing and photoluminescent carboxymethyl cellulose-based hydrogels. European Polymer Journal, v. 94, p. 501-510, 2017. CHIOU, Bor-Sen et al. Properties of electrospun pollock gelatin/poly (vinyl alcohol) and pollock gelatin/poly (lactic acid) fibers. International journal of biological macromolecules, v. 55, p. 214-220, 2013. CONTI, S. et al. Matrices containing NaCMC and HPMC: 2. Swelling and release mechanism study. International Journal of pharmaceutics, v. 333, n. 1-2, p. 143-151, 2007. DA COSTA, Danyelle Rodrigues. Hidrogéis de pva-NaCMC para aplicação em curativos. 2012. Tese de Doutorado. Universidade Federal do Rio de Janeiro. DAS, Kunal et al. Preparation and characterization of cross-linked starch/poly (vinyl alcohol) green films with low moisture absorption. Industrial & Engineering Chemistry Research, v. 49, n. 5, p. 2176-2185, 2010. DE SOUZA COSTA JR, Ezequiel; MANSUR, Herman Sander. Preparação e caracterização de blendas de quitosana/poli (álcool vinílico) reticuladas quimicamente com glutaraldeído para aplicação em engenharia de tecido. Quim. Nova, v. 31, n. 6, p. 1460-1466, 2008. DOS SANTOS, G S. Hidrogéis de PVA/NaCMC em camadas carregados com mel para tratamento de feridas. 2016. DUTRA, J. A. P. et al. Papain wound dressings obtained from poly (vinyl alcohol) /calcium alginate blends as new pharmaceutical dosage form: Preparation and preliminary evaluation. European Journal of Pharmaceutics and Biopharmaceutics, v. 113, p. 11-23, 2017. EISENBUD, David et al. Hydrogel wound dressings: where do we stand in 2003? Ostomy/wound management, v. 49, n. 10, p. 52-57, 2003. EL-MALEK, Fady F. Abd; YOUSEF, Amany S.; EL-ASSAR, Samy A. Hydrogel film loaded with new formula from manuka honey for treatment of chronic wound infections. Journal of global antimicrobial resistance, v. 11, p. 171-176, 2017. 44 EMRE, Arif et al. Comparison of intraperitoneal honey and sodium hyaluronatecarboxymethylcellulose (SeprafilmTM) for the prevention of postoperative intra-abdominal adhesions. Clinics, v. 64, n. 4, p. 363-368, 2009. FAN, Lihong et al. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydrate polymers, v. 146, p. 427-434, 2016. FERNANDES, Kátia F. PVA/polysaccharides blended films: mechanical properties. Journal of Materials, v. 2013, 2013. FERREIRA, E. L. et al. Descriptive sensory analysis and acceptance of stingless bee honey. Food Science and Technology International, v. 15, n. 3, p. 251-258, 2009. GIBAS, Iwona; JANIK, Helena. Synthetic polymer hydrogels for biomedical applications. 2010. GOK, Seher et al. Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food chemistry, v. 170, p. 234-240, 2015. HANANI, ZA Nur et al. Manufacture and characterization of gelatin films derived from beef, pork and fish sources using twin screw extrusion. Journal of Food Engineering, v. 113, n. 4, p. 606-614, 2012. HE, Huawei et al. Preparation and characterization of silk sericin/PVA blend film with silver nanoparticles for potential antimicrobial application. International journal of biological macromolecules, v. 104, p. 457-464, 2017. HOFFMAN, Allan S. Hydrogels for biomedical applications. Advanced drug delivery reviews, v. 64, p. 18-23, 2012. HU, Dongying; QIANG, Tiangang; WANG, Lijuan. Quaternized chitosan/polyvinyl alcohol/sodium carboxymethylcellulose blend film for potential wound dressing application. Wound Medicine, v. 16, p. 15-21, 2017. IBRAHIM, Maha M. et al. Evaluation of cellulose and carboxymethyl cellulose/poly (vinyl alcohol) membranes. Carbohydrate polymers, v. 95, n. 1, p. 414-420, 2013. JIANG, Xiancai et al. Studies of the plasticizing effect of different hydrophilic inorganic salts on starch/poly (vinyl alcohol) films. International journal of biological macromolecules, v. 82, p. 223-230, 2016. JIVAN, Mehdi Jalali; YARMAND, Mohamadsaeed; MADADLOU, Ashkan. Preparation of cold water-soluble potato starch and its characterization. Journal of food science and technology, v. 51, n. 3, p. 601-605, 2014. JODAR, K. D. S. P. Desenvolvimento e caracterizaão de hidogel de PVA (álcool polivinílico) e dextrana com sulfadiazina de prata para aplicação tópica. Universidade de Sorocoba. Sorocaba-SP, p. 121. 2014. 45 KAMOUN, Elbadawy A. et al. Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation. Arabian Journal of Chemistry, v. 8, n. 1, p. 38-47, 2015. KAMOUN, Elbadawy A.; KENAWY, El-Refaie S.; CHEN, Xin. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of advanced research, v. 8, n. 3, p. 217-233, 2017. KARASAWA, Koji et al. Novel assay of antibacterial components in manuka honey using lucigenin-chemiluminescence-HPLC. Analytica chimica acta, v. 954, p. 151-158, 2017. KHAN, N. M. B. Production of plasticized thermoplastic starch by spray drying. University of Groningen. Mianwali, Pakistan, p. 165. 2013. KORSMEYER, Richard W. et al. Mechanisms of solute release from porous hydrophilic polymers. International journal of pharmaceutics, v. 15, n. 1, p. 25-35, 1983. KORSMEYER, Richard W. et al. Mechanisms of solute release from porous hydrophilic polymers. International journal of pharmaceutics, v. 15, n. 1, p. 25-35, 1983. LAKSHMI, Duraikkannu Shanthana; TRIVEDI, Nitin; REDDY, C. R. K. Synthesis and characterization of seaweed cellulose derived carboxymethyl cellulose. Carbohydrate polymers, v. 157, p. 1604-1610, 2017. LAM, Johnny et al. Data describing the swelling behavior and cytocompatibility of biodegradable polyelectrolyte hydrogels incorporating poly (L-lysine) for applications in cartilage tissue engineering. Data in brief, v. 7, p. 614-619, 2016. LANCELOTTI, Cindia. Preparação e caracterização de hidrogéis neutros de colágeno aniônico: gelatina: extrato de semente de uva. 2014. Tese de Doutorado. Universidade de São Paulo. LENSON, Dsouza; MARINA, Koland. Bilayer Film Type of Unfolding Drug Delivery System for the Dual Release of Proton Pump Inhibitor and H. Asian Journal of Pharmaceutics, v. 10, n. 2, p. S76, 2016. LIM, Franklin; SUN, Anthony M. Microencapsulated islets as bioartificial endocrine pancreas. Science, v. 210, n. 4472, p. 908-910, 1980. MALEKI, H.; GHAREHAGHAJI, A. A.; DIJKSTRA, P. J. A novel honey‐ based nanofibrous scaffold for wound dressing application. Journal of Applied Polymer Science, v. 127, n. 5, p. 4086-4092, 2013. MASRI, Christopher; CHAGNON, Gregory; FAVIER, Denis. Influence of processing parameters on the macroscopic mechanical behavior of PVA hydrogels. Materials Science and Engineering: C, v. 75, p. 769-776, 2017. MC GANN, Michael J. et al. The synthesis of novel pH-sensitive poly (vinyl alcohol) composite hydrogels using a freeze/thaw process for biomedical applications. International Journal of Pharmaceutics, v. 372, n. 1-2, p. 154-161, 2009. 46 MOUSSA, Ahmed et al. Additive potential of ginger starch on antifungal potency of honey against Candida albicans. Asian Pacific journal of tropical biomedicine, v. 2, n. 4, p. 253, 2012. NG, Shiow-Fern; JUMAAT, Nafisah. Carboxymethyl cellulose wafers containing antimicrobials: a modern drug delivery system for wound infections. European Journal of Pharmaceutical Sciences, v. 51, p. 173-179, 2014. NGWABEBHOH, Fahanwi Asabuwa; GAZI, Mustafa; OLADIPO, Akeem Adeyemi. Adsorptive removal of multi-azo dye from aqueous phase using a semi-IPN superabsorbent chitosan-starch hydrogel. Chemical Engineering Research and Design, v. 112, p. 274-288, 2016. NHO, Young-Chang; PARK, Jong-Seok; LIM, Youn-Mook. Preparation of hydrogel by radiation for the healing of diabetic ulcer. Radiation Physics and Chemistry, v. 94, p. 176- 180, 2014. NKHWA, Shathani et al. Poly (vinyl alcohol): physical approaches to designing biomaterials for biomedical applications. In: Conference Papers in Science. Hindawi, 2014. NOGUEIRA NETO, Paulo. Vida e criação de abelhas indígenas sem ferrão. Nogueirapis, 1997. OLIVEIRA, R. N. Caracterização de um hidrogel nanocompósito pva-prata para uso potencial como curativo. 2014. Tese de doutorado. Universidade Federal do Rio de Janeiro. OLIVEIRA, Renata N. et al. PVA hydrogels loaded with a Brazilian propolis for burn wound healing applications. Journal of Applied Polymer Science, v. 132, n. 25, 2015. ORYAN, Ahmad; ALEMZADEH, Esmat; MOSHIRI, Ali. Biological properties and therapeutic activities of honey in wound healing: a narrative review and meta-analysis. Journal of tissue viability, v. 25, n. 2, p. 98-118, 2016. PAUKKONEN, Heli et al. Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release. International journal of pharmaceutics, v. 532, n. 1, p. 269-280, 2017. PEPPAS, N. A. Analysis of Fickian and non-Fickian drug release from polymers. 1985. PIGHINELLI, Luciano; KUCHARSKA, Magdalena. Chitosan–hydroxyapatite composites. Carbohydrate polymers, v. 93, n. 1, p. 256-262, 2013. POPESCU, Maria-Cristina. Structure and sorption properties of CNC reinforced PVA films. International journal of biological macromolecules, v. 101, p. 783-790, 2017. RIYAJAN, Sa-Ad; SUKHLAAIED, Wattana; KEAWMANG, Woranut. Preparation and properties of a hydrogel of maleated poly (vinyl alcohol)(PVAM) grafted with cassava starch. Carbohydrate polymers, v. 122, p. 301-307, 2015. RODRIGUES, N. O. L. Estudo da Liberação Controlada de Fármacos por Hidrógeis de PVA/Atapulgita. 2012. 47 RÜCKRIEMEN, Jana; KLEMM, Oliver; HENLE, Thomas. Manuka honey (Leptospermum scoparium) inhibits jack bean urease activity due to methylglyoxal and dihydroxyacetone. Food chemistry, v. 230, p. 540-546, 2017. SANTOS, G. S. dos. Hidrogéis de pva/NaCMC em camadas carregados com mel para tratamento de feridas. 2016. SHAHEEN, Sharif M.; YAMAURA, Kazuo. Preparation of theophylline hydrogels of atactic poly (vinyl alcohol)/NaCl/H2O system for drug delivery system. Journal of controlled release, v. 81, n. 3, p. 367-377, 2002. SHAMLOO, Amir et al. Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres. International journal of pharmaceutics, v. 537, n. 1-2, p. 278-289, 2018. SIONKOWSKA, A. et al. Molecular interactions in collagen and chitosan blends. Biomaterials, v. 25, n. 5, p. 795-801, 2004. SIQUEIRA, E. J.; SALON, M.-C. Brochier; MAURET, E. The effects of sodium chloride (NaCl) and residues of cellulosic fibres derived from sodium carboxymethylcellulose (NaCMC) synthesis on thermal and mechanical properties of CMC films. Industrial Crops and Products, v. 72, p. 87-96, 2015. SIVAKESAVA, S.; IRUDAYARAJ, J. Detection of inverted beet sugar adulteration of honey by FTIR spectroscopy. Journal of the Science of Food and Agriculture, v. 81, n. 8, p. 683- 690, 2001. SPRUNG, P.; HOU, Z.; LADIN, D. A. Hydrogels and hydrocolloids: an objective product comparison. Ostomy/wound management, v. 44, n. 1, p. 36-42, 44, 46 passim, 1998. SVEČNJAK, Lidija et al. Characterization of Satsuma mandarin (Citrus unshiu Marc.) nectarto-honey transformation pathway using FTIR-ATR spectroscopy. Food chemistry, v. 232, p. 286-294, 2017. TAKINAMI, Patrícia Yoko Inamura. Obtenção de biopolímeros de gelatina por radiação ionizante. 2014. Tese de Doutorado. Universidade de São Paulo. TALEB, Manal F. Abou; EL-MOHDY, HL Abd; EL-REHIM, HA Abd. Radiation preparation of PVA/CMC copolymers and their application in removal of dyes. Journal of hazardous materials, v. 168, n. 1, p. 68-75, 2009. TAVAKOLI, Javad; TANG, Youhong. Honey/PVA hybrid wound dressings with controlled release of antibiotics: Structural, physico-mechanical and in-vitro biomedical studies. Materials Science and Engineering: C, v. 77, p. 318-325, 2017. TEIXEIRA, Raquel Simas Pereira. Sistemas poliméricos reticulados por radiação uv como modificadores das propriedades mecânicas das formações durante a perfuração de poços de petróleo. 2013. Tese de doutorado. Universidade Federal do Rio de Janeiro. TERENCE, Mauro César et al. Efeito da radiacao gama na estrutura molecular do poli (alcool vinilico). Revista Brasileira de Pesquisa e Desenvolvimento. 48 TORLEY, P. J. et al. Effect of honey types and concentration on starch gelatinization. LWTFood Science and Technology, v. 37, n. 2, p. 161-170, 2004. VERNON, Tracy. Intrasite Gel and Intrasite Conformable: the hydrogel range. British Journal of Community Nursing, v. 5, n. 10, p. 511-516, 2000. VINKLÁRKOVÁ, Lenka et al. Film wound dressing with local anesthetic based on insoluble carboxymethycellulose matrix. Journal of Applied Biomedicine, v. 15, n. 4, p. 313-320, 2017. WALKER, M. et al. Scanning electron microscopic examination of bacterial immobilisation in a carboxymethyl cellulose (AQUACEL®) and alginate dressings. Biomaterials, v. 24, n. 5, p. 883-890, 2003. WANG, Min et al. Radiation synthesis of PVP/CMC hydrogels as wound dressing. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, v. 265, n. 1, p. 385-389, 2007. WANG, Ping; HE, Ji-Huan. Electrospun polyvinyl alcohol-honey nanofibers. Thermal Science, v. 17, n. 5, p. 1549-1550, 2013. WANG, Tao et al. Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydrate polymers, v. 88, n. 1, p. 75-83, 2012. WARREN, Frederick J.; GIDLEY, Michael J.; FLANAGAN, Bernadine M. Infrared spectroscopy as a tool to characterise starch ordered structure-a joint FTIR-ATR, NMR, XRD and DSC study. Carbohydrate polymers, v. 139, p. 35-42, 2016. WAY, D. Estudo da Reação de Produção de Partículas de Gelatina para Aplicação na Liberação Controlada de Doxiciclina. Mestrado. Universidade Federal do Rio de Janeiro, 2013. XING, Qi et al. Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Scientific reports, v. 4, p. 4706, 2014. YADAV, Mithilesh; RHEE, Kyong Yop; PARK, S. J. Synthesis and characterization of graphene oxide/carboxymethylcellulose/alginate composite blend films. Carbohydrate polymers, v. 110, p. 18-25, 2014. YANNAS, Ioannis V. et al. Crosslinked collagen-mucopolysaccharide composite materials. U.S. Patent n. 4,280,954, 28 jul. 1981. YANNAS, Ioannis V.; FORBES, Martin J. Procedures for preparing composite materials from collagen and glycosaminoglycan. U.S. Patent n. 4,350,629, 21 set. 1982. YUSOF, Norimah et al. Development of honey hydrogel dressing for enhanced wound healing. Radiation Physics and Chemistry, v. 76, n. 11-12, p. 1767-1770, 2007. ZANELA, J. Blendas polimérica de amido e poli(vinil-álcool) -PVA: Efeitos do tipo de PVA, amidos modificados e uso de fibras no desenvolvimento de materiais biodegradáveis. 2016. Tese de doutorado. Universidade Estadual de Londrina. ZHAI, Maolin et al. Syntheses of PVA/starch grafted hydrogels by irradiation. Carbohydrate Polymers, v. 50, n. 3, p. 295-303, 2002.por
dc.subject.cnpqEngenharia Químicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/66849/2019%20-%20Antonia%20M%c3%b4nica%20Neres%20dos%20Santos.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5060
dc.originais.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2021-09-22T15:41:12Z No. of bitstreams: 1 2019 - Antonia Mônica Neres dos Santos.pdf: 1967936 bytes, checksum: a3a7754b63ea87edabe4778e819125eb (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-09-22T15:41:12Z (GMT). No. of bitstreams: 1 2019 - Antonia Mônica Neres dos Santos.pdf: 1967936 bytes, checksum: a3a7754b63ea87edabe4778e819125eb (MD5) Previous issue date: 2019-01-23eng
Appears in Collections:Mestrado em Engenharia Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2019 - Antonia Mônica Neres dos Santos.pdf2019 - Antonia Mônica Neres dos Santos1.92 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.