Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/13399
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAssis, Rayane Miranda
dc.date.accessioned2023-12-22T02:46:08Z-
dc.date.available2023-12-22T02:46:08Z-
dc.date.issued2018-12-20
dc.identifier.citationASSIS, Rayane Miranda. Determinação dos coeficientes de atividade em diluição infinita de álcoois em água na presença de sais de sódio por microextração em fase sólida associada a cromatografia a gás (HS-SPME-GC/FID). 2019. 132 f. Dissertação. (Mestrado em Engenharia Química) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2018.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/13399-
dc.description.abstractEm geral, processos de separação e purificação são responsáveis pela maior parte dos custos operacionais e de projeto de instalações industriais. Por isso, o conhecimento de propriedades físicas e de transporte, assim como propriedades de equilíbrio são fundamentais para o projeto do processo. No entanto, a disponibilidade limitada de dados experimentais, particularmente devido à composição e estrutura complexa de determinados produtos, raramente atende à real demanda da indústria. Neste trabalho, a microextração em fase sólida – SPME, aliada a cromatografia a gás foi utilizada para avaliar a influência de diferentes concentrações de sais inorgânicos no coeficiente de atividade em diluição infinita de sistemas álcool/água/sal nas temperaturas de 25, 45 e 60 °C. A técnica utilizada é rápida, de baixo custo e de fácil implementação, que aliada às equações específicas da metodologia, permitiu determinar o coeficiente de atividade na diluição infinita avaliando a influência da concentração de sal e da temperatura da solução. Os álcoois estudados foram etanol, propanol e butanol. E os sais estudados foram, respectivamente, Nitrato de Sódio (NaNO3), Carbonato de Sódio (Na2CO3) e Sulfato de Sódio (Na2SO4), em concentrações de 0,528, 1,368 e 2,121 mol/kg de água. Entre os sais estudados, o Na2SO4 e o Na2CO3 apresentaram melhor influência na separação dos álcoois estudados na diluição infinita. Os resultados obtidos indicam que a técnica utilizada pode ser considerada um método alternativo para a determinação do coeficiente de atividade na diluição infinita.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiropor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectCromatografiapor
dc.subjectCoeficiente de partiçãopor
dc.subjectCoeficiente de atividadepor
dc.subjectEquilíbrio líquido-vaporpor
dc.subjectSalting-outpor
dc.subjectMicroextração em fase sólidapor
dc.subjectChromatography, , , , ,eng
dc.subjectPartition coefficienteng
dc.subjectActivity coefficienteng
dc.subjectLiquid-vapor equilibriumeng
dc.subjectSalting outeng
dc.subjectSolid phase microextractioneng
dc.titleDeterminação dos coeficientes de atividade em diluição infinita de álcoois em água na presença de sais de sódio por microextração em fase sólida associada a cromatografia a gás (HS-SPME-GC/FID)por
dc.title.alternativeDetermination of infinite dilution activity coefficients of alcohols in water in the presence of sodium salts using solid phase microextraction (HS-SPME-GC/FID)eng
dc.typeDissertaçãopor
dc.description.abstractOtherIn general, separation and purification processes account for most of the operational and design costs of industrial facilities. Therefore, the knowledge of physical and transport properties as well as equilibrium properties are fundamental for the design of such process. However, the limited availability of experimental data, particularly due to the complex composition and structure of certain products, experimental data availability rarely meets industries real demands. In this work, solid phase microextraction (SPME), combined with gas chromatography, was used to evaluate the influence of different concentrations of inorganic salts on the infinite dilution activity coefficients of alcohol/water/salt systems at temperatures of 25, 45 and 60 °C. The technique used is fast, inexpensive and easy to implement, which, coupled with the specific equations of the methodology, allowed us to determine the activity coefficient in infinite dilution, evaluating the influence of salt concentration and solution temperature. The alcohols studied were ethanol, propanol and butanol. And the salts studied were, respectively, Sodium Nitrate (NaNO3), Sodium Carbonate (Na2CO3) and Sodium Sulphate (Na2SO4), in concentrations of 0.528, 1.368 and 2.121 mol/kg of water. Among the salts studied, Na2SO4 and Na2CO3 had a better influence on the separation of the studied alcohols at the infinite dilution. The obtained results indicate that the technique used can be considered an alternative method to the determination of infinite dilution activity coefficients.eng
dc.contributor.advisor1Furtado, Filipe Arantes
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-1736-4949por
dc.contributor.advisor1ID120.997.237-96por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1582599762724324por
dc.contributor.referee1Furtado, Filipe Arantes
dc.contributor.referee1IDhttps://orcid.org/0000-0002-1736-4949por
dc.contributor.referee1ID120.997.237-96por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1582599762724324por
dc.contributor.referee2Coelho, Gerson Luiz Vieira
dc.contributor.referee2Latteshttp://lattes.cnpq.br/3629371878927592por
dc.contributor.referee3Ndiaye, Papa Matar
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3720919394286410por
dc.creator.ID32.000.604-2por
dc.creator.ID099.317.996-76por
dc.creator.Latteshttp://lattes.cnpq.br/9228868650608994por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Químicapor
dc.relation.referencesABRAHAM, M. H.; ACREE Jr., W. E., The correlation and prediction of the temperature variation of infinite dilution activity coefficients of compounds in water, Fluid Phase Equilibria, 455, 1-5, 2018, ABRAHAM, M.H.; GRELLIER, P.L.; MANA, J. Limiting activity coefficients of triethylamine in 30 solvents by a simple gas-liquid chromatographic method, J. Chem. Thermodyn., 6, 1175, 1974. ARTHUR, C. L.; PAWLISZYN, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry, v. 62, p. 2145-2148, 1990. BANAT, F. A., AL-RUB, F.A.A., SIMANDL. J., Experimental study of the salt effect in vapor/liquid equilibria using headspace gas chromatography, Chem. Eng. Technol. 22, 9, 761-765, 1999. BAO, J.; HAN, S. Infinite dilution activity coefficients for various types of systems. Fluid Phase Equilibria, v. 112, p. 307-316, 1995. CABANI, S.; CONTI, G.; MOLLICA, V.; LEPORI, L., J. Chem. Soc., Faraday Trans., 71 1943–1952, 1975. CHAWONG, K., Effect of chloride salts on extraction of lactic acid with n-buthanol, Eng. Trans., 15, 66-71, 2012. COSTAS-RODRIGUEZ, M.; PENA-PEREIRA, F., Method development with miniaturized sample preparation techniques. Miniaturization in Sample Preparation, 276-307, 2014. CRUICKSHANK, A. J. B.; GAINEY, B. W.; HICKS, C. P.; LETCHER, T. M.; MOODY, R. W.; YOUNG, C. L., Gas-Liquid Chromatographic Determination of Cross-term second Virial coefficients using Glycerol, Benzene + Nitrogen and benzene + carbon dioxide at 50°C, Trans. Faraday Soc., 65, 1014-1031,1969. DALLAS, A.J., Ph.D. Solvatochromic and thermodynamic studies of chromatographic media, University of Minnesota, Minneapolis, MN, 1993. DOMANSKA, U.; LUKOSHKO, E. V. Thermodynamics and activity coefficients at infinite dilution for organic solutes and water in ionic liquid 1-butyl-1-methylmorpholinium tricyanomethanide. Journal of Chemical Thermodynamics, v. 68, p.53-59, 2014. ELIAS, A. M.; SANTANA, V. C. N.; COELHO, G. L. V. Measurement of activity coefficients at infinite dilution for alcohols in [BMIM][MESO4] using HS-SPME/GC-FID, Brazilian Journal of Chemical Engineering, n. 34, v. 3, 2017. ELIAS, A. M..; COELHO, G. L. V, Measurements of infinite dilution activity coefficients of alkanols in the ionic liquid tributylmethylammonium methyl sulfate using HSSPME/GC/FID, J. Chem. Eng. Data, 61, 1743-1748, 2016. ELIAS, A. M.; FURTADO, F. A.; COELHO, G. L. V. Determinação do coeficiente de atividade na diluição infinita em sistemas Etanol/água/sal por microextração em fase sólidaGC/FID. Química Nova, v. 37, n.7, p. 1177-1181, 2014. 70 EVERETT, D.H., Effect of Gas Imperfection on G.L.C. Measurements: a refined Method for Determining Activity Coefficients and Second Virial Coefficients, Trans. Faraday soc., 61, 1637 – 1645, 1965. FAGGION, H.; GASCHI, P.S.; CORAZZA, M.L; CARDOZO-FILHO, L.; IGARASHIMAFRA, L.; MAFRA, M.R., NaCl and KCl effect on vapour-liquid equilibrium of binary, ternary and quaternary systems involving water, ethanol and glycerol at low pressures, J. Chem. Thermodynamics, 2016. FONSECA, D.B.; COELHO, G.L.V.; Determinação do coeficiente de atividade na diluição infinita (γ∞) através da microextração em fase sólida (SPME), Quimica Nova, v. 30, n.7, p. 1606-1608, 2007. FU, H.; YANG, S. T.; XIU, Z., Phase separation in salting-out extraction system of ethanolamonium sulphate, Separation and Purification Technology, 148, 32-37, 2015. FURTADO, F.A.; COELHO, G.L.V.; Determinação do coeficiente de atividade em diluição infinita de hidrocarbonetos em furfural a 298,15 k por SPME–GC/FID, Quim. Nova, 33, 1905-1909, 2010. FURTADO, F.A.; COELHO, G.L.V.; Determination of infinite dilution activity coefficients using HS-SPME/GC/FID for hydrocarbons in furfural at temperatures of (298.15, 308.15, and 318.15) K, J. Chem. Thermodynamics, 49, 119-127, 2012. FURTADO, F.A., Determinação dos coeficientes de atividade em diluição infinita de hidrocarbonetos em furfural e parâmetros de flory em sistemas poliméricos por HSSPME-GC/FID, 2012, 135 p., Dissertação em Engenharia Química , Universidade Federal Rural do Rio de Janeiro, Seropédica. FURTER, W. F.; COOK, R. A., Salt effect in distillation: a literature review, International Journal of Heat and Mass Tranfers, 10, 23-26, 1967. FUKUCHI, K.; MIYOSHI, K.; KOBUCHI, S.; YONEZAWA, S.; ARAI, Y., Correlation of Infinite Dilution Activity Coefficients of Organic Compound in Water, Journal of Ecotechnology Research, 15[2], 59- 62, 2010. GMEHLING, G.; KOLBE, B.,Thermodynamik, George Thiene Verlag, Sttugart, 1988. GROTE, C.; PAWLISZYN, J., Solid-Phase Microextraction for the analysis of human breath, Analytical Chemistry, v. 69, p. 587-596, 1997. HANSEN, R.S.; MILLER, F.A., A new method for determination of activities of binary solutions of volatile liquids, J. Phys. Chem., 58, 193, 1954. HAYNES, W. M, Handbook of Chemistry and Fhysics. 95ª Edição, CRC, 2014. HIELERMANN, A.; RICCO, A.J.; BODENHOFER, K.; DOMINIK, A.; GOPEL, W.; Conferring selectivity to chemical sensors via polymer side – chain selection: Thermodynamics of vapor sorptions by a set of polysiloxanes on thickness – shear mode resonators, Anal. Chem., 72, 3696 – 3708, 2000. 71 HOFSTEE, M.T.; KWANTES, A.; RIJNDERS, C.W., The Determination of Activity Coefficients at Infinite Dilution from Gas-Liquid Chromatography, Symposium Distillation Brighton, p. 105, 1960. HOVORKA, S.; DOHNAL, V.; ROUX, A. H.; ROUX-DESGRANGES, G., Determination of temperature dependence of limiting activity coefficients for a group of moderately hydrophobic organic solutes in water, Fluid Phase Equilibria, 201, 135-164, 2002. KATAOKA, H.; LORD, H. L.; PAWLISZYN, J. Applications of solid phase microextraction in food analysis, Journal of Chromatography, 800, p. 35-62, 2000. KHALFAOUI, B.; NEWSHAM, D.M.T., Phase equilibria in very dilute mixtures of water and brominated hydrocarbons, Fluid Phase Equilibria, 98, 213, 1994. KIM K.; SEO, K.; LEE, J.; KIM, M.; HA, K., Investigation and prediction of the salting-out effect of methane in various aqueous electrolyte solutions, Journal of Industrial and Engineering Chemistry,34, 117-121, 2016. KLOSKOWSKI, A.; CHRZANOWSKI, W.; PILARCZYK, M.; NAMIESNIK, J., Partition coefficients os selected environmentally important volatile organic compounds determined by gas – liquid chromatography with polydimethylsiloxane stationary phase, J. Chem. Thermodynamics, 37, 21 – 29, 2005. KOJIMA, K.; ZHANG, S.; HIAKI, T.; Measuring methods of infinite dilution activity coefficients and a database for systems including water, Fluid Phase Equilibria, v. 131, n. 1- 2, p. 145-179, 1997. KOMATSU, E., Desenvolvimento de metodologia para determinação de alguns pesticidas em águas empregando microextração em fase sólida (SPME), 2004. Dissertação, Curso de Mestrado em Ciências na Áreas de Tecnologia Nuclear – Materiais, Instituto de Pesquisas Energéticas e Nucleares, São Paulo. KUDLEJOVA, L.; RISTICEVIC, S.; VUKCOVIC, D., Handbook of Solid Phase Microextraction, Chapter 7 – Solid phase microextraction method development, 2012. KUMAJE, Y.; MISHIMA, K.; HONGO, M.; KUSUNOKI, M.; ARAI, Y., Effect of calcium chloride on vapour-liquid equilibria of alcohol-alcohol and alcohol-water binary systems, J. Chem. Eng., 69, 788-793, 1992. JONES, C.A.; SCHONBORN, E.M.; COLBURN, A.P., Equilibrium still for miscible liquids , Ind. Eng. Chem., 35, 666, 1943. LANDAU, I.; BELFER, A. J.; LOCKE, D. C., Measurement of limiting activity coefficients using non-steady-state gas chromatograph, Ind. Eng. Chem. Res., 30, 1900-1906, 1991. LARKIN, J.A.; PEMBERTON, R.C., Thermodynamic Properties of Mixtures of Water and Ethanol Between 298.15 and 383.15 K, Natl. Lab. (U.K.) Rep. 24, p. 163, 1973. LI, J.J.; CARR, P.W., Measurement of water-hexadecane partition coefficients by headspace gas chromatography and calculation of limiting activity coefficients in water, Anal. Chem., 65, 1443, 1993. 72 LORD, H.; PAWLISZYN, J., Evolution of solid-phase microextraction technology. Journal of Chromatography, v. 885, p. 153-193, 2000. LORD, H.; PAWLISZYN, J., Microextraction of drugs. Journal of Chromatography, 902, 17-63, 2000. MARCUS, Y., Prediction of salting-out and salting-in constants, Journal of Molecular Liquids, 177, 7-10, 2013. MARTOS, P.A.; PAWLISZYN, J.; Calibration of Solid Phase Microextraction for Air Analyses Based on Physical Chemical Properties of the Coating, Anal. Chem., 69, 206 – 215, 1997. MASH, C.J.; PEMBERTON, R.C., Activity Coefficient at Very Low Concentrations for Organic Solutes in Water Determined by an Automatic Chromatographic Method, NPL Report Chem. 111; National Phys. Lab., Middlesex, U.K., 1980. MERKLE, S.; KLEBERG, K. K.; FRITSCHE, J., Recent development and applications of solid phase microextraction (SPME) in food and environmental analysis – A Review. Chromatography, v. 2, p. 293-381, 2015. MORRISON, J. F.; BARKER, J. C.; MEREDITH, H.; NEWMAN, K. E.; WALTER, T. D., MASSIE, J. D.; PERRY, R. L.; CUMMINGS, P. T., Experimental Measurement of VaporLiquid equilibrium in alcohol/water/salt systems, Journal of Chemical Engineering Data, 35, 395-404, 1990. OLIVEIRA, H. N. M., Determinação de dados de equilíbrio para sistemas aquosos com eletrólitos, 1999, 166 p., Dissertação em Engenharia Química , Universidade Federal do Rio Grande do Norte, Natal. OVEJERO, G.; PÉREZ, P.; ROMERO, M.D.; DÍAZ, I.; DÍEZ, E., SEBS TRIBLOCK copolymer-solvent interaction parameters from inverse gas chromatography measurements, European Polymer Journal, 45, 590-594, 2009. PARK, J.H.; HUSSAM, A.; COUASNON, P.; FRITZ, D.; CART, P.W., Experimental reexamination of selected partition coefficients from Rohrschneider's data set, Anal. Chem., 59, 1970, 1987. PAWLISZYN, J., Water analysis by solid phase microextractions based ob physical chemical properties of the coating. Analytical Chemistry, v.69, n.12, p. 1992-1998, 1997. PAWLISZYNa , J., Handbook of Solid Phase Microextraction, Chapter 2 – Theory of solid phase microextraction, 2012. PAWLISZYNb , J., Handbook of Solid Phase Microextraction, Chapter 3 – Development of SPME devices and coatings, 2012. PECSAR, R.E.; MARTIN, J.J., Solution Thermodynamics from Gas-Liquid Chromatography., Anal. Chem., 38 1661, 1966. PERRY, R.H.; GREEN, D.W.; Perry’s Chemical Engineers’ Handbook, 7th ed., McGrawHill, New York, 1997. 73 PIVIDAL, K.A.; BIRTIGH, A.; SANDIER, S.I., Infinite dilution activity coefficients for oxygenate systems determined using a differential static cell, J. Chem. Eng. Data, n.37, v.484, 1992. REID, R.C., PRAUSNITZ, J.M., POLING, B.E., The Properties of Gases and Liquids. 4ª Edição, New York, Mc Graw Hill, 1987. ROBINSON, R. A.; STOKES, R. H., Electrolyte Solutions, 2nded., Mineola, New York, Dover Publications, 2002. ROSSEAU, R. W.; ASHCRAFT, D. L.; SCHOENBORN, E. M., Salt effect in vapor-liquid equilibria: correlation of alcohol-water-salt systems, AIChe Journal, v. 18, n. 4, p. 825-828, 1972. SANDLER, S. I. Chemical and engineering thermodynamics. 4th ed., New York, Wiley, 2006. SANDLER, S.I., Infinite Dilution Activity Coefficients in Chemical, Environmental and Biochemical Engineering, Fluid Phase Equilibria, 116, 343-353, 1996. SANTOS, B. R.; ELIAS, A. M.; COELHO, G. L. V., Use of HS-SPME for analysis of the influence of salt concentration and temperature on the activity coefficient at infinity dilution of ethanol-water-salt systems, Fluid Phase Equilibria, 429, 21-26, 2016. SANTIUSTE, J.M.; Contribution to the study of solute – satationary phase retention interactions in terms of activity coefficients obtained by gas – liquid chromatography, Anal. Chem. Acta, 441, 63 – 72, 2001. SHAFFER, D.L.; DAUBERT, T.E., Gas-liquid chromatographic determination of solution properties of oxygenated compounds in water, Anal. Chem., 41, 1585, 1969. TAN, T. C.; GAN, S. H., Vapour-liquid equilibrium of water/ethanol/salt prediction and experimental verification, Chemical Engineering Research and Design, 83, 1361-1371, 2005. VALENTE, A.L.P.; AUGUSTO, F.; Microextração por Fase Sólida, Química Nova, 23, 523 – 530, 2000. XIE, S.; SONG, W.; YI, C.; QIU, X. Salting-out extraction systems of ethanol and water induced by high-solubility inorganic electrolytes. Journal of Industrial and Engineering Chemistry, 56, 145–150, 2017. ZHANG, Y.; CREMER, P. S. Interactions between macromolecules and íons: the Hofmeister series. Current Opinion in Chemical Biology. 10, 658–663, 2006 ZHANG, Z.; PAWLISZYN, J.; Headspace solid – phase microextraction, Anal. Chem., 65, 1843 – 1852, 1993. ZHANG, Z.; PAWLISZYN, J.; Studying Activity Coefficients of Probe Solutes in Selected Liquid Polymer Coatings Using Solid Phase Microextraction, J. Phys. Chem., 100, 17648 - 17645, 1996.por
dc.subject.cnpqQuímicapor
dc.subject.cnpqEngenharia Químicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/68806/2018%20-%20Rayane%20Miranda%20Assis.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5533
dc.originais.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2022-04-08T14:26:30Z No. of bitstreams: 1 2018 - Rayane Miranda Assis.pdf: 1958254 bytes, checksum: b20d482f29cdb0d20c8e7b1a9d75205e (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-04-08T14:26:30Z (GMT). No. of bitstreams: 1 2018 - Rayane Miranda Assis.pdf: 1958254 bytes, checksum: b20d482f29cdb0d20c8e7b1a9d75205e (MD5) Previous issue date: 2018-12-20eng
Appears in Collections:Mestrado em Engenharia Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2018 - Rayane Miranda Assis.pdf2018 - Rayane Miranda Assis1.91 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.