Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/13341
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPereira, Debora Baptista
dc.date.accessioned2023-12-22T02:45:41Z-
dc.date.available2023-12-22T02:45:41Z-
dc.date.issued2020-02-18
dc.identifier.citationPEREIRA, Debora Baptista. Estudo de filmes de policaprolactona carreados com atorvastatina para potencial aplicação em regeneração tecidual. 2020. 93 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/13341-
dc.description.abstractDanos ao tecido cartilaginoso e ósseo são causados por diversos fatores como traumas, inflamações e envelhecimento e podem acarretar na perda tecidual com comprometimento funcional. Por ser um tecido que apresenta baixa ou até mesmo nenhuma capacidade regenerativa, se torna difícil o tratamento e recuperação. Na tentativa de superar estes problemas, pesquisadores têm desenvolvido e aperfeiçoado diferentes técnicas regenerativas baseadas na utilização de biomateriais poliméricos. Junto a esses, é de interesse utilizar um fármaco com propriedades benéficas para auxiliar o tratamento das áreas cartilaginosas danificadas pelo desgaste causado por inflamações e lesões. A atorvastatina (ATV), estatina redutora de colesterol, tem exibido em diversos estudos ações secundárias interessantes, como anabolismo ósseo devido ao seu uso prolongado. Entretanto, são necessárias altas doses desse insumo para esse efeito e as formas comercializadas desse fármaco são comprimidos de uso oral, tendo pouco direcionamento para o tecido cartilaginoso e ósseo. Dessa forma, o objetivo do trabalho foi desenvolver e avaliar filmes poliméricos para liberação controlada de atorvastatina. Nesse contexto, foram desenvolvidos, filmes compostos por policaprolactona (PCL), um polímero sintético biodegradável, contendo ATV. Os filmes foram produzidos através da técnica de solvent casting utilizando duas metodologias diferentes, sem e com solubilização do fármaco (métodos 1 e 2 respectivamente) e com diferentes proporções fármaco/polímero. Esses foram caracterizados pelas técnicas de microscopia eletrônica de varredura (MEV), MEV acoplado a espectroscopia de energia dispersiva (EDS), difração de raios X (DRX), espectroscopia no infravermelho com transformada de Fourier (FTIR), análise termogravimétrica (TGA) e calorimetria diferencial de varredura (DSC). De acordo com os resultados obtidos por essas técnicas, foi possível concluir que os filmes produzidos pelo método 2 foram considerados melhores por apresentarem maior homogeneidade na dispersão do fármaco. A liberação do fármaco presente nos melhores filmes foi avaliada em solução tampão fosfato (pH 7,4) a 37 0C e rotação de 75 rpm em um dissolutor com sensores de fibra ótica, registrando a liberação em tempos prédefinidos por 5 dias. Através desse teste demonstrou-se que o mesmo foi liberado no tempo estudado de forma prolongada, e que tanto a morfologia do material quanto o processo de difusão têm influência no mecanismo de liberação, sugerindo que o material na superfície é liberado primeiro e em seguida, o filme sofre erosão, disponibilizando o fármaco. A degradação dos filmes foi observada através do MEV realizada após a liberação, comprovando o processo de erosão. Portanto, os filmes desenvolvidos têm potencial aplicação para liberação controlada de fármacos, podendo futuramente ser utilizado como biomaterial para regeneração do tecido cartilaginosopor
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectAtorvastatinapor
dc.subjectPolicaprolactonapor
dc.subjectSolvent castingpor
dc.subjectLiberação controladapor
dc.subjectAtorvastatineng
dc.subjectPolycaprolactoneeng
dc.subjectSolvent castingeng
dc.subjectControlled releaseeng
dc.titleEstudo de filmes de policaprolactona carreados com atorvastatina para potencial aplicação em regeneração tecidualpor
dc.title.alternativeStudy of atorvastatin-loaded polycaprolactone films for application on tissue regenerationpor
dc.typeDissertaçãopor
dc.description.abstractOtherDamage to cartilaginous and bone tissue is caused by several factors such as trauma, inflammation and aging and can lead to tissue loss with functional impairment. Because it is a fabric that has low or even no regenerative capacity, treatment and recovery is difficult. In an attempt to overcome these problems, researchers have developed and perfected different regenerative techniques based on the use of polymeric biomaterials. Along with these, it is of interest to use a drug with beneficial properties to assist the treatment of cartilage areas damaged by the wear and tear caused by inflammation and injury. Atorvastatin (ATV), a cholesterol-lowering statin, has shown interesting secondary actions in several studies, such as bone anabolism due to its prolonged use. However, high doses of this input are necessary for this purpose and the commercialized forms of this drug are tablets for oral use, with little direction for cartilage and bone tissue. Thus, the objective of the work was to develop and evaluate polymeric films for controlled release of atorvastatin. In this context, films composed of polycaprolactone (PCL), a biodegradable synthetic polymer containing ATV, were developed. The films were produced using the solvent casting technique using two different methodologies¸ without and with drug solubilization (methods 1 and 2 respectively) and with different drug / polymer proportions. These were characterized by scanning electron microscopy (SEM), SEM coupled to dispersive energy spectroscopy (EDS), X-ray diffraction (DRX), Fourier transform infrared spectrometry (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry. (DSC). According to the results obtained by these techniques, it was possible to conclude that the films produced by method 2 were considered better because they present greater homogeneity in the dispersion of the drug. The release of the drug present in the best films was evaluated in a phosphate buffer solution (pH 7.4) at 37 ° C and rotation of 75 rpm in a dissolver with fiber optic sensors, recording the release at predefined times for 5 days. Through this test it was demonstrated that it was released in the studied time in a prolonged way, and that both the material morphology and the diffusion process have an influence on the release mechanism, suggesting that the material on the surface is released first and then, the film is eroded, making the drug available. The degradation of the films was observed through the SEM performed after the release, proving the erosion process. Therefore, the developed films have potential application for controlled release of drugs, and may in the future be used as a biomaterial for the regeneration of cartilage tissueeng
dc.contributor.advisor1Mendonça, Roberta Helena
dc.contributor.advisor1ID091.675.927-70por
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-1034-7027por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3724636742992170por
dc.contributor.advisor-co1Patricio, Beatriz Ferreira de Carvalho
dc.contributor.advisor-co1ID124.366.057-00por
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0002-2477-9798por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/6104390189092918por
dc.contributor.referee1Mendonça, Roberta Helena
dc.contributor.referee1ID091.675.927-70por
dc.contributor.referee1IDhttps://orcid.org/0000-0003-1034-7027por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/3724636742992170por
dc.contributor.referee2Patricio, Beatriz Ferreira de Carvalho
dc.contributor.referee2ID124.366.057-00por
dc.contributor.referee2IDhttps://orcid.org/0000-0002-2477-9798por
dc.contributor.referee2Latteshttp://lattes.cnpq.br/6104390189092918por
dc.contributor.referee3Prado, Livia Deris
dc.contributor.referee3Latteshttp://lattes.cnpq.br/5829705209653737por
dc.contributor.referee4Bastos, Daniele Cruz
dc.contributor.referee4Latteshttp://lattes.cnpq.br/6597101803506089por
dc.creator.ID159.749.837-85por
dc.creator.IDhttps://orcid.org/0000-0001-6040-2958por
dc.creator.Latteshttp://lattes.cnpq.br/9519119496020969por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Químicapor
dc.relation.referencesAmass, W., Amass, A., & Tighe, B. (1998). A Review of Biodegradable Polymers : Uses , Current Developments in the Synthesis and Characterization of Biodegradable Polyesters , Blends of Biodegradable Polymers and Recent Advances in Biodegradation Studies. 47. Barrère, F., Mahmood, T. A., Groot, K. De, & Blitterswijk, C. A. Van. (2008). Advanced biomaterials for skeletal tissue regeneration : Instructive and smart functions. Materials Science and Engineering R, 59, 38–71. https://doi.org/10.1016/j.mser.2007.12.001 Bastos, V. D. (2007). Biopolímeros e polímeros de matérias-primas renováveis alternativos aos Petroquímicos. Revista Do BNDES, 14(28), 201–234. Beier, F. (2019). Cholesterol and cartilage do not mix well. Nature Reviews Rheumatology, 15(5), 253–254. https://doi.org/10.1038/s41584-019-0204-z Bernhard, J. C., & Vunjak-novakovic, G. (2016). Should we use cells , biomaterials , or tissue engineering for cartilage regeneration ? Stem Cell Research & Therapy, 3–11. https://doi.org/10.1186/s13287-016-0314-3 Bizerra, A., & Silva, V. (2016). Sistema de liberação controlada: Mecanismos e aplicações. Revista Saúde e Meio Ambiente, 3(2), 1–12. Bone, H. G., Kiel, D. P., Lindsay, R. S., Lewiecki, E. M., Bolognese, M. A., Leary, E. T., … McClung, M. R. (2007). Effects of atorvastatin on bone in postmenopausal women with dyslipidemia: A double-blind, placebo-controlled, dose-ranging trial. Journal of Clinical Endocrinology and Metabolism, 92(12), 4671–4677. https://doi.org/10.1210/jc.2006-1909 Brugts, J. J., Yetgin, T., Hoeks, S. E., Gotto, A. M., Shepherd, J., Westendorp, R. G. J., … Deckers, J. W. (2009). The benefits of statins in people without established cardiovascular disease but with cardiovascular risk factors: Meta-analysis of randomised controlled trials. BMJ (Online), 339(7711), 36. https://doi.org/10.1136/bmj.b2376 Cai, Q., Bei, J., & Wang, S. (2002). Relationship among drug delivery behavior, degradation behavior and morphology of copolylactones derived from glycolide,Llactide and ε-caprolactone. Polymers for Advanced Technologies, 13(2), 105–111. https://doi.org/10.1002/pat.161 Canbolat, M. F., Celebioglu, A., & Uyar, T. (2014). Drug delivery system based on 72 cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers. Colloids and Surfaces B: Biointerfaces, 115, 15–21. https://doi.org/10.1016/j.colsurfb.2013.11.021 CANEVAROLO JR., S. V. (2004). Técnicas de Caracterização de Polímeros. Técnicas de Caracterização de Polímeros, 229–261. Retrieved from www.artliber.com.br Carlos, A., Herrera, A., Físico-química, D. De, Química, I. De, Paulista, U. E., Prof, R., & Degni, F. (2010). Revisão. 33(6), 1352–1358. Chan, K. A., Andrade, S. E., Boles, M., Buist, D. S. M., Chase, G. A., Donahue, J. G., … Platt, R. (2000). Inhibitors of Hydroxymethylglutaryl-Coenzyme A Reductase and Risk of Fracture Among Older Women. Obstetrical & Gynecological Survey, 55(11), 696–697. https://doi.org/10.1097/00006254-200011000-00019 Chen, Q., Liang, S., & Thouas, G. A. (2013). Progress in Polymer Science Elastomeric biomaterials for tissue engineering. Progress in Polymer Science, 38(3–4), 584–671. https://doi.org/10.1016/j.progpolymsci.2012.05.003 Choi, W., Lee, G., Song, W., Koh, J., Yang, J., Kwak, J., … Chun, J. (n.d.). metabolism regulates osteoarthritis. Nature. https://doi.org/10.1038/s41586-019-0920-1 Choudhary, A., Rana, A. C., Aggarwal, G., Kumar, V., & Zakir, F. (2012). Development and characterization of an atorvastatin solid dispersion formulation using skimmed milk for improved oral bioavailability. Acta Pharmaceutica Sinica B, 2(4), 421–428. https://doi.org/10.1016/j.apsb.2012.05.002 Costa, B. R., Reichenbach, S., Keller, N., Nartey, L., Wandel, S., Jüni, P., & Trelle, S. (2017). Articles Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis : a network meta-analysis. The Lancet, 390(10090), e21–e33. https://doi.org/10.1016/S0140-6736(17)31744-0 Costa, P. J. C. da. (2002). Avaliação in vitro da lioequivalência de formulações farmacêuticas. Revista Brasileira de Ciências Farmacêuticas, 38(2), 141–153. https://doi.org/10.1590/s1516-93322002000200003 Costa, P., & Lobo, J. M. S. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutics Sciences, 13, 123–133. https://doi.org/10.1016/S0928-0987(01)00095-1 da Silva. M. A. C. (2014). MEMBRANAS BIOREABSORVÍVEIS DE POLI(3- HIDROXIBUTIRATO) CARREGADAS COM METRONIDAZOL PARA REGENERAÇÃO TECIDUAL GUIADA. Implementation Science, 39(1), 1–15. https://doi.org/10.4324/9781315853178 73 Da Silva, E. P., Pereira, M. A. V., De Barros Lima, I. P., Lima, N. G. P. B., Barbosa, E. G., Aragão, C. F. S., & Gomes, A. P. B. (2016). Compatibility study between atorvastatin and excipients using DSC and FTIR. Journal of Thermal Analysis and Calorimetry, 123(2), 933–939. https://doi.org/10.1007/s10973-015-5077-z DASH, S., MURTHY, P. N., NATH, L., & CHOWDHURY, P. (2010). REVIEW KINETIC MODELING ON DRUG RELEASE FROM CONTROLLED DRUG DELIVERY SYSTEMS. Acta Poloniae Pharmaceutica - Drug Research, 67(3), 217–223. Dash, T. K., & Konkimalla, V. B. (2012). Poly- є - caprolactone based formulations for drug delivery and tissue engineering : A review. Journal of Controlled Release, 158(1), 15–33. https://doi.org/10.1016/j.jconrel.2011.09.064 de Araujo, G. L. B., Pitaluga, A., Antonio, S. G., Santos, C. de O. P., & Matos, J. do R. (2012). Polimorfismo na produção de medicamentos. Revista de Ciencias Farmaceuticas Basica e Aplicada, 33(1), 27–36. Franchetti, S. M. M., & Marconato, J. C. (2006). Polímeros biodegradáveis - Uma solução parcial para diminuir a quantidade dos resíduos plásticos. Quimica Nova, 29(4), 811–816. https://doi.org/10.1590/s0100-40422006000400031 Fukushima, K., Tabuani, D., & Camino, G. (2009). Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. Materials Science and Engineering C, 29(4), 1433–1441. https://doi.org/10.1016/j.msec.2008.11.005 Gazzerro, P., Proto, M. C., Gangemi, G., Malfitano, A. M., Ciaglia, E., Pisanti, S., … Bifulco, M. (2012). Pharmacological actions of statins: A critical appraisal in the management of cancer. Pharmacological Reviews, 64(1), 102–146. https://doi.org/10.1124/pr.111.004994 Ghasemi-Mobarakeh, L., Kolahreez, D., Ramakrishna, S., & Williams, D. (2019). Key terminology in biomaterials and biocompatibility. Current Opinion in Biomedical Engineering, 10, 45–50. https://doi.org/10.1016/j.cobme.2019.02.004 Gómez-Lizárraga, K. K., Flores-Morales, C., Del Prado-Audelo, M. L., Álvarez-Pérez, M. A., Piña-Barba, M. C., & Escobedo, C. (2017). Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study. Materials Science and Engineering C, 79, 326– 335. https://doi.org/10.1016/j.msec.2017.05.003 Gupta, A., Badyal, D. K., Khosla, P. P., Uppal, B., Jaison, T. M., & Chopra, S. (2008). Effect of atorvastatin on hs-CRP in acute coronary syndrome. British Journal of 74 Clinical Pharmacology, 66(3), 411–413. https://doi.org/10.1111/j.1365- 2125.2008.03172.x Hakkarainen, M., & Albertsson, A. (2002). Heterogeneous Biodegradation of Polycaprolactone – Low Molecular Weight Products and Surface Changes. 1357– 1363. Higuchi, T. (1961). Rate of Release of Medicaments from Ointment Bases Containing Drugs in Suspension. Journal of Pharmaceutical Sciences, 50(10), 874–875. Hixson, A. W., & Crowell, J. H. (1931). Dependence of Reaction Velocity upon Surface and Agitation. Industrial and Engineering Chemistry, 23(8), 923–931. https://doi.org/10.1021/ie50260a018 Hudecki, A., Kiryczyn, G., & Łos, M. J. (2019). Overview. (ii), 85–98. https://doi.org/10.1016/B978-0-12-812258-7.00007-1 Hutmacher, D. W., Schantz, T., Zein, I., Ng, K. W., Teoh, S. H., & Tan, K. C. (2001). Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. Journal of Biomedical Materials Research - Part A, 55(2), 203–216. https://doi.org/10.1002/1097- 4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7 Jackson, R. W., & Nordentoft, S. (2010). A History of Arthroscopy. YJARS, 26(1), 91– 103. https://doi.org/10.1016/j.arthro.2009.10.005 Jahangiri, A., Barzegar-Jalali, M., Garjani, A., Javadzadeh, Y., Hamishehkar, H., Afroozian, A., & Adibkia, K. (2015). Pharmacological and histological examination of atorvastatin-PVP K30 solid dispersions. Powder Technology, 286, 538–545. https://doi.org/10.1016/j.powtec.2015.08.047 Jeong, J. C., Lee, J., & Cho, K. (2003). Effects of crystalline microstructure on drug release behavior of poly(ε-caprolactone) microspheres. Journal of Controlled Release, 92(3), 249–258. https://doi.org/10.1016/S0168-3659(03)00367-5 Kamaly, N., Yameen, B., Wu, J., & Farokhzad, O. C. (2016). Degradable Controlled- Release Polymers and Polymeric Nanoparticles : Mechanisms of Controlling Drug Release. https://doi.org/10.1021/acs.chemrev.5b00346 Kaushal, A. M., Gupta, P., & Bansal, A. K. (2004). Amorphous drug delivery systems: Molecular aspects, design, and performance. Critical Reviews in Therapeutic Drug Carrier Systems, 21(3), 133–193. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i3.10 Kim, M. S., Jin, S. J., Kim, J. S., Park, H. J., Song, H. S., Neubert, R. H. H., & Hwang, 75 S. J. (2008). Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process. European Journal of Pharmaceutics and Biopharmaceutics, 69(2), 454–465. https://doi.org/10.1016/j.ejpb.2008.01.007 Korani, S., Korani, M., Bahrami, S., Johnston, T. P., Butler, A. E., Banach, M., & Sahebkar, A. (2019). Application of nanotechnology to improve the therapeutic benefits of statins. Drug Discovery Today, 24(2), 567–574. https://doi.org/10.1016/j.drudis.2018.09.023 Korsmeyer, R. W., Gumy, R., Doelker, E., Buri, P., & Peppas, N. A. (1983). Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics, 15(1), 25–35. Lakshmi Narasaiah, V., Kalyan Reddy, B., Kishore, K., Raj Kumar, M., Srinivasa Rao, P., & Venkateswara Reddy, B. (2010). Enhanced dissolution rate of atorvastatin calcium using solid dispersion with PEG 6000 by dropping method. Journal of Pharmaceutical Sciences and Research, 2(8), 484–491. Langer, R., & Vacanti, J. P. (n.d.). - ARTICLES Tissue Engineering. Lanza, R., Langer, R., & Vacanti, J. P. (2013). Principles of Tissue Engineering: Fourth Edition. In Principles of Tissue Engineering: Fourth Edition. https://doi.org/10.1016/C2011-0-07193-4 Li, X., Xing, Y., Jiang, Y., Ding, Y., & Li, W. (2009). Original article Antimicrobial activities of ZnO powder-coated PVC film to inactivate food pathogens. 2161–2168. https://doi.org/10.1111/j.1365-2621.2009.02055.x Liechty, W. B., Kryscio, D. R., Slaughter, B. V., & Peppas, N. A. (2010). Polymers for Drug Delivery Systems. Annual Review of Chemical and Biomolecular Engineering, 1(1), 149–173. https://doi.org/10.1146/annurev-chembioeng-073009-100847 Lins T. B. (2015). ESTUDO DE CORRELAÇÃO DOS PARÂMETROS TÉRMICOS E DIFRAÇÃO DE RAIOS X DE DIFERENTES CRISTAIS E DISPERSÕES SÓLIDAS DE ATORVASTATINA. Programa de Pós-Graduação Em Ciências Farmacêuticas - UFPE. Malam, Y., Loizidou, M., & Seifalian, A. M. (2009). Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends in Pharmacological Sciences, 30(11), 592–599. https://doi.org/10.1016/j.tips.2009.08.004 Manadas, R., Eugénia, M., & Veiga, F. (2002). A dissolução in vitro na previsão da absorção oral de fármacos em formas farmacêuticas de liberação modificada. 76 Revista Brasileira de Ciências Farmacêuticas, 38. Miladi, K., Sfar, S., Fessi, H., & Elaissari, A. (2015). Enhancement of alendronate encapsulation in chitosan nanoparticles. Journal of Drug Delivery Science and Technology, 30, 391–396. https://doi.org/10.1016/j.jddst.2015.04.007 Mora-Raimundo, P., Manzano, M., & Vallet-Regí, M. (2017). Nanoparticles for the treatment of osteoporosis. AIMS Bioengineering, 4(2), 259–274. https://doi.org/10.3934/bioeng.2017.2.259 Morais, L. S. De, Guimarães, G. S., & Elias, C. N. (2007). Liberação de íons por biomateriais metálicos. 48–53. Narasimhan, B. (2001). Mathematical models describing polymer dissolution : consequences for drug delivery. 48, 195–210. Oladapo, B. I., Zahedi, S. A., & Adeoye, A. O. M. (2019). 3D printing of bone scaffolds with hybrid biomaterials. Composites Part B: Engineering, 158(September 2018), 428–436. https://doi.org/10.1016/j.compositesb.2018.09.065 Oliveira, L. S. de A. F., Oliveira, C. S., Machado, A. P. L., & Rosa, F. P. (2010). Biomateriais com aplicação na regeneração óssea – método de análise e perspectivas futuras. Revista de Ciências Médicas e Biológicas, 9(1), 37. https://doi.org/10.9771/cmbio.v9i1.4730 Oshiro Junior, J. A., Shiota, L. M., & Chiavacci, L. A. (2014). Desenvolvimento de formadores de filmes poliméricos orgânico-inorgânico para liberação controlada de fármacos e tratamento de feridas. Revista Materia, 19(1), 24–32. https://doi.org/10.1590/S1517-70762014000100005 Pachuau, L. (2015). Recent developments in novel drug delivery systems for wound healing. 1–15. https://doi.org/10.1517/17425247.2015.1070143 Page, C. J., Hinman, R. S., & Bennell, K. L. (2011). Physiotherapy management of knee osteoarthritis. 145–151. Pasco, J. A., Kotowicz, M. A., Henry, M. J., Sanders, K. M., & Nicholson, G. C. (2002). Statin Use, Bone Mineral Density, and Fracture Risk. Archives of Internal Medicine, 162(5), 537. https://doi.org/10.1001/archinte.162.5.537 Peppas, N. A. (1985). Analysis of Fickian and non-Fickian drug release from polymers. Pharmaceutica Acta Helvetiae, 60(4), 110–111. Pereira, I. H. L., Ayres, E., Averous, L., Schlatter, G., Hebraud, A., De Paula, A. C. C., … Oréfice, R. L. (2014). Differentiation of human adipose-derived stem cells seeded on mineralized electrospun co-axial poly(ε-caprolactone) (PCL)/gelatin nanofibers. 77 Journal of Materials Science: Materials in Medicine, 25(4), 1137–1148. https://doi.org/10.1007/s10856-013-5133-9 Perera, J. R., Gikas, P. D., & Bentley, G. (2012). The present state of treatments for articular cartilage defects in the knee. 381–387. https://doi.org/10.1308/003588412X13171221592573 Pignatello, R., Paolino, D., Panto, V., Pistara, V., Calvagno, M., Russo, D., … Fresta, M. (2009). Lipoamino Acid Prodrugs of Paclitaxel: Synthesis and Cytotoxicity Evaluation on Human Anaplastic Thyroid Carcinoma Cells. Current Cancer Drug Targets, 9(2), 202–213. https://doi.org/10.2174/156800909787580944 Portinho, D., Boin, V. G., & Bertolini, G. R. F. (2008). Efeitos sobre o tecido ósseo e cartilagem articular provocados pela imobilização e remobilização em ratos Wistar. Revista Brasileira de Medicina Do Esporte, 14(5), 408–411. https://doi.org/10.1590/S1517-86922008000500001 Rahmati, M., Mobasheri, A., & Mozafari, M. (2016). Inflammatory mediators in osteoarthritis: A critical review of the state-of-the art, prospects, and future challenges. Bone. https://doi.org/10.1016/j.bone.2016.01.019 Ram, D. G., Saghazadeh, S., Herck, S. Van, Geest, B. De, Jonas, A. M., & Demoustierchampagne, S. (2017). Uptake of Long Protein-Polyelectrolyte Nanotubes by Dendritic Cells. https://doi.org/10.1021/acs.biomac.7b01353 Rezende, M. U. of, Hernandez, A. J., Camanho, G. L., & Amatuzzi, M. M. (2000). Cartilagem Articular e Osteoartrose. Acta Ortopédica Brasileira, 8(2), 100–104. https://doi.org/10.1590/s1413-78522000000200005 Rong, H. J., Chen, W. L., Guo, S. R., Lei, L., & Shen, Y. Y. (2012). PCL films incorporated with paclitaxel/5-fluorouracil: Effects of formulation and spacial architecture on drug release. International Journal of Pharmaceutics, 427(2), 242– 251. https://doi.org/10.1016/j.ijpharm.2012.02.007 Saghazadeh, S., Rinoldi, C., Schot, M., Saheb, S., Shari, F., Jalilian, E., … Khademhosseini, A. (2018). Drug delivery systems and materials for wound healing applications ☆. 127, 138–166. https://doi.org/10.1016/j.addr.2018.04.008 Salmoria, G. V., Cardenuto, M. R., Roesler, C. R. M., Zepon, K. M., & Kanis, L. A. (2016). PCL/Ibuprofen Implants Fabricated by Selective Laser Sintering for Orbital Repair. Procedia CIRP, 49, 188–192. https://doi.org/10.1016/j.procir.2015.11.013 Sasmazel, H. T. (2016). Comparison of cellular proliferation on dense and porous PCL scaffolds. (November). https://doi.org/10.3233/BME-2008-0515 78 Schachter, M. (2005). Chemical, pharmacokinetic and pharmacodynamic properties of statins: An update. Fundamental and Clinical Pharmacology, 19(1), 117–125. https://doi.org/10.1111/j.1472-8206.2004.00299.x Sci, P. P. (2017). Advancing biomaterials of human origin for tissue engineering. 86– 168. https://doi.org/10.1016/j.progpolymsci.2015.02.004.Advancing Sefat, F., Raja, T. I., Zafar, M. S., Khurshid, Z., Najeeb, S., Zohaib, S., … Mozafari, M. (2019). Nanoengineered biomaterials for cartilage repair. In Nanoengineered Biomaterials for Regenerative Medicine. https://doi.org/10.1016/b978-0-12- 813355-2.00003-x Shete, G., Puri, V., Kumar, L., & Bansal, A. K. (2010). Solid state characterization of commercial crystalline and amorphous atorvastatin calcium samples. AAPS PharmSciTech, 11(2), 598–609. https://doi.org/10.1208/s12249-010-9419-7 Siepmann, J., & Siepmann, F. (2012). Modeling of diffusion controlled drug delivery. Journal of Controlled Release, 161(2), 351–362. https://doi.org/10.1016/j.jconrel.2011.10.006 Silva, C., & Revisão, A. D. E. (2010). Avanços e aplicações da bioengenharia tecidual. 9, 28–36. Silva, G. F., da Silva, T. G., Gobbi, V. G., Portela, T. L., Teixeira, B. N., dos Santos Mendonça, T., … Mendonça, R. H. (2019). Swelling degree prediction of polyhydroxybutyrate/chitosan matrices loaded with “Arnica-do-Brasil.” Journal of Applied Polymer Science, 136(32), 1–10. https://doi.org/10.1002/app.47838 Singh, S., Ramakrishna, S., & Singh, R. (2017). Material issues in additive manufacturing: A review. Journal of Manufacturing Processes, 25, 185–200. https://doi.org/10.1016/j.jmapro.2016.11.006 Sinha, V. R., Bansal, K., Kaushik, R., Kumria, R., & Trehan, A. (2004). Poly- ⑀ - caprolactone microspheres and nanospheres : an overview. 278, 1–23. https://doi.org/10.1016/j.ijpharm.2004.01.044 Sonje, V. M., Kumar, L., Meena, C. L., Kohli, G., Puri, V., Jain, R., … Brittain, H. G. (2010). Atorvastatin calcium. In Profiles of Drug Substances, Excipients and Related Methodology (1st ed., Vol. 35). https://doi.org/10.1016/S1871- 5125(10)35001-1 Sostres, C., Gargallo, C. J., Arroyo, M. T., Staff, P., Lanas, A., & Chief, C. (2010). Best Practice & Research Clinical Gastroenterology Adverse effects of non-steroidal antiinflammatory drugs ( NSAIDs , aspirin and coxibs ) on upper gastrointestinal tract. 79 Best Practice & Research Clinical Gastroenterology, 24(2), 121–132. https://doi.org/10.1016/j.bpg.2009.11.005 Suave, J., Coelho, L. A. F., Amico, S. C., & Pezzin, S. H. (2009). Effect of sonication on thermo-mechanical properties of epoxy nanocomposites with carboxylated-SWNT. 509, 57–62. https://doi.org/10.1016/j.msea.2009.01.036 Tous, L., Ruseckaite, R. A., & Ciannamea, E. M. (2019). Sustainable hot-melt adhesives based on soybean protein isolate and polycaprolactone. Industrial Crops and Products, 135(November 2018), 153–158. https://doi.org/10.1016/j.indcrop.2019.04.043 Ulici, V., Chen, A. F., Cheng, A. W. M., & Tuan, R. S. (2017). Hip Joint Restoration. Hip Joint Restoration, 15–22. https://doi.org/10.1007/978-1-4614-0694-5 Vaquero, M., Caballero, R., Gómez, R., Núñez, L., Tamargo, J., & Delpón, E. (2007). Effects of atorvastatin and simvastatin on atrial plateau currents. Journal of Molecular and Cellular Cardiology, 42(5), 931–945. https://doi.org/10.1016/j.yjmcc.2007.03.807 Villanova, J. C. O., Oréfice, R. L., & Cunha, A. S. (2010). Aplicações Farmacêuticas de Polímeros. 20, 51–64. Vinatier, C., & Guicheux, J. (2016). Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments. Annals of Physical and Rehabilitation Medicine, 59(3), 139–144. https://doi.org/10.1016/j.rehab.2016.03.002 Wan, Y., Lu, X., Dalai, S., & Zhang, J. (2009). Thermochimica Acta Thermophysical properties of polycaprolactone / chitosan blend membranes. 487, 33–38. https://doi.org/10.1016/j.tca.2009.01.007 Weeren, V., Badylak, S. F., Benders, K. E. M., & Rene, P. (2013). Extracellular matrix scaffolds for cartilage and bone regeneration. 31(3), 169–176. https://doi.org/10.1016/j.tibtech.2012.12.004 Wen, J., Huang, Y., Lu, Y., & Yuan, H. (2019). Associations of non-high-density lipoprotein cholesterol, triglycerides and the total cholesterol/HDL-c ratio with arterial stiffness independent of low-density lipoprotein cholesterol in a Chinese population. Hypertension Research, 1223–1230. https://doi.org/10.1038/s41440- 019-0251-5 Willerth, S. M., & Sakiyama-elbert, S. E. (2018). rre cte d Au tho r P roo f Un co Un Au tho r P roo f co rre cte d. https://doi.org/10.3233/STJ-180001 Williams, J. M., Adewunmi, A., Schek, R. M., Flanagan, C. L., Krebsbach, P. H., 80 Feinberg, S. E., … Das, S. (2005). Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials, 26(23), 4817–4827. https://doi.org/10.1016/j.biomaterials.2004.11.057 Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer - Polycaprolactone in the 21st century. Progress in Polymer Science (Oxford), 35(10), 1217–1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002 Yassue-Cordeiro, P. H., Zandonai, C. H., Da Silva, C. F., & Fernandes-Machado, N. R. C. (2015). Desenvolvimento e caracterização de filmes compósitos de quitosana e zeólitas com prata. Polimeros, 25(5), 492–502. https://doi.org/10.1590/0104- 1428.2059 Zeybek, N. D., Gulcelik, N. E., Kaymaz, F. F., Sarisozen, C., Vural, I., Bodur, E., … Asan, E. (2011). Rosuvastatin induces apoptosis in cultured human papillary thyroid cancer cells. Journal of Endocrinology, 210(1), 105–115. https://doi.org/10.1530/JOE-10-0411 Zhai, G. (2019). Alteration of Metabolic Pathways in Osteoarthritis. https://doi.org/10.3390/metabo9010011 Zhang, H. X., Wang, J. X., Zhang, Z. B., Le, Y., Shen, Z. G., & Chen, J. F. (2009). Micronization of atorvastatin calcium by antisolvent precipitation process. International Journal of Pharmaceutics, 374(1–2), 106–113. https://doi.org/10.1016/j.ijpharm.2009.02.015por
dc.subject.cnpqEngenharia Químicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/71123/2020%20-%20Debora%20Baptista%20Pereira.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6078
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2022-10-18T12:51:23Z No. of bitstreams: 1 2020 - Debora Baptista Pereira.pdf: 2191500 bytes, checksum: ba51deb9e480726e604fe5f7fc5aa8cb (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-10-18T12:51:24Z (GMT). No. of bitstreams: 1 2020 - Debora Baptista Pereira.pdf: 2191500 bytes, checksum: ba51deb9e480726e604fe5f7fc5aa8cb (MD5) Previous issue date: 2020-02-18eng
Appears in Collections:Mestrado em Engenharia Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2020 - Debora Baptista Pereira.pdf2020 - Debora Baptista Pereira2.14 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.