Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/13308
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLopes, Sâmera Pereira
dc.date.accessioned2023-12-22T02:45:14Z-
dc.date.available2023-12-22T02:45:14Z-
dc.date.issued2020-04-30
dc.identifier.citationLOPES. Sâmera Pereira. Uso de resíduo de terra de diatomáceas e amido de milho visando a redução da volatilização de NH3 na compostagem de bagaço de malte. 2020. 54 f. Dissertação (Mestrado em Engenharia Agrícola e Ambiental) - Instituto de Tecnologia, Departamento de Engenharia, Universidade Federal Rural de Rio de Janeiro, Seropédica, RJ, 2020.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/13308-
dc.description.abstractO bagaço de malte representa aproximadamente 80% dos subprodutos gerados pela indústria de cerveja; é um resíduo ácido (pH 5.7), rico em nutrientes, alta concentração de nitrogênio (aproximadamente 5%) e relação carbono/nitrogênio baixa (11:1). O bagaço de malte tem potencial para ser utilizado como substrato na compostagem, podendo gerar um fertilizante orgânico com maior teor de nitrogênio em comparação aos compostos orgânicos tradicionais com concentração de nitrogênio menor que 3%. No entanto, sua relação carbono/nitrogênio baixa (para a compostagem >30%) favorece as perdas de nitrogênio via volatilização de amônia (NH3), principalmente durante a fase termófila da compostagem, sendo um dos principais desafios relativos ao uso deste resíduo na compostagem. Deste modo, este estudo teve como objetivo avaliar o uso de terra de resíduo de terra de diatomáceas mesoporosa de óxido de magnésio (RTD-MgO) e amido de milho como aditivos para mitigar as perdas de nitrogênio via volatilização de amônia (NH3), durante o processo de compostagem de bagaço de malte. O RTD-MgO foi produzido a partir do resíduo de terra de diatomáceas provenientes do processo de filtração de cerveja e calcinado com hidróxido de magnésio a 400°C em mufla. Em um primeiro estudo, a capacidade de retenção de amônio do RTD-MgO foi avaliada em teste de adsorção de NH4 + em solução, a fim de comparação, foram utilizados materiais com capacidade de retenção conhecidos como a zeólita cubana e D-MgO (terra de diatomáceas mesoporosa de magnésio in natura). A partir dos resultados obtidos, foi possível observar que o RTD-MgO foi capaz de adsorver 31,8% do NH4 + em solução de hidróxido de amônio e fosfato solúvel, contendo 32,46g NH4 + kg-1 representando 60% do potencial de adsorção da zeólita cubana. No segundo estudo foi realizada a compostagem. A compostagem do bagaço de malte com adição dos aditivos (RTD-MgO e amido de milho) foi conduzido em 11 biorreatores de bancada (volume de 3L cada) automatizados. Foi utilizado o delineamento fatorial de faces centrada (DFC) com 3 pontos centrais onde foram avaliadas a interação de três doses de RTD-MgO (1%, 2,5%, 4%) e amido de milho (0%, 22%, 44%) em oito ensaios distintos. Com os resultados obtidos, não foi possível observar os efeitos dos aditivos na perda da massa seca e na curva de temperatura, contudo a adição do RTD-MgO e amido elevaram o pH das misturas iniciais, o RTD-MgO teve a maior influência significativa na variação do pH. Os ensaios que continham maior concentração de amido de milho apresentaram maior capacidade de redução das emissões de NH3 (p <0,05 e R² = 58,18%). Apesar de apresentar um potencial de adsorção de NH4 + in vitro, o RTD-MgO não foi capaz de reduzir as emissões de amônia em compostagem. No entanto, a utilização do amido de milho se mostrou promissor nesse sistema, reduzindo as perdas em até 42%, quando comparados com tratamentos sem o amido de milho.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectResíduos de cervejaria, adsorvente, composto orgânicopor
dc.subjectBrewery‘s spent, adsorbent, organic composteng
dc.titleUso de resíduo de terra de diatomáceas e amido de milho visando a redução da volatilização de NH3 na compostagem de bagaço de maltepor
dc.title.alternativeUse of brewery’s diatomeaceous earth and starch to reduce NH3 volatilization in brewery’s spent grains process compostingeng
dc.typeDissertaçãopor
dc.description.abstractOtherBrewery‘s spent grains (BSG) represents approximately 80% of the by-products generated by the beer industry; it is an acidic residue (pH 5,7), rich in nutrients, high nitrogen concentration (approximately 5%) and low carbon / nitrogen ratio (11: 1). Brewery‘s spent grains has the potential to be used as a substrate in composting, and can generate an organic fertilizer with a higher nitrogen content compared to traditional organic compounds with a nitrogen concentration below 3%. However, its low carbon / nitrogen ratio (for composting > 30%) favors nitrogen losses via ammonia (NH3) volatilization, especially during the thermophilic phase of composting, being one of the main challenges regarding the use of this waste in composting. Thus, this study aimed to evaluate the use of land from magnesium oxide mesoporous diatomaceous earth waste (RTD-MgO) and corn starch as additives to mitigate nitrogen losses via ammonia volatilization, during the process of composting brewery‘s spent grains. RTD-MgO was produced from the residue of diatomaceous earth from the beer filtration process and calcined with magnesium hydroxide at 400 ° C in a muffle furnace. In a first study, the ammonium retention capacity of RTD-MgO was evaluated in an NH4 + adsorption test in solution, in order to compare, materials with retention capacity known as Cuban zeolite and D-MgO (soil of magnesium mesoporous diatomaceouss in natura). From the results obtained, it was possible to observe that RTD-MgO that RTD-MgO was able to adsorb 31,8% of NH4 + in ammonium hydroxide and soluble phosphate solution, containing 32,46g NH4 + kg-1 representing 60% the adsorption potential of Cuban zeolite. The second study, the composting of brewery‘s spent grains with the addition of additives (RTD-MgO and corn starch) was conducted in 11 automated bench bioreactors (volume of 3L each). It was used the factorial design of centered faces (DCF) with 3 central points where the interaction of three doses of RTD-MgO (1%, 2,5%, 4%) and corn starch (0%, 22%, 44%) in eight different trials. With the results obtained, it was not possible to observe the effects of the additives on the loss of dry mass and on the temperature curve, however the addition of RTD- MgO and starch raised the pH of the initial mixtures and had a significant influence on the pH variation. The tests that contained a higher concentration of starch showed greater capacity to reduce NH3 emissions (p <0.05 and R² = 58,18%). Despite having a potential for adsorption of NH4 + in vitro, RTD-MgO was not able to reduce ammonia emissions in composting. However, the use of corn starch has shown promise in this system, reducing losses by up to 42% when compared to treatments without corn starch.eng
dc.contributor.advisor1Inácio, Caio de Teves
dc.contributor.advisor1ID028.933.757-74por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7920142064540802por
dc.contributor.advisor-co1Campos, David Vilas Boas de
dc.contributor.advisor-co1ID030.175.957-06por
dc.contributor.referee1Inácio, Caio de Teves
dc.contributor.referee2Pinheiro, Érika Flávia Machado
dc.contributor.referee3Leal, Marco Antônio de Almeida
dc.creator.ID142.766.547-85por
dc.creator.Latteshttp://lattes.cnpq.br/7558178333746719por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Agrícola e Ambientalpor
dc.relation.referencesAMERICAN SOCIETY OF BREWING CHEMISTS. METHODS OF ANALYSIS, 7th ed. The Society, St. Paul, MN, 1976. ADENIRAN, H.A. ABIOSo, S.H. OGUNSUA, A.O.Production of Fungal amylase and Amyloglucosidase on Some Nigerian Agricultural Residues. Food Bioprocess Technol. 3(5): 693-698, 2008. ARNOLD, JOHN P. Origin and History of Beer and Brewing: From Prehistoric Times to the Beginning of Brewing Science and Technology. Cleveland, Ohio: Reprint Edition by Beer Books., 2005 ATKINSON, C.F., JONES, D.D., GAUTHIER, J.J., 1996a. ―Biodegradabilities and microbial activities during composting of poultry litter‖. Poultry Science 75 (5), 608–617. 1996 ATKINSON, C.F., JONES, D.D., GAUTHIER, J.J., 1996b. ―Biodegradabilities and microbial activities during composting of oxidation ditch sludge‖. Compost Science & Utilisation 4 (1), 84–96. 1996b ATKINSON, C.F., JONES, D.D., GAUTHIER, J.J., 1996c. ―Biodegradabilities and microbial activities during composting of municipal solid waste in bench scale reactors.‖ Compost Science & Utilisation 4 (4), 14–23 1996c BAIMEL, SH, SMITH TR, REES RH, COOTE N, SULPIZIO TE. Filtration with diatomite. Brauwelt International 2004;22:54e5., 2002 BAUGÉ, S.M., LAVKULICH, L.M., WILSON, J.E., SCHREIER, H.E. Comparison of surface properties of synthetic and soil struvite. Canadian Journal of Soil Science, v. 94, p. 169-176, 2014. BERGLUND L, NOËL M, AITOMÄKI Y, ÖMAN T, OKSMAN K. Production potential of cellulose nanofibers from industrial residues: Efficiency and nanofiber characteristics. Industrial Crops and Products. 2016; BERNAL, M.P, LOPEZ-REAL, J.M., SCOTT, K.M. Application of natural zeolites for the reduction of ammonia emissions during the composting of organic wastes in a laboratory composting simulator. Bioresource Technology. V. 102.2, p.1447-1454. 2011. BUDRONI M., ZARA G., CIANI M. COMITINI F. Saccharomyces and Non-Saccharomyces Starter Yeasts Submitted: November 17th 2016Reviewed: March 27th 2017Published: July 19th 2017 CASTRO, S.R., CRUTCHIK, D., GARRIDO, J.M., LANGE, L.C. Precipitação química de estruvita: Recuperação de nutrientes em reator cônico de leito fluidizado utilizando magnésia industrial de baixo custo. Engenharia Sanitária e Ambiental, v. 20, p. 259-268, 2015. CHALK, P.M., MAGALHÃES, A.M.T., INÁCIO, C.T. Towards an understanding of the dynamics of compost N in the soilplant-atmosphere system using 15N tracer. Plant Soil, v. 362, p. 373-388, 2013. CHAN, M.T., SELVAM, A., WONG, J.W.C. Reducing nitrogen loss and salinity during ‗struvite‘ food waste composting by zeolite amendment. Bioresource Technology, v. 200, p. 838-844, 2016 COOK, B.D., BLOOM, P.R., HALBACH, T.R., 1997. ―Fate of a polyacrylate polymer during composting of simulated municipal solid waste‖. Journal of Environmental Quality 26 (3), 618–625. 1997 CERVBRASIL. Anuário da cerveja no Brasil, 2016. Disponível em: http://www.cervbrasil.org.br/novo_site/anauarios/CervBrasil-anuario2016_WEB.pdf. Acesso em 15 de set. 2019. CRONJE, A., TURNER, C., WILLIAMS, A., BARKER, A., GUY, S., 2003. ―Composting under controlled conditions‖. Environmental Technology 24 (10), 1221–1234. 2003 DIAS, B.O., SILVA, C.A., HIGASHIKAWA, F.S., ROIG, A., SÁNCHEZ-MONEDERO, M.A. Use of biochar as bulking agent for the composting of poultry manure: Effect on organic matter degradation and humification. Bioresource Technology, v. 101, p. 1239-1246. 2010 EDIZ, NEZAHAT & BENTLI, İSMAIL & TATAR, ILKNUR. Improvement in filtration characteristics of diatomite by calcination. International Journal of Mineral Processing. 94. 129-134. 10.1016/j.minpro.2010.02.004, 2010. EPSTEIN, E; The Science of composting. Lancaster. Technomic publishing, 1997 FAO. 1980. A manual of rural composting. FAO/UNDP Regional Project RAS/75/004 Field Document No. 15. Rome. 1980 FAO. 2002. Biofertilizer production plant, Myanmar (FAO/UNDP Project), by H. Hiraoka. Back to Office Report. Bangkok, FAO-RAP.2002 FARCAS AC, SOCACI SA, TOFANA M, DULF FV, MUDURA E, DIACONEASA Z. Volatile profile, fatty acids composition and total phenolic content of brewers‘ spent grain by‐ product with potential use in the development of new functional foods. Journal of Cereal Science. 2015 FILLAUDEAU, LUC & BLANPAIN-AVET, PASCAL & DAUFIN, GEORGES. (2006). Water, wastewater and waste management in brewing industries. Journal of Cleaner Production. 2006 FISCHER, W. Reprocessing or disposal of kieselguhr sludge? Brauwelt International;(1) : pag. 60 ed5. 1992 BEFFA T., BLANC M., MARILLEY L., LOTT FISCHER J., LYON P.-F., ARAGNO M. Taxonomic and metabolic microbial diversity during composting. In ―The Science of Composting ‖ (Eds : de Bertoldi, M., Sequi, P., Lemmes, B., Papi, T.). Blackies Academic and Professional, Glasgow, Scotland, vol. 1:149-161., 1995. FONT, A. et al. Use of residual diatomaceous earth as a silica source in geopolymer production. Materials Letters. Amsterdam: Elsevier Science Bv, v. 223, p. 10-13, 2018 FUKUMOTO, Y, SUZUKI, K., KURODA, K., WAKI, M., YASUDA, T. Effects of struvite formation and nitration promotion on nitrogenous emissions such as NH3, N2O and NO during swine manure composting. Bioresource Technology, v. 102, p. 1468-1474, 2011. GE, S., WANG, S., YANG, X., QIU, S., LI, B., PENG, Y. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: a review. Chemosphere 140, 85– 98, 2015. GU, WENJIE , ZHANG, F., XU, P., TANG, S., XIE, K., HUANG, X., & HUANG, Q. Effects of sulphur and Thiobacillus thioparus on cow manure aerobic composting. Bioresource technology, v. 102, n. 11, p. 6529-6535, 2011. GUARDIA, A. D., PETIOT, C., ROGEAU, D., DRUILHE, C. Influence of aeration rate on nitrogen dynamics during composting. Waste Management, v. 28, n. 3, p. 575-587, 2008. GUARDIA, A., MALLARD, P., TEGLIA, C., MARIN, A., Le PAPE, C., LAUNAY, M., BENOIST, J.C., PETIOT, C. Comparison of five organic wastes regarding their behavior during composting: Part 2, nitrogen dynamic. Waste Management, v. 30, p. 415-425, 2010. HASSOUNA, M., ESPAGNOL, S., ROBIN, P., PAILLAT, J-M., LEVASSEUR, P., Li., Y. Monitoring NH3, N2O, CO2 and CH4 Emissions During Pig Solid Manure Storage – Effect of Turning. Compost Science & Utilization, v. 16, p. 267-274, 2008. HOUGH, JAMES SHANKS The Biotechnology of Malting and Brewing – hops and wort bowling, pag. 79: Cambridge University Press. England, 2001. HUANG, H., XIAO, D., ZHANG, Q., DING, L. Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources. J Environ Manag, v. 145, p.191–198, 2014. HUANG, J., WANG, C., JIH, C., 2000. ―Empirical model and kinetic behavior of thermophilic composting of vegetable waste.‖ Journal of Environmental EngineeringASCE 126 (11), 1019–1025., 2000. HUANG, D., ZENG, G. FENG, C., HU, S., LAI, C., ZHAO, M., SU, F., TANG, L., LIU, HL., Chances of microbial population structure related to lignin degradation during lignocellulosic waste composting. Bioresource Technology, v.101 p.4062-4067, 2010. HUIGE NJ. brewery by‐products and effluents. in: priest fg, stewart gg, editors. handbook of Brewing, 2nd ed. London, UK: CRC Press; 2006. INÁCIO, C.T, MILLER, P.R.M; Compostagem: Ciência e prática para a gestão de resíduos sólidos. Rio de Janeiro, RJ: Embrapa 2009. INÁCIO, Caio de Teves. Uso da Abundância Natural de 15N em Estudos com Fertilizantes Orgânicos, Ano de obtenção: 2015. Doutorado em Agronomia - Ciências do Solo. Universidade Federal Rural do Rio de Janeiro, UFRRJ, Brasil. (Capítulo II – Use of 15N natural abundance to estimate total N loss during bench-scale composting.). 1 1 International Journal of Chemical Engineering and Applications, v. 7, p. 47-51, 2016. JANCZAK D., Malin´ ska, K., Czekała, W., Cáceres, R., Lewicki, A., Dach, J., 2017. Biochar to reduce ammonia emissions in gaseous and liquid phase during composting of poultry manure with wheat straw. Waste Manage. 66, 36–45), 2017 JARITZ, M. The Brewing Process (illustration). Anton Paar. Disponível em: https://wiki.anton-paar.com/br-pt/processo-de-fabricação-de-cervejas/. Acessado em 03/01/2020. JIANG, T., MA, X., TANG, Q., YANG, J., LI, G., SCHUCHARDT, F. (2016). Combined use of nitrification inhibitor and struvite crystallization to reduce the NH3 and N2O emissions during composting. Bioresource technology, v. 217, p. 210218, 2016. JIANG, T., SCHUCHARDT F., LI, G., GUO, R., ZHAO, Y. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. Journal of Environmental Sciences, v. 23, p. 1754-1760, 2011. JING X., ARATA K., journal of bioscience and bioengineering Effect of temperature on reaction rate ad microbial counity in composting of cattle manure with rice straw pages 321- 328 issue 4 vol.104 China, 2007. JING, LI XUEJIANG WANG,JIAN WANG,YUAN LI,SIQING XIA,JIANFU ZHAO Chemical Engineering Journal: Simultaneous recovery of microalgae, ammonium and phosphate from simulated wastewater by MgO modified diatomite, 2019 KIRIN BEER UNIVERSITY. Kirin holdings. Produção Global de cerveja no mundo em 2018. Disponível em https://www.kirinholdings.co.jp/english/news/2019/1003_01.html. Acessado em 20/12/2019. KITHOME, M., PAUL, J., BOMKE, A., 1999. ―Reducing nitrogen losses during simulated composting of poultry manure using adsorbents or chemical amendments.‖ Journal of Environmental Quality 28 (1), 194–201. 1999. KANAUCHI O, MITSUYAMA K, ARAKI Y Development of a functional germinated barley foodstuff from brewers‘ spent grain for the treatment of ulcerative colitis. J. Am. Society of Brewing Chemists, 59: 59-62, 2001. KOZIK, A., HUTNIK, N., WIERZBOWSKA, B., PIOTROWSKI, K., MATYNIA A. Recovery of Struvite from Synthetic Animal Wastewater by Continuous Reaction Crystallization Process.022-12, 2002. KUNZE W., Technology Brewing & Malting- International edition, VLB, Berlin, pag 25- 780; 2005. LEE J, LEE J, YANG HJ, SONG KB. Preparation and characterization of brewer‘s spent grain protein‐chitosan composite films. Journal of Food Science and Technology. 2015. LETELIER V, TARELA E., MUÑOZ P., MORICONI G., Assessment of the mechanical properties of a concrete made by reusing both: Brewery spent diatomite and recycled aggregates. Construction and Building Materials Vol. 114, 1 July 2016, Pages 492-498, 2016. LIANG, Y., LEONARD, J.J., FEDDES, J.J.R. AND MCGILL, W.B. Influence of carbon and buffer amendment on ammonia volatilization in composting. Bioresource Technol. 97, 748- 761, 2006. LIU Y, H., KUMAR, S., KWAG, J. H, RA, CS. Magnesium ammonium phosphate formation, recovery and its application as valuable resources: a review. Journal of Chemical Technology and Biotechnology, v. 8 (2), p. 181–189, 2013. LIU Y, H., RAHMAN M, M., KWAG, J. H. Eco-friendly production of maize using struvite recovered from swine wastewater as a sustainable fertilizer source. Asian-Australasian Journal of Animal Sciences, 24: 1699–1705, 2011. LIU, L., KONG, H., LU, B., WANG, J., XIE, Y., FANG, P. The use of concentrated monosodium glutamate wastewater as a conditioning agent for adjusting acidity and minimizing ammonia volatilization in livestock manure composting. J. Environ. Manage, v. 161, p. 131–136, 2015. LONGLONG et al. How Does Recycling of Livestock Manure in Agroecosystems Affect Crop Productivity, Reactive Nitrogen Losses, and Soil Carbon Balance? Environmental Science & Technology, v. 51, n. 13, p. 7450-7457, 2017. MA TSUMURA, H., SASAKI, M., KATO, S., NAKASAKI, K. Unusual effects of triacylglycerol on the reduction of ammonia gas emission during thermophilic composting. Bioresource Technology, v. 101, p. 2300-2305, 2010. MAEDA,KOKI ET. AL. (2011). Microbiology of nitrogen cycle in animal manure compost. Microbial biotechnology. 2011 MAGALHÃES, A. M.T., SHEA, P.J., JAWSON, M.D., WICKLUND E.A. & NELSON, D.W. Pratical Simulation of Composting in the Laboratory. Waste Management & Research. 11: 143-154, 1993. MASON, I. G.; MILKE, M. W., ―Physical modeling of composting enviroment: A review. Part 2: Simulation performace.‖ Waste Management. v.25, p501-509. 2005. MASON, I.G., MILKE, M.W. Physical modelling of the composting environment: A review. Part 1: Reactor systems. Waste Management, v. 25, p. 481-500, 2005. MATHIAS TR., DE MELLO PM., SERVULO ERF., Solid wastes in brewing process: A review. Journal of Brewing and Distilling. 2014. MATHIAS TR., DE MELLO PM., SERVULO ERF, ALEXANDRE VMF., Characterization and determination of brewer's solid wastes composition Journal of Brewing and Distilling. 2015 MATSUMURA, H., SASAKI, M., KATO S-I., NAKASAKI, K. Unusual effects of triacylglycerol on the reduction of ammonia gas emission during thermophilic composting. Bioresource Tecnology, 101: 2300-2305, 2010. MCCARTNEY, D., CHEN, H.. ―Using a biocell to measure effect of compressive settlement on free air space and microbial activity in windrow.‖ Compost Science & Utilisation 9 (4), 285–302, 2001 MICHAEL LEWIS; TOM W. YOUNG Brewing. Springer,. p. 204 , 2002. MICHEL, F.C., REDDY, C.A., FORNEY, L.J., 1993. ―Yard waste composting: studies using different mixes of leaves and grass in a laboratory scale system.‖ Compost Science & Utilisation 1 (3), 85–96, 1993. MICHEL, F.C., REDDY, C.A., FORNEY, L.J., 1995. ―Microbial-degradation and humification of the lawn care pesticide 2,4-dichlorophenoxyacetic acid during the composting of yard trimmings‖. Applied and Environmental Microbiology 61 (7), 2566–2571, 1995. MILLER, F.C. Composting as a process based on the control of ecologically selective factors. In: Metting, F.B., Jr. (Ed.), Soil Microbial Ecology, Applications in 101 Agricultural and Environmental Management. Marcel Dekker, Inc., New York, pp. 515–544. 1992. MUSSATTO, S.I. DRAGONE, G. ROBERTO, I.C. Journal of Cereal Science Brewers' spent grain: generation, characteristics and potential applications Vol. 43, Issue 1, Pages 1-14; Elsevier, Brasil; 2006. MUSSATTO SI. Biotechnological potential of brewing industry by‐products. In: Nigam PS, Pandey A, editors. Biotechnology for Agro‐industrial Residues Utilisation. New York, US: Springer; 2009. MUSSATTO S.I. e ROBERTO I.C. Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer‘s spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochem. 43: 540-546, 2008. ONWOSI, CHUKWUDI & IGBOKWE, VICTOR & ODIMBA, NNEKA & EKE, IFEANYICHUKWU & NWANKWOALA, MARY & IROH, IKEMDINACHI & EZEOGU, LEWIS. (2017). Composting technology in waste stabilization: On the methods, challenges and future prospects. Journal of Environmental Management. 190. 140-157. 10.1016/j.jenvman.2016.12.051. 2017 OHTAKI, A. AND NAKASAKI, K. Ultimate degradability of various kinds of biodegradable plastics under controlled composting conditions. Waste management and research. 18 (2) 184- 189, 2000. PALMER, G. H, Cereal Science and Malting Technology—The Future, The International Centre for Brewing and Distilling, Riccarton, Edinburgh, EH14 4 AS, Scotland, 1992. PEPE O1, VENTORINO V, BLAIOTTA G. Dynamic of functional microbial groups during mesophilic composting of agro-industrial wastes and free-living (N2)-fixing bacteria application. DIA-Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici (NA), Italy, 2013 REN, L-M., LI, G-X., SHEN, Y-J., SCHUCHARDT, F., PENG, L. Chemical precipitation for controlling nitrogen loss during composting. Waste Management and Research, v. 28, p. 385- 394, 2010. RICHARD, TOM & HAMELERS, H.V.M. & VEEKEN, ADRIE & SILVA, Moisture relationships in composting processes. Compost science & utilization. 10. 286-302. RINK, R. On-farm composting handbook. Ithaca, NY: NREAS.1998, 2002. RUSS, W., MORTEL, H., AND MEYER‐PITTROFF, R. Application of spent grains to increase porosity in bricks, Constr. Build. Mater. 19, 117– 126, 2005. SÁNCHEZ-MONEDERO, M.A., ROIG, A., PAREDES, C., BERNAL, M.P., 2001. Nitrogen transformation during organic waste composting by Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Biores. Technol. 78, 2001. SANTOS M, JIMÉNEZ JJ, BARTOLOMÉ B, GÓMEZ‐CORDOVÉS C, DEL NOZAL MJ. Variability of brewer‘s spent grain within a brewery. Food Chemistry. 2003. SÁEZ TOVAR, JOSÉ & CLEMENTE, RAFAEL & BUSTAMANTE, M. & YAÑEZ, DAVID & BERNAL, MARIA. . Evaluation of the slurry management strategy and the integration of the composting technology in a pig farm – Agronomical and environmental implications. Journal of Environmental Management. 192. 57-67. 10.1016/j.jenvman.2017.01.040. 2017 SAI W.T , SIEN K.J.H, CHANG Y.M. Removal of herbicide paraquat from an aqueous solution by adsorption onto spent and treated diatomaceous earth. Bioresource Technology Volume 96, Issue 6, Pages 657-663, April, 2005. SCHORTH, G. Decomposition and nutrient supply from biomass. In G. Schorth & F.L. Sinclari, eds. Trees, crops and soil fertility: concepts and research methods. CABI Publishing, 2003. STEINER, C., DAS, K.C., MELEAR, N., LAKLY, D., 2010. Reducing nitrogen loss during STOCKS, C., BARKER, A.J., GUY, S., 2002. ―The composting of brewery sludge‖. Journal of the Institute of Brewing 108 (4), 452–458., 2002 SUNDBERG, C., JONSSON, H., 2003.‖ Down-scaling a large composting plant to pilot-scale for systematic research.‖ In: Proceedings of the Fourth International Conference of ORBIT Association on Biological Processing of Organics: Advances for a Sustainable Society, 30th April–2 May, Perth, Australia, pp. 388–397. 2003 HIRAISHI, TOSHIHIRO & SAGARA, KAZUNOBU & YAMANAKA, TOSHIO & KOUTANI, HISASHI & MOMOI, YOSHIHISA. Composting process model considering both ventilation by changing gas composition and moisture transfer by water potential. Journal of Environmental Engineering (Transactions of AIJ). 77. 213-221. 10.3130/aije.77.213. (2012) TERMEER, W.C., WARMAN, P.R., 1993. Use of mineral amendments to reduce ammonia, 1993losses from dairy-cattle and chicken manure slurries. Biores. Technol. 44, 217– TUOMELA, MARJA & VIKMAN, M. & HATAKKA, ANNELE & ITÄVAARA, MERJA. Biodegradation of Lignin in a Compost Environment: A Review. Bioresource Technology. 72. 169-183. 10.1016/S0960-8524(99)00104-2, 2000. WANG X.A, ZHAO A, WANGA H., ZHAO X., CUI H., WEI Z. Reducing nitrogen loss and phytotoxicity during beer vinasse composting with biochar addition. Waste Management. Elsevier Ltd. 10.1016/j.wasman.2016.12.024, 2016. WEN-TIEN TSAI,*, KUO-JONG HSIEN, AND, AND CHI-WEI LAI Chemical Activation of Spent Diatomaceous Earth by Alkaline Etching in the Preparation of Mesoporous Adsorbents; Industrial & Engineering Chemistry Research 43 (23), 7513-7520, 2004 XIA, P. X.J. WANG, X. WANG, J.K. SONG, H. WANG, J. ZHANG, J.F. ZHAO, Struvite crystallization combined adsorption of phosphate and ammonium from aqueous solutions by mesoporous MgO loaded diatomite, Colloid Surf., A 506 (2016) XIAO Z., ZENG Y.,KIDA K., Bioresource Technology, Insight into the microbiology of nitrogen cycle in the diary manure composting process revelead by combining high- throughput sequencing and qualitative PCR. vol 301,122760, China, 2020 ZHANG, F-B., GU, W-J, XU, P-Z., XIE, K-Z., TANG, S-H., CHEN, J-S., YANG, S-H. Increasing nitrogen conservation byadding urease inhibitor NBPT to chicken compost manure. Chinese Journal of Eco-Agriculture, v. 18, p. 643-648, 2010. ZHANG, L., CHEN, G., SUN, H., ZHOU, S., ZOU, G., 2016. Straw biochar hastens organic matter degradation and produces nutrient-rich compost. Biores. Technol. 200,876–883., 2016 ZHANG, L., SUN, X., 2014. Changes in physical, chemical and microbiologicalproperties during the two-stage co-composting of green waste with spentmushroom compost and biochar. Biores. Technol. 171, 274–284., 2014 ZHANG, W., LAU, A. Reducing ammonia emission from poultry manure composting via struvite formation. Journal of Chemical Technology and Biotechnology, v. 85, p. 598-602, 2007. ZHANG, Y., ZHAO, Y., CHEN, Y., LU, Q., LI, M., WANG, X., WEI, Y., XIE, X., WEI, Z., Aregulating method for reducing nitrogen loss based on enriched ammoniaoxidizing bacteria during composting. Biores. Technol. 221, 276–283., 2016b ZHAOLUN, W., Y. YUXIANG, Q. XUPING, Z. JIANBO, C. YARU AND N. LINXI. Decolouring mechanism of zhejiang diatomite. application to printing and dyeing wastewater. Environ. Chem. Lett., v.3: p.33-37, 2005. ZOU, Y., HU, Z., ZHANG, J., XIE, H., GIMBAUD, C., FANG, Y., Effects of pH on nitrogen transformations in media-based aquaponics. Biores. Technol. v. 210, p.81–87, 2016 KITHOME, M., PAUL, J.W., BOMKE, A.A. Reducing nitrogen losses during simulated composting of poultry manure using adsorbents or chemical amendments, Journal of Environmental Quality v.28 (1) p.194-201, 1999. KIRCHMANN, H., WITTER, E., Ammonia volatilization during aerobic and anaerobic manure decomposition, Plant and Soil v. 115 (1) p. 35-41, 1989. TAM, N.F.Y, TIQUIA, S.M. Nitrogen transformation during co-composting of spent pig manure, sawdust litter and sludge under forced-aerated system, Environmental Technology, v.20 (3) p.259-267, 1999. NELSON, D.W., BEYROUTY, C.A., SCHLEGEL, A.J. Effects of phosphoroamide urease inhibitors on nitrogen transformations in soil and maize yields. Trans. 13th Inter. Congr. Soil Sci. 3:880–881, 1986. FRENEY, J.R., SIMPSON, J.R., DENMEAD, O.T., Volatilization of ammonia Gaseous Loss of Nitrogen from Plant-Soil Systems. Martinus Nijhoff, Dr W. Junk, The Hague, p. 1–32, 1983. VLEK, P L G, STUMPE, J M AND BYRNES, B H. Urease activity and inhibition in flooded soil systems. Fert. V.1 p.191–202, 1980.por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/72274/2020%20-%20S%c3%a2mera%20Pereira%20Lopes.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6346
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-02-18T18:26:27Z No. of bitstreams: 1 2020 - Sâmera Pereira Lopes.pdf: 1276186 bytes, checksum: bad37a9f8488f3bd9a86e8c1307acfb4 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-02-18T18:26:27Z (GMT). No. of bitstreams: 1 2020 - Sâmera Pereira Lopes.pdf: 1276186 bytes, checksum: bad37a9f8488f3bd9a86e8c1307acfb4 (MD5) Previous issue date: 2020-04-30eng
Appears in Collections:Mestrado em Engenharia Agrícola e Ambiental

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2020 - Sâmera Pereira Lopes.pdf1.25 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.