Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/13337
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOliveira, Beatriz Rosas de
dc.date.accessioned2023-12-22T02:45:40Z-
dc.date.available2023-12-22T02:45:40Z-
dc.date.issued2019-11-11
dc.identifier.citationOLIVEIRA, Beatriz Rosas de. Estudo da perda de carga e troca térmica no escoamento de fluidos newtonianos e não-newtonianos em coiled tubing. 2019.153 f. Dissertação (Mestrado em Engenharia Química). Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.por
dc.identifier.citationOLIVEIRA, Beatriz Rosas de. Estudo da perda de carga e troca térmica no escoamento de fluidos newtonianos e não-newtonianos em coiled tubing. 2019.153 f. Dissertação (Mestrado em Engenharia Química). Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/13337-
dc.description.abstractO coiled tubing é um sistema composto por um tubo de aço flexível, longo e contínuo, utilizado em diversos processos, principalmente na indústria do petróleo. Podendo ter mais de 6000 metros, parte do comprimento do tubo é direcionada ao poço, a partir de um injetor, enquanto a outra parte permanece enrolada em um carretel subdividida em camadas. Durante o abandono de poços, diferentes tipos de fluidos, como água e pasta de cimento, são bombeados por meio do coiled tubing a fim de garantir o isolamento e selamento do poço. O escoamento de fluidos em tubos curvados gera uma dissipação de energia significativa em comparação a um tubo reto, sendo necessário prever a perda de carga para obter a pressão de bombeio utilizada na operação. A dissipação de energia por atrito e as trocas térmicas entre o fluido e o ambiente alteram a temperatura do fluido e, consequentemente, suas propriedades físico-químicas, afetando a reologia e o tempo de cura da pasta de cimento. Um excesso de retardadores de pega é adicionado na formulação da pasta a fim de aumentar o tempo necessário para o seu endurecimento, gerando um aumento de custo e tempo do processo. Torna-se essencial prever a perda de carga e a troca térmica no escoamento de fluidos em coiled tubing, a fim de otimizar a formulação dos fluidos e controlar o processo. O objetivo deste trabalho foi avaliar experimentalmente e matematicamente o escoamento de fluidos Newtonianos e não-Newtonianos em coiled tubing a fim de simular o perfil de pressão e temperatura ao longo do tubo. Água filtrada e uma solução aquosa de goma xantana, com comportamento reológico similar ao da pasta de cimento, foram utilizadas nos testes experimentais. A unidade experimental utilizada possui 375 metros de comprimento subdivididos em 8 camadas com medições de pressão e temperatura na entrada e saída de cada camada. Os fluidos foram bombeados em diferentes vazões volumétricas, razões de curvatura e temperatura inicial. Modelos matemáticos foram propostos para o cálculo da perda de carga e da troca térmica, considerando o regime permanente e transiente. Com base nos resultados experimentais obtidos em laboratório, os parâmetros de uma correlação de fator de atrito para fluidos não-Newtonianos presente na literatura foram reestimados. Para prever a variação de temperatura em função do tempo e do comprimento, foi proposto um balanço energético considerando as transferências de calor por atrito, do fluido com o tubo e com o ambiente. A resolução da modelagem matemática e a estimação de parâmetros foram realizadas em linguagem FORTRAN, com base nos dados obtidos em laboratório e no campo. As equações diferenciais parciais foram discretizadas espacialmente a partir da técnica de volumes finitos. Adicionalmente, o integrador DASSL foi utilizado visando obter a solução dinâmica do conjunto de equações. A modelagem proposta admite a existência de um bombeamento sequencial de diferentes fluidos ao longo do coiled tubing, com diferentes razões de curvatura e com a variação sequencial da área interna transversal ao escoamento. Um estudo de caso foi conduzido, considerando dados experimentais obtidos em operações de abandono de poços com um sistema de coiled tubing real. O software desenvolvido foi utilizado para simular as condições reais, onde foi observado uma boa aproximação aos dados de campo, com um erro percentual entre os valores experimentais e calculados inferiores a 7%.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipCNPQ - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.description.sponsorshipPETROBRÁSpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectFlexitubospor
dc.subjectPerda de cargapor
dc.subjectTroca térmicapor
dc.subjectCoiled tubingeng
dc.subjectPressure dropeng
dc.subjectHeat transfereng
dc.titleEstudo da perda de carga e troca térmica no escoamento de fluidos Newtonianos e não-Newtonianos em coiled tubingpor
dc.title.alternativeThe study of pressure drop and heat transfer in the flow of Newtonian and Non-Newtonian fluids in coiled tubingeng
dc.typeDissertaçãopor
dc.description.abstractOtherCoiled tubing is a system consisting of a long, continuous and flexible steel pipe used in many processes, especially in the oil industry. Measuring over 6000 meters, part of the pipe is directed to the well from an injector and a rotary table, while the other part remains wrapped in a reel subdivided in many layers. During well abandonment, different fluids, such as water and cement slurry, are pumped through coiled tubing to ensure well isolation and sealing. Fluid flow in curved pipes generates significant energy dissipation compared to a straight pipe, and it is necessary to predict the pressure drop to obtain the pumping pressure used in the operation. The energy dissipation by friction and the heat exchange between the fluid and the environment change the fluid temperature and, consequently, its physicochemical properties, affecting the rheology and the cement setting time. An excess of set retarders is added to the slurry formulation to increase the time required for setting, resulting in increased process time and cost. It is essential to predict pressure drop and heat transfer in coiled tubing in order to optimize fluid formulation and process control. The objective of this work was to experimentally and mathematically evaluate the flow of Newtonian and non-Newtonian fluids in coiled tubing in order to simulate the pressure and temperature profile along the tube. Filtered water and an aqueous solution of xanthan gum, with a rheological behavior similar to a cement slurry, were used in experimental tests. The experimental unit is 375 meters long divided into 8 layers with pressure and temperature measurements in each layer. Fluids were pumped at different volumetric flow rates, curvature ratios and initial temperature. Mathematical models were proposed to calculate pressure drop and heat transfer, considering permanent and transient regime. Based on experimental results obtained in the laboratory, the parameters of a friction factor correlation for non-Newtonian fluids present in the literature were reestimated. To predict the temperature variation as a function of time and length, an energy balance was proposed considering heat transfer by friction and the heat transfer of the fluid with the pipe and the environment. Parameter modeling and estimation were solved using FORTRAN language, based on laboratory and field data. The partial differential equations were spatially discretized using the finite volume technique. Additionally, the DASSL integrator was used to obtain the dynamic solution of the set of equations. The mathematical modeling assumes the existence of a sequential pumping of different fluids along the coiled tubing, with different curvature ratios and internal transverse flow area. A case study was conducted, considering experimental data obtained from well abandonment operations with a real coiled tubing system. The developed software was used to simulate the real conditions, where a good approximation to the field data was observed, with a percentage error between the experimental and calculated values below 7%.eng
dc.contributor.advisor1Scheid, Cláudia Míriam
dc.contributor.advisor1ID023.546.317-58por
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-3528-7374por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7777291180260276por
dc.contributor.advisor-co1Calçada, Luís Américo
dc.contributor.advisor-co1ID082.908.828-82por
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0001-6018-9800por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/5259178085279570por
dc.contributor.referee1Scheid, Cláudia Míriam
dc.contributor.referee1ID023.546.317-58por
dc.contributor.referee1IDhttps://orcid.org/0000-0003-3528-7374por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/7777291180260276por
dc.contributor.referee2Melo Junior, Príamo Albuquerque
dc.contributor.referee2IDhttps://orcid.org/0000-0002-4041-9282por
dc.contributor.referee2Latteshttp://lattes.cnpq.br/7614011510994839por
dc.contributor.referee3Silva, Emílio César Cavalcante Melo da
dc.contributor.referee3IDhttps://orcid.org/0000-0001-6338-0205por
dc.contributor.referee3Latteshttp://lattes.cnpq.br/8643933669753466por
dc.creator.ID147.785.827-05por
dc.creator.Latteshttp://lattes.cnpq.br/4098583156031850por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Químicapor
dc.relation.referencesADLER, M. Striimung in gekriimmten rohren, 2.Angew. Math. Mech. 14, p. 257-275, 1934. AGÊNCIA NACIONAL DO PETRÓLEO (Brasil). Portaria ANP nº 46. Regulamento Técnico nº 46/2016, de 1 de novembro de 2016. Regime de segurança operacional para integridade de poços de petróleo e gás. Disponível em: < http://legislacao.anp.gov.br/?path=legislacao-anp/resol-anp/2016/novembro&item=ranp-46--2016> . Acesso em: 03 mar. 2019. ALI, S. Pressure drop correlations for flow through regular helical coil tubes. Fluid Dynamics Research, v. 28, p. 295-310, 2001. ALI, S.; ZAIDI, A. H. Head loss and critical Reynolds number for flow in ascending equiangular spiral tube coils. Ind. Eng. Chem. Process Des. Dev., v. 18, n. 2, p. 349-353, 1979. AMORIM, L. V. Melhoria, Proteção e Recuperação da Reologia de Fluidos Hidroargilosos para Uso na Perfuração de Poços de Petróleo. 2003. 290 p. Tese (Doutorado). Centro de Ciências e Tecnologia, Universidade Federal de Campina Grande Campina Grande, PB, 2003. ASHCROFT, J. 2016. Disponível em: < https:// www.proactiveinvestors.co.uk/companies/news/ 169942/solo-oil-is-excited-about-imminent-new-drilling-in-tanzania-169942.html> Acesso em: 08 ago. 2019. AZOUZ, I.; SHAH, S. N.; VINOD, P. S.; LORD, D. L. Experimental investigation of frictional pressure losses in coiled tubing. SPE Production & Facilities, p. 91-96, 1998. BAI, B.; GUO, L.; FENG, Z., CHEN, X. Turbulent Heat Transfer in a Horizontally Coiled Tube, Heat Transfer Asian Reservoir, vol. 28, pp. 395-403, 1999. BARNES, H. A.; HUTTON, J. F.; WALTERS, K. An Introduction to Rheology. Elsevier, 1989. BARUA, S. N. On Secondary Flow in Stationary Curved Pipes, The Quarterly Journal of Mechanics and Applied Mathematics, v. 6, pp. 61-77, 1963. BENCHABANE, A.; BEKKOUR, K., Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid and Polymer Science, v.286 (10), p.1173, 2008. BIRD, R.B., STEWART,W.E, E LIGHTFOOT, E.N. Fenômenos de Transporte, 2a edição, Editora LTC, 2004. BOURGOYNE JR., A. T.; MILLHEIM, K. K.; CHENEVERT, M. E.; YOUNG JR, F. S. Applied drilling engineering. Second printing, Society of Petroleum Engineers, Richardson, Texas; 1991. BOLINDER, C.J., SUNDEN, B. Numerical prediction of laminar flow and forced convective heat transfer in a helical square duct with finite pitch. Int J Heat Mass Transfer;39:3101–15. 1996. 130 BRACAMONTE, J., DIAZ, M, 2018. Disponível em: <https://blog.wellcem.com/plug-and-abandonment-coiled-tubing>. Acesso em: 15 out. 2019. Bridge Plugs [2009]. Disponível em: <http://www.shopbakerhughes.com/completion-tools/plugs-retainers/bridge-plugs.html>. Acesso em: 03 mar. 2019. BRITO, P. M. P. Aplicação de Métodos Numéricos Adaptativos na Integração de Sistemas Algébrico-Diferenciais Caracterizados por Frentes Abruptas. Dissertação de Mestrado. Departamento de Engenharia Química, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, 1998. CALÇADA, L. A., SCHEID, C. M., HORA PARAISO, E. C., FILHO, L. P., GONÇALVES PEREIRA, C. E., ROCHA, J. M., FILHO, L. P. Temperature Development in Coiled Tubing Cementing Operations in Deepwater Environments. OTC Brasil, 2017. doi:10.4043/28149-ms CAMPBELL, K.; SMITH, R. Permanent Well Abandonment. SPE, Tech 101, v. 9, n. 3, p. 25-27, 2013. CASTIGLIA, F.; CHIOVARO, P.; CIOFALO, M.; DI LIBERTO, M.; DI MAIO, P. A.; DI PIAZZA, I.; GIARDINA, M.; MASCARI, F.; MORANA, G.; VELLA, G. Modelling flow and heat transfer in helically coiled pipes. Part 3: Assessment of turbulence models, parametrical study and proposed correlations for fully turbulent flow in the case of zero pitch. Report Ricerca di Sistema Elettrico, Accordo di Programma Ministero dello Sviluppo Economico - ENEA, 2010. CEMENT RETAINERS, 2006. Disponível em: <http://www.shopbakerhughes.com/completion-tools/plugs-retainers/cement-retainers.html>. Acesso em: 08 ago. 2019. CEMENTING, 2000. Disponível em: <http://www.eng.cu.edu.eg/users/aelsayed/Cementing.pdf> Acesso em: 08 ago. 2019 ÇENGEL, Y. A.; GHAJAR, A. J. Transferência de calor e massa: uma abordagem prática. 4. Ed. São Paulo: AMGH Editora, 906 p., 2011. CHURCHILL, S. W.; CHU, H. H. S. Int. J. Heat Mass Transfer, 18, p. 1049 e 1323, 1975 CIONCOLINI, A.; SANTINI, A. An experimental investigation regarding the laminar to turbulent flow transition in helically coiled pipes. Experimental Thermal and Fluid Science, v. 30, p. 367-380, 2006. doi: 10.1016/j.expthermflusci.2005.08.005. CIVIDINI, M. J. Estudo de um sistema misto de aproveitamento de energia térmica proveniente da combustão de biomassa lenhosa e energia solar para aquecimento de água. Trabalho de conclusão de Curso – Curso de Engenharia Mecânica, Departamento de Engenharia Mecânica. Universidade Tecnológica Federal do Paraná, Pato Branco, 2017. 131 CLASEN, C.; KULICKE, W. M. Viscosimetry of Polymers and Polyelectrolytes. Springer: Hamburgo, 2004.120p CRUZ, O.C. da. Desempenho de um hidrociclone de geometria “Rietema” como pré-filtro para sistemas de irrigação. 66 p. Tese (Doutorado em Agronomia) - Faculdade de Ciências Agrárias, UNESP, Jaboticabal, 2008. DASTECH ENERGY, 2015. Disponível em: <https://www.tradeindia.com/fp2993096/Drilling-Pipes.html> Acesso em: 07 jan. 2020. DEAN, W. R. Note on the motion of Fluid in a Curved Pipe. Philosophical Magazine. v. 20, p. 208-223, July 1927. DEAN, W. R. The stream-line motion of fluid in a Curved Pipe. Philosophical Magazine and Journal of Science, v. 5, n. 30, p. 673-695, April 1928. DENNIS, S. C. R. Calculation of the Steady Flow Through a Curved Tube Using a New Finite- Difference Scheme, Journal of Fluid Mechanics, v. 99, pp. 449-467, 1980. DINTZIS, F.R., BABCOCK, G.E., TOBIN R. 1970. “Studies on dilute solutions and dispersion of the polysaccharide from Xanthomonas campestris” NRRL B-1459, Carbohydr. Res. 13, 257–267. DRAVID, A. N., SMITH, K. A., MERRILL, E. W., & BRIAN, P. L. T. Effect of secondary fluid motion on laminar flow heat transfer in helically coiled tubes. AIChE Journal, 17(5), 1971. DRILLING Formula. Flow Regime and Critical Reynolds Number for Drilling Hydraulics, maio 2012. Disponível em: < http://www.drillingformulas.com/flow-regime-and-critical-reynolds-number-for-drilling-hydraulics/>. Acesso em: 03 mar. 2019 EUSTICE, J. Flow of curved pipes. Proceedings of the Royal Society of London. Series A. Containing Papers of Mathematical and Physical Character, p. 107-118, 1910. EUSTICE, J. Experiments of streamline motion in curved pipes, Proc. R. Soc. A-85, p. 119-131, 1911. FANN, 2017. Disponível em: <https://hamdon.net/products/tru-wate-mud-balance-model-141/>. Acesso em: 15 out. 2019. FÉLIX, T. F.; VIDAL, E. L. F.; GARCIA, R. B.; COSTA, M. GIRÃO, J.H.S. “Desenvolvimento De Fluidos De Perfuração À Base De Água Com Alta Capacidade De Inibição E Alta Lubricidade.” 4o Pdpetro, 2007. FERNANDES, F. A. N.; PIZZO, S. M.; MORAES Jr., D. Termodinâmica química, 1ª ed., 2006 FERZIGER, J. H.; PERIC, M. Computational Methods for Fluid Dynamics. 3ª. ed. Berlin: Springer, 2002. 132 FOX, R. W.; MCDONALD, A. T.; PRITCHARD, P. J. Introdução à Mecânica dos Fluidos. 6. ed. Rio de Janeiro: Livros Técnicos e Científicos Editora S.a., 2006. GARIMELLA, S., RICHARDS, D. E. AND CHRISTENSEN, R. N. Experimental investigation of heat transfer in coiled annular ducts, ASME J. Heat Transfer 110, 329-336, 1988. GERMANO, M., On the Effect of Torsion on a Helical Pipe; Journal of Fluid Mechanics, Vol. 125, pp. 1-8, 1982. GHOBADI, M.; MUZICHKA, Y.S. A review of heat transfer and pressure drop correlations for laminar flow in curved circular ducts. Heat Transfer Engineering, 2015. doi: 10.1080/01457632.2015.1089735 GHOBADI, M., MUZYCHKA, Y. S., Effect of Entrance Region and Curvature on Heat Transfer in Mini Scale Curved Tubing at Constant Wall Temperature, International Journal of Heat and Mass Transfer, vol. 65, pp. 357-365, 2013. GHORBANI, N.; TAHERIAN, H.; GORJI, M.; MIRGOLBABAEI, H. An experimental study of thermal performance of shell-and-coil heat exchangers. International Communications in Heat and Mass Transfer, v. 37, p. 775-781, 2010. doi: 10.1016/j.icheatmasstransfer.2010.02.001 GONÇALO, R. Operações Rotineiras numa Sonda [2013]. Disponível em: < http://www.ebah.com.br/content/ABAAAfjyIAA/operacoes-rotineiras-numa-sonda>. Acesso em: 08 ago. 2019. GREEN, D. W.; PERRY, R. H. Perry’s Chemical Engineers’ Handbook. 8. ed. EUA: McGraw-Hill, 2008. GRINDLEY, J.H.; GIBSON, A.H. On the frictional resistance to the ow of air through a pipe. Proc. R. Soc. London, Ser. A 80, p. 114–139, 1908 GUAN, F.; MA, W.; TU, Y; ZHOU, C.; FENG, D.; ZHOU, B. An Experimental Study of Flow Behavior of Coiled Tubing Drilling System. Hindawi Publishing Corporation, ID 935159, 2014 HASAN, W. K. Transient three-dimensional numerical analysis of forced convection flow and heat transfer in a curved pipe. IOSR Journal of Mechanical and Civil Engineering, v. 9, n. 5, p. 47-57, 2013. HIBBELER, R. C. Resistência dos materiais. 7ª Edição. Editora Pearson, 2010. HOQUE, M.; ALAM, M. Effects of Dean number and curvature on fluid flow through a curved pipe with magnetic field. Procedia Engineering, v. 56, p. 245-253, 2013. doi: 10.1016/j.proeng.2013.03.114 133 HSU, C.F; PATANKAR, S. V. Analysis of laminar non-Newtonian flow and heat- transfer in curved pipes, AIChE J. 28 (4) 610–616. 1982. HUETTL, T.; FRIEDRICH, R. Influence of Curvature and Torsion on Turbulent Flow in Helically Coiled Pipes. Proceedings of the 4th International Symposium on Engineering Turbulence Modelling and Measurements; Ajaccio, Corsica, France, 24–26 May, 1999. ICOTA (Intervention and Coiled Tubing Association), 2019. Disponível em:< https://www.icota.com/technical/history>. Acesso em: 14 out. 2019. INCROPERA, F. P.; DE WITT, D. P.; BERGMAN, T. Fundamentos de transferência de calor e massa. 6. ed. Rio de Janeiro: LTC, 2008. 643 p ITO, H., Friction Factors for Turbulent Flow in Curved Pipes; Journal of Basic Engineering, pp. 123-134, jun. 1959. ITO, H. Laminar flow in curved pipes. ZAMM, v. 49, n. 11, p. 653-663, 1969. JAIN, S.; SINGHAL, N.; SHAH, S. N. Effect of Coiled Tubing Curvature on Friction Pressure Loss of Newtonian and Non-Newtonian Fluids – Experimental and Simulation Study. SPE, Houston, Texas, set. 2004. JANSSEN, L.A.M.; HOOGENDOORN C.J. Laminar convective heat transfer in helical coiled tubes, Int. J. Heat Mass Transfer 21 (9), 1197–1206, 1978. JESCHKE, H. Warmeubergang un Druckverlust in Rohrschlagen. VDI Z VDI 69:24–28, 1925. JONES, J.R., Flow of a Non-Newtonian Liquid in a Curved Pipe; The Quarterly Journal of Mechanics and Applied Mathematics, Vol. XIII, pp. 428-43, 1960. KALB, C. E., SEADER, J. D. Fully developed viscous-flow heat transfer in curved circular tubes with uniform wall temperature. AIChE J 20:340–346, 1974. KAMEL, A.H.; SHAQLAIH, A.S.; Frictional Pressure Losses of Fluids Flowing in Circular Conduits: A Review. SPE, Houston, Texas, SPE 176018, June 2015. KENNEDY, J., EBERHART, R., Particle swarm optimization, Proceedings of ICNN’95 – International Conference on Neural Networks, Novembro, 1995. KERN, D. Q. Processos de Transmissão de Calor. Rio de Janeiro: Editora Guanabara Koogan S.A., 1980. KREITH, F.; MANGLIK, R. M.; BOHN, M. S. Principles of heat transfer. 7 ed., Stamford: Cengage Learning, 2011 134 KRISHNA, B.S.V.S. Prediction of pressure drop n helical coil with single phase flow of non-newtonian fluid. International Journal of Applied Research in Mechanical Engineering, v. 2, n. 1, p. 31-36, 2012. KUBAIR, V.; VARRIER, C. B. S. Pressure Drop for Liquid Flow in Helical Coils, Transaction of Indian Institute of Chemical Engineering, vol. 14, pp. 93-97, 1962. KUMAR. P.C.M.; KUMAR. J.; SENDHILNATHAN. S.; TAMILARASAN. R.; SURESH. S. “Heat Transfer and pressure drop of Al2O3 nano fluid as coolant in shell and helically coiled tube heat exchanger.” Bulgarian Chemical Communications. v. 46. n. 4. p. 743-749. 2014. LARRAIN, J. and BONILLA, C.F., Theoretical Analysis of Pressure Drop in the Laminar Flow of Fluid in a Coiled Pipe; Transactions of the Society of Rheology, Vol. 14, pp. 135-47, 1970. LIOU. T.M. “Flow visualization and LDV measurement of fully developed laminar flow in helically coiled tubes.” Experiments in Fluids. 13(5):332-338. 1992. LIU, S., and MASLIYAH, J. H., A Decoupling Numerical Method for Fluid Flow,International Journal of Numerical Methods Fluids, vol. 16, no. 8, pp. 659-682, 1993. LLOYD, J. R.; MORAN, W. R. J. Heat Transfer, 96, p. 443, 1974 MACHADO, J. C. V. Reologia e escoamento de fluidos. 1. ed. Editora Interciência, p. 1-12, 39-44, 95-107, 2002. MALISKA, C. R. Transferência de Calor e Mecânica dos Fluídos Computacional. 2ª. ed. Rio de Janeiro : LTC, 2014. MASHELKAR, R.A.; DEVARAJAN, G.V. Secondary Flows of Non-Newtonian Fluids: Part III—Turbulent Flow of Viscoinelastic Fluids in Coiled Tubes: A Theoretical Analysis and Experimental Verification; Transactions of the Institution of Chemical Engineers, v. 55, p. 29-37, 1977. McCANN, R. C.; ISLAS, C. G. Frictional Pressure Loss During Turbulent Flow in Coiled Tubing. SPE/ICoTA, Texas, SPE 36345, fev.1996. McCONALOGUE, D.J.; SRIVASTAVA, R.S. Motion of a Fluid in a Curved Tube; Proceedings of Royal Society of London, Series A, v. 307, p. 37-53, 1968. MEDJANI, B.; SHAH, S.N. A new approach for predicting frictional pressure losses of non-newtonian fluids in coiled tubing. SPE, Denver, Colorado, SPE 60319, march 2000. MELO, K. C., Avaliação e modelagem reológica de fluidos de perfuração base água. Dissertação de Mestrado, Centro de Tecnologia, Departamento de Engenharia Química. Universidade Federal do Rio Grande do Norte, 2008. 135 MESA Rotativa para Sonda de Perfuração [2007]. Disponível em:<http://portuguese.alibaba.com/product-gs/zp205-rotary-table-for-drilling-rig457376327.html >. Acesso em: 03 mar. 2019. MISHRA, P. and GUPTA, S.N., Momentum Transfer in Curved Pipes. I. Newtonian Fluids, II. Non-Newtonian Fluids; Industrial and Engineering Chemistry Process Design and Development, v. 18, pp. 130-42, 1979. MORI, Y.; NAKAYAMA, W. Study on forced convective heat transfer in curved pipes. Int. J. Heat Mass Transfer., v. 8, p. 67-82, 1965. NAPHON, P.; WONGWISES, S. A review of flow and heat transfer characteristics in curved tubes. Renewable and Sustainable Energy Reviews, v. 10, p. 463-490, 2006. doi: 10.1016/j.rser.2004.09.014 NAPHON. P.; SUWAGRAI. J. “Effect of curvature ratio on the heat transfer and flow developments in the horizontal spirally coiled tubes.” International Journal of Heat and Mass Transfer. 50(3-4):444-451. 2007. NELSON, E. B. Well Cementing, Houston: Schlumberger Educational Services, 1990. NIGAM, K.D.P.; AGARWAL, S.; SRIVASTAVA, V.K. Laminar convection of non- Newtonian fluids in the thermal entrance region of coiled circular tubes, Chem. Eng. J. 84, 223–237. 2001. NÓBREGA, A. K. C. Formulação de Pastas Cimentícias com Adição de Suspensões de Quitosana para Cimentação de Poços de Petróleo. 2009. 134 f. Tese (Doutorado em Ciência e Engenharia de Materiais) - Curso de Pós-Graduação em Ciência e Engenharia de Materiais , Universidade Federal do Rio Grande do Norte, Natal, 2009. NOROUZI. M.. KAYHANI. M.H.. NOBARI. M.R.H.. DEMNEH. M.K. “Convective heat transfer of viscoelastic flow in a curved duct.” World Academy of Science. Engineering and Technology. 56:327-333. 2009. NPC. Plugging and Abandonment of Oil and Gas Wells. NPC North American Resource Development Study, artigo #2-25, 15 set. 2011. Disponível em: < https://www.npc.org/Prudent_DevelopmentTopic_Papers/225_Well_Plugging_and_Abandonment_Paper.pdf>. Acesso em: 03 mar. 2019. OILFIELDWIKI, 2016. Disponível em: <http://www.oilfieldwiki.com/wiki/Coiled_Tubing _Operations#cite_ref-Three_3-0>. Acesso em: 14 out. 2019. OLIVEIRA, L. M. D. Optimização Energética de um Sistema de Climatização Industrial. 2012. Dissertação (Mestrado em Energias Sustentáveis) – Curso de Pós-Graduação em Engenharia Mecânica, Instituto Superior de Engenharia do Porto, Porto, 2012. 136 OLIVIER, D.R.; ASGHAR, S. M. Heat transfer in Newtonian and viscoelastic liquids during laminar flow in helical coils, Trans. Inst. Chem. Eng. 54, 218–224. 1976. OCHOA, M.V. Analysis of drilling fluid rheology and tool joint effect to reduce erros in hydraulics calculations. Dissertation (Doctor of Philosophy - Petroleum Engineering) - Texas A&M University, ago. 2006. PARAISO, E. C. H. Estudo do Escoamento de Pasta de Cimento em Dutos Circulares e Anulares Concêntricos. 2011. 110 f. Dissertação (Mestrado em Engenharia Química) - Curso de Pós-Graduação em Engenharia Química, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, 2011. PATANKAR, S.V., PRATAP, V.S., and SPALDING, D.B., Prediction of Laminar Flow and Heat Transfer in Helically Coiled Pipes; Journal of Fluid Mechanics, Vol. 62, pp. 539-551, part 3, 1974. PATANKAR, S. V. Numerical Heat Transfer and Fluid Flow. Washington : Hemisphere Publishing Corporation, 1980. PATIL, R.H. Experimental studies on heat transfer to newtonian fluids through spiral coils. Experimental Thermal and Fluid Science, 2017. doi: 10.1016/j.expthermflusci.2017.02.002 PAWAR, S. S., SUNNAPWAR, V. K. Studies on convective heat transfer through helical coils. Heat and Mass Transfer, 49(12), 1741–1754, 2013. PAWAR, S.S.; SUNNAPWAR, V.K.; TAGALPALLEWAR, A.R. Development of experimental heat transfer correlations using Newtonian fluids in helical coils. Heat Mass Transfer, 2015. doi: 10.1007/00231-015-1544-0 P&A, 2012. Disponível em: <http://www.glossary.oilfield.slb.com/Terms/p/pa.aspx>. Acesso em: 03 mar. 2019. PEREIRA, C. E. G. Estudo da perda de carga no escoamento de fluidos Newtonianos em coiled tubing. 2018. 137 p. Dissertação (Mestrado em Engenharia Química, Tecnologia Química). Instituto de Tecnologia, Departamento de Engenharia Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2018. PEREIRA, C.E.G., DA CRUZ, G.A., FILHO, L.P., JUSTINO, L.R., PARAISO, E.C., ROCHA, J. M., CALÇADA, L.A., SCHEID, C.M., Experimental analysis of pressure drop in the flow of Newtonian fluid in coiled tubing. Journal of Petroleum Science and Engineering (2019). PETZOLD, L. R. A Description of Dassl: A Differential/Algebraic System Solver. Computing and Mathematics Research Division, Livermore, p. 3-7,1982. 137 PIMENTA, T. A., & CAMPOS, J. B. L. M. Heat transfer coefficients from Newtonian and non-Newtonian fluids flowing in laminar regime in a helical coil. International Journal of Heat and Mass Transfer, 58(1-2), 676–690, 2013. PINTO, J. C.; LAGE, P. L. D. C. Métodos Numéricos em Problemas de Engenharia Química. Rio de Janeiro: e-papers, 2001. PRABHANJAN, D.G.; RAGHAVAN, G.S.V.; RENNIE, T.J. Comparison of heat transfer rates between a straight tube heat exchanger and a helically coiled heat exchanger. Int Comm Heat Mass Transf 29:185–191. 2002. RADZIEMSKA, E. LEWANDOWSKI, W. M. Applied Energy, 68, 347, 2001 RAHMAN, A. A., AHMAD FAUZI, N. B., HAMZAH, N. E., CHAARI, Y., SORMAN, I., JENIE, J. R., MACDONALD, D. Successful Cementing Through Coiled Tubing E-Line: An Economical Solution for Coiled Tubing Drilling Applications. SPE/ICoTA Coiled Tubing & Well Intervention Conference and Exhibition, 2012. RAINIERI, S.; BOZZOLI, F.; PAGLIARINI, G. Experimental Investigation on The Convective Heat Transfer in Straight and Coiled Corrugated Tubes for Highly Viscous Fluids: Preliminary Results, International Journal of Heat and Mass Transfer, v. 55, pp. 498-504, 2012. RAJASEKHARAN, S.; KUBAIR, V.G.; KULOOR, N.R. Heat transfer to non-Newtonian fluids in coiled pipes in laminar flow, Int. J. Heat Mass Transfer 13 (10) (1970) 1583–1594. RAO, B. Coiled tubing hydraulics modeling. CTES, L.C., Tech Note, 1999. RAO, B.N. Friction factors for turbulent flow on non-newtonian fluids in coiled tubing. SPE, Houston, Texas, SPE 74847, April 2002. RINDT, C. C. M., SILLEKENS, J.J.M., VAN STEENHOVEN, A.A. The influence of the wall temperature on the development of heat transfer and secondary flow in a Coiled heat exchanger. Int Commun Heat Mass Transfer 26:187–98, 1999. ROBERTSON, A.M. and MULLER, S.J., Flow of Oldroyd-B Fluids in Curved Pipes of Circular and Annular Cross-Section; International Journal of Non-Linear Mechanics, Vol. 31, No. 1, pp. 1-20, 1996. ROCHA, Robson Raposa. Estudo Teórico-Experimental da Sedimentação em Batelada: Monitoramento e Modelagem de Perfis de Concentração de Sólidos e Análise de Equações Constitutivas. 2018. 115 p. Dissertação (Mestrado em Engenharia Química, Tecnologia Química). Instituto de Tecnologia, Departamento de Engenharia Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2018. RUDNIK, A.; BONIN, B.; WEBB, B.; LEFORT, L. Deep, HPHT Well in GOM Plugged and Abandoned Using Coiled Tubing. World Oil, pg. 109-117, ago. 2013. 138 SCHMIDT, D. F. Warmeubarang and Druckverlust in Rohrshlangen, Chemical Engineering Technology, vol. 13, pp. 781789, 1967. SCHRAMM, G. Reologia e reometria: fundamentos teóricos e práticos. Artliber Editora 2006. SCHWAAB, M., BISCAIA, E. C., MONTEIRO Jr, J. L., PINTO, J. C. Nonlinear parameter estimation through particle swarm optimization, Chemical Engineering Science, v. 63 (6), p. 1542-1552, 2008. SECCHI, A.R. Modelagem e Simulação de Processos. Departamento de Engenharia Química, Escola de Engenharia, Universidade Federal do Rio Grande do Sul. 1995. SHAH, S. N., JAIN, S., & ZHOU, Y. Coiled Tubing Erosion During Hydraulic Fracturing Slurry Flow. SPE/ICoTA Coiled Tubing Conference and Exhibition, 2004. SHAH, S.; LASAT, M. Development of an Environmentally Friendly and Economical Process for Plugging Abandoned Wells (Phase II). EPA, 2003. Disponível em: <http://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.highlight/abstract/8743/report/2003>. Acessado em: 25 nov. 2015. SHAH, S.; ZHOU, Y.; BAILEY, M.; HERNANDEZ, J. Correlations to predict frictional pressure loss of hydraulic-fracturing slurry n coiled tubing. SPE Production & Operations, p. 381- 395, August 2009. SHAQLAIH, A.S.; KAMEL, A.H. AIC applications in coiled tubing hydraulics. International Journal of Petroleum and Geoscience Engineering, v. 1, n. 2, p. 62-81, 2013. SHIROMA, P.H. Estudo do comportamento reológico de suspensões aquosas de bentonita e cmc: influência da concentração do NaCl. Dissertação (Mestrado em Engenharia Química) - Universidade de São Paulo, São Paulo, 2012. SHOKOUHMAND. H.. SALIMPOUR. M.R. “Optimal Reynolds number of laminar forced convection in a helical tube subjected to uniform wall temperature.” International Communications in Heat and Mass Transfer. 34(6): 753-761. 2007. SHUTTERSTOCK, 2016. Disponível em: <https://www.shutterstock.com/pt/image-photo/coil-tubing-on-offshore-oil-rig-24837778>. Acesso em: 15 out. 2019. SILVA, M. G. P.; et al. Avaliação de equações pertinentes aos projetos hidráulicos com fluidos de perfuração, pastas de cimento e fluidos de completação no escoamento tubular e anular, Relatório Técnico Interno, n° 675–12009, Vol.1, CENPES/PETROBRAS, 1989. SILVA, R. A. Engenharia de Perfuração. Santa Catarina, [2009]. Departamento de Automação e Sistemas. Universidade Federal de Santa Catarina. Disponível em: < 139 http://user.das.ufsc.br/~plucenio/DAS5946/aula5/Apr_DrRenato_A_Silva.pdf >. Acesso em: 18 jun. 2019. SRINIVASAN, P.S.; NANDAPURKAR, S.S.; HOLLAND, F.A. Pressure Drop and Heat Transfer in Coils, Chemical Engineering Journal, vol. 218, pp. CE113-CE119, 1968. SRINIVASAN, P.S.; NANDAPURKAR, S.S.; HOLLAND, F.A. Friction Factors for Coils; Transactions of the Institution of Chemical Engineers, v. 48, pp. T156-T161, 1970. TARBELL, J.M., SAMUELS, M.R. Momentum and heat transfer in helical coils. Chem Eng J 1973;5:117–27 THERMOFISHER, 2015. Disponível em: <https://www.thermofisher.com/order/catalog/ product/379-0001>. Acesso em: 15 out. 2019. THOMAS, J. E. et al. Fundamentos de Engenharia de Petróleo. 2 ed. Rio de Janeiro: Editora Interciência, 2001. THOMAS, R.H. and WALTERS, K., On the Flow of an Elastico- Viscous Fluid in a Curved Pipe of Elliptic Cross-Section under a Pressure Gradient; Journal of Fluid Mechanics, Vol. 21, pp. 173-82, 1965. TRATO, J. H. Cementitious compositions and cementitious slurries for permanently plugging abandoned wells and processes and methods therefor. US n. 6767398-B2. Depósito: 26 out. 2001. Concessão: 27 jul. 2004. TOMITA, Y. A study on non-Newtonian Flow in Pipe Lines. Bulletin of J.S.M.E, 2, 10, 1959. TSANG, H.Y.; JAMES, D.F., Reduction of Secondary Motion in Curved Tubes by Polymer Additives; Journal of Rheology, Vol. 24, pp. 589-601, 1980. YANG, G., DONG, F., EBADIAN, M.A. Laminar forced convection in a helicoidal pipe with finite pitch. Int J Heat Mass Transfer 1995;38:853–62. WEISSMAN, M. H., and MOCKROS, L. F. Paper presented at Ann. Conf. Eng. Med. Biol., Boston, Mass. 1967. WILLINGHAM, J.D. and SHAH, S.N., Friction Pressures of Newtonian and Non-Newtonian Fluids in Straight and Reeled Coiled Tubing; paper SPE 60719, presented at the 2000 SPE/ICoTA Coiled Tubing Roundtable, Houston, TX, April 5 – 6, 2000. WHITE, C.M. Streamline flow through curved pipes. Proc. R. Soc. Lond. A, v. 123, n.792, p. 645-663, 1929. WHITE, C.M. Fluid friction and its relation to heat transfer. Trans. Inst. Chem. Eng. (London) 10, p.66–86,1932. 140 WHITCOMB, P. J., & MACOSKO, C. W. 1978. “Rheology of Xanthan Gum.” Journal of Rheology, 22 (5). XIN, R. C., AND EBADIAN, M. A., Natural Convection Heat Transfer from Helicoidal Pipes, J. Thermophysics and Heat Transfer, vol. 12, no. 2, pp. 297–302, 1996. XUEJUN, H.; ZHILIN, Q.; QIMIN, L.; TENGFEI, S. Comparative analysis of the pressure loss from the circulation of drilling fluid during micro hole drilling with the use of coiled tubing. Chemistry and Technology of Fuels and Oils, v. 51, n. 4, p. 361-370, 2015. doi: 10.1007/s10553-015-0613-x YILDIZ, C.; BICER, Y.; PEHLIVAN, D. Heat Transfer and Pressure Drop in a Heat Exchanger with a Helical Pipe Containing inside Springs, Energy Conversion Management, v. 38 (6), pp. 619-624, 1997. ZHENG B, LIN CX, EBADIAN MA. Combined laminar forced convection and thermal radiation in helical pipe. Int J Heat Mass Transfer; 43:1067–78. 2000. ZHONG, L., OOSTROM, M., TRUEX, M. J., VERMEUL, V. R., & SZECSODY, J. E. 2013. “Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation.” Journal of Hazardous Materials, 244-245, 160–170. ZHOU, Y.; SHAH, S.N. Fluid flow in coiled tubing: a critical review and experimental investigation. Canadian International Petroleum Conference. Paper 2002-225, p. 1-15, 2002a. ZHOU, Y.; SHAH, S.N. Non-newtonian fluid flow in coiled tubing: theoretical analysis and experimental verification. SPE, San Antonio, Texas, SPE 77708, 2002b. ZHOU, Y.; SHAH, S.N. New friction factor correlations for non-newtonian fluid flow in coiled tubing. SPE, Melbourne, Australia, SPE 77960, October 2002c. ZHOU, Y.; SHAH, S.N. Rheological properties and frictional pressure loss of drilling, completion, and stimulation fluids in coiled tubing. Journal of Fluids Engineering, v. 126, p. 153-161, March 2004a. doi: 10.1115/1.1669033 ZHOU, Y.; SHAH, S.N. Fluid flow in coiled tubing: a literature review and experimental investigation. Journal of Canadian Petroleum Technology, v. 43, n. 6, p. 52-61, June 2004b. ZHU, Z.Y. CFD simulation in helical coiled tubing. Journal of Applied Science and Engineering, v. 19, n. 3, p. 267-272, 2016. doi: 10.6180/jase.2016.19.3.04por
dc.subject.cnpqEngenharia Químicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/69262/2019%20-%20Beatriz%20Rosas%20de%20Oliveira.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5640
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2022-05-11T12:17:20Z No. of bitstreams: 1 2019 - Beatriz Rosas de Oliveira.pdf: 6482977 bytes, checksum: 224f3ca08123bc2a3047c3d782ee0d46 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-05-11T12:17:20Z (GMT). No. of bitstreams: 1 2019 - Beatriz Rosas de Oliveira.pdf: 6482977 bytes, checksum: 224f3ca08123bc2a3047c3d782ee0d46 (MD5) Previous issue date: 2019-11-11eng
Appears in Collections:Mestrado em Engenharia Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2019 - Beatriz Rosas de Oliveira.pdf2019 - Beatriz Rosas de Oliveira6.33 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.