Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/11255
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOliveira Junior, Joel Quintino de
dc.date.accessioned2023-12-22T01:49:23Z-
dc.date.available2023-12-22T01:49:23Z-
dc.date.issued2014-02-28
dc.identifier.citationOLIVEIRA JUNIOR, Joel Quintino de. Estudo de associação entre bactérias fixadoras de nitrogênio e fungos micorrízicos arbusculares associados a leguminosas do grupo das piptadenias. 2014. 56 f. Dissertação (Mestrado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2014.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11255-
dc.description.abstractA família Leguminosae compreende um imensa variedade de espécies que formam simbiose com fungos micorrízicos arbusculares (FMAs) e, em sua grande maioria, com bactérias fixadoras de nitrogênio. Dentro desse quadro se encaixa o grupo de Pitadenia que engloba os gêneros: Mimosa, Piptadenia, Parapiptadenia, Anadenathera, Pseudopiptadenia, Microlobius, Stryphnodendron e Adenopia, compreendendo mais de 500 espécies, sendo que a maioria delas é encontrada no novo mundo, em especial no Brasil. Seus hábitos variam desde espécies herbáceas até arbóreas e se desenvolvem em áreas alagadas, secas, campos de altitude, cerrado entre outros ecossistemas. São bem conhecidas e utilizadas na reabilitação de solos degradados por sua agressividade e capacidade de se desenvolver nas mais adversas condições edáficas. Resultados indicam que em algumas espécies desse grupo só nodulariam com a presença de fungos micorrízicos. As leguminosas usam para a realização dessas duas simbioses mecanismos moleculares muito similares e algumas dessas espécies de leguminosas nativas da subfamília Mimosoideae mostram habilidades atípicas e com alto potencial de exploração evolucionária entre as duas simbioses. O objetivo deste trabalho é investigar e confirmar essa dependência da presença de fungos micorrízicos arbusculares para a nodulação e fixação biológica de nitrogênio em espécies do grupo de Piptadenia noduladas por Burkholderia sp. sob condições controladaspor
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectMycorrhizal dependencyeng
dc.subjectnodulationeng
dc.subjectBurkholderiaeng
dc.subjectDependência micorrízicapor
dc.subjectnodulaçãopor
dc.subjectfixação biológica de nitrogêniopor
dc.subjectfungos micorrízicos arbuscularespor
dc.subjectbiological nitrogen fixationpor
dc.subjectmycorrhizal fungipor
dc.titleEstudo de associação entre bactérias fixadoras de nitrogênio e fungos micorrízicos arbusculares associados a leguminosas do grupo das piptadeniaspor
dc.title.alternativeStudy of association between nitrogen-fixing bacteria and arbuscular mycorrhizal fungi associated with legumes from the piptadenias groupeng
dc.typeDissertaçãopor
dc.description.abstractOtherLeguminosae comprises a wide variety of species that form symbiosis with mycorrhizal fungi (AMF), and mostly with nitrogen fixing bacteria. Within this frame fits the group Pitadenia encompassing genres: Mimosa, Piptadenia, Parapiptadenia, Anadenathera, Pseudopiptadenia, Microlobius, Stryphnodendron and Adenopia, comprising over 500 species, of which most are found in the New World , especially in Brazil . Their habits vary from tree and herbaceous species to thrive in flooded, dry, high altitude grasslands , savanna ecosystems among other areas . Are well known and used in the rehabilitation of degraded soils by their aggressiveness and ability to grow under adverse soil conditions. Results indicate that in some species of this group only nodulated with the presence of mycorrhizal fungi. Legumes use for the realization of these two symbioses very similar molecular mechanisms and some of leguminous species from the subfamily Mimosoideae show atypical and high potential exploration of evolutionary symbiosis between the two skills. The objective of this work is to investigate and confirm this dependence of the presence of arbuscular mycorrhizal fungi for nodulation and nitrogen fixation in species group Piptadenia nodulated by Burkholderia sp . under controlled conditionseng
dc.contributor.advisor1Faria, Sergio Miana de
dc.contributor.advisor1ID612.687.127-87por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2191253156772498por
dc.contributor.advisor-co1Jesus, Ederson da Conceição
dc.contributor.advisor-co1ID846.466.497-70por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/8253292050291316por
dc.contributor.referee1Berbara, Ricardo Luis Louro
dc.contributor.referee2Moraes, Luiz Fernando Duarte de
dc.creator.ID115.886.417-59por
dc.creator.Latteshttp://lattes.cnpq.br/6111654743196697por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Florestaspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Ambientais e Florestaispor
dc.relation.referencesAbd-Alla, M.H., El-Enany, AH.E., Nafady N.A., Khalaf, D.M., Morsy, F.M., Synergistic interaction of Rhizobium leguminosarum bv. viciae andarbuscular mycorrhizal fungi as a plant growth promotingbiofertilizers for faba bean (Vicia faba L.) in alkaline soil. Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt .Microbiological Research 169 . 49– 58. 2014 Margulis, L., and M. J. Chapman. 1998. Endosymbioses: cyclical and permanent in evolution. Trends Microbiol. 6:342–345. Futuyma, D. J., and M. Slatkin. 1983. Coevolution, p. 155. Sinauer, Sunderland, Mass. Sanders, I. R. 1999. No sex please, we’re fungi. Nature 399:737–739. Andrade, G., K. L. Mihara, R. G. Linderman, and G. J. Bethlenfalvay. 1997. Bacteria from rhizosphere and hyphosphere soils of different arbuscularmycorrhizal fungi. Plant Soil 192:71–79. Allen, O.N., Allen, E.K. 1981. The Leguminosae. A Source Book of Characteristics, Uses and Nodulation. The University of Wisconsin Press, Madison Wisconsin. 812 pages. Bago, B., Pfeffer, P. E., Shachar-Hill, Y. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology, Washington, v.124, n.3, p.949-958, Nov. 2000. Barneby, R. C. 1991. Sensitivae Censitae: a description of the genus Mimosa Linnaeus (Mimosaceae) in the New World. Memoirs of the New York Botanical Garden 65:1-835. Becard, G & Piche, Y. New aspects on the acquisition of biotrophic status by a vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytologist, v.112, n.1,p.77-83, 1989. Bloemberg GV, Wijfjes AHM, Lamers GEM, Stuurman N, Lugtenberg BJJ. 2000. Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: New perspectives for studying microbial communities. Molecular Plant-Microbe Interactions 13: 1170-1176. Boddey RM, Peoples MB, Palmer B, Dart PJ. 2000. Use of the N-15 natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutrient Cycling in Agroecosystems. 57: 235-270. Boddey RM, Urquiaga S, Alves BJR, Reis V. 2003. Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant and Soil 252: 139-149. Bontemps, C., Elliott, G.N., Simon, M.F., Reis Junior, F.B., Gross, E., Lawton, R.C., Neto, N.E., Loureiro, M.F., de Faria, S.M., Sprent, J.I., James, E.K. and Young P.W. 2010. Burkholderia species are ancient symbionts of legumes. Molecular Ecology, 19-44-52; 40 Bonfante, P. & Anca, I-A. 2009. Plants, Mycorrhizal Fungi, and Bacteria: A network of interactions. Annual Rev. of Microbiology. 63:363-83 Bonfante P, Balestrini R, Mendgen K. Storage and secretion processes in the spore of Gigaspora margarita Becker & Hall as revealed by high-pressure freezing and freeze substitution. New Phytol 128: 93–101. 1994. Brundrett, M. C. Mycorrhizas in natural ecosystems. Advances in Ecological Research. London, v.21, p.171-213, 1991. Burleigh, S. H.; Bechmann, I. E. Plant nutrient transporter regulation in arbuscular mycorrhizas. Plant and Soil, v. 244, p. 247-251, 2002. Burleigh, S. H.; Cavagnaro, T.; Jakobsen, I. Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. Journal of Experimental Botany, v. 53, p. 1593-1601, 2002. Bethlenfalvay, J.G., Pacovsky,J.G., Bayne,G.H., Stafford,A.E. Interactions between Nitrogen Fixation, Mycorrhizal Colonization, and Host-Plant Growth in the Phaseolus-Rhizobium- Glomus Symbiosis. Plant Physiology. V.70, 446-450.1982 Brock, T.D., Madigan, M.T., Martinko, J.M., Parker, J. Biology of microrganisms. 7th ed. New Jersey. Prentice Hall, 1994. 909p. Broughton, W.J., Hanin,M., Relic, B., Kopcinska, J., Golinowski,W., Simsek, S., Ojanen-Reuhs, B., Marie, C., Kobayashi, H., Bordogna, B., Le Quere, A., Jabbouri, S., Fellay, R., Perret, X., Deakin, W.J. Flavonoid-inducible modifications to rhamnan O antigens are necessary for Rhizobium sp. strain NGR234-legume symbioses. Journal of Bacteriology, Washington, v.188, n.10, p.3654-3663, may 2006. Caldeira, M.V.W., Silva E. M. R., Franco, A.A.,Zanon, M.L.B. Crescimento de Leguminosas arbóreas em respostas a inoculação com Fungos Micorrízicos Arbusculares. Ciência Florestal, v.7, n.1, 1997 Carneiro, M. A. C. et al. Micorriza arbuscular em espécies arbóreas e arbustivas nativas de ocorrência no sudeste do Brasil. Cerne, v.4, n.1,p.129-145, 1998. Chen, W. M., S. Laevens, T. M. Lee, T. Coenye, P. de Vos, M. Mergeay, P. Vandamme. 2001. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. International Journal of Systematic and Evolutionary Microbiology 51:1729-1735. Chen, W. M., E. K. James, A. R. Prescott, M. Kierans, J. I. Sprent. 2003a. Nodulation of Mimosa spp. by the β-proteobacterium Ralstonia taiwanensis. Molecular Plant-Microbe Interactions 16: 1051-1061. Chen, W. M., L. Moulin, C. Bontemps, P. Vandamme, G. Béna, C. Boivin-Masson. 2003b. Legume symbiotic nitrogen fixation by β-Proteobacteria is widespread in nature. Journal of Bacteriology 185: 7266-7272. 41 Chen, W-M, James E.K., Coenye, T. 2006. Burkholderia mimosarum sp. Nov., isolated from root nodules of Mimosa spp. From Tiawan and South-America. International Journal of Systematic and Evolutionary Microbiology, 56, 1847-1851 Chen, W-M, de Faria, S.M., Chou J-H. 2008 Burkholderia sabie sp. Nov.., isolated from root nodules of Mimosa caesalpiniifolia. International Journal of Systematic and Evolutionary Microbiology. 58, 2174-2179 Chen X, Tang JJ, Zhi GY, Hu SJ. Arbuscular mycorrhizal colonization and phosphorus acquisition of plants: effects of coexisting plant species. Appl Soil Ecol 28:259–269. 2005 Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Von Fischer JC, Elseroad A, Wasson MF. 1999. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochemical Cycles 13: 623-645. Coenye T, Vandamme P. 2003. Diversity and significance of Burkholderia species occupying diverse ecological niches Environmental Microbiology 5: 719-729. Cranenbrouck s., Voets l., Bivort C., Renard l., Strullu D-S., Declerck S.2005. Methodologies for in vitro cultivation of arbucualr mycorrhizal fungi with root organs. In: Vitro Culture of Mycorrhizas Series: Soil Biology, Vol. 4 Declerck, Stéphane; Strullu, Désiré-Georges; Fortin, J. André (Eds.), XXIV, p.341-375. Dalmastri C, Fiore A, Alisi C, Bevivino A, Tabacchioni S, Giuliano G, Sprocati AR, Segre L, Mahenthiralingam E, Chiarini L, Vandamme P. 2003. A rhizospheric Burkholderia cepacia complex population: genotypic and phenotypic diversity of Burkholderia cenocepacia and Burkholderia ambifaria. FEMS Microbiology Ecology 46: 179-187. Engelhard, M., Hurek, T., Reinhold-Hurek, B. 2000. Preferential occurrence of diazotrophic endophyte, Azoarcus sp. in wild rice species and land races of Oryza sativa in comparison with modern races. Environmental Microbiology 2: 131-141. Estrada de Los Santos, P., R. Bustillos-Cristales, J. Caballero-Mellado. 2001. Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Applied and Environmental Microbiology 67: 2790-2798. Declerck, S.,Strullu D.G. & Fortin J.A. 2005 In: Vitro Culture of Mycorrhizas Series: Soil Biology, Vol. 4 Declerck, Stéphane; Strullu, Désiré-Georges; Fortin, J. André (Eds.) 2005, XXIV, pp.388. de Faria, S.M. de, Mc Inroy, S.G and Sprent, J.I.1987. Occurrence of infected cells, with persistent infection threads, in legume root nodules. Canadian Journal of Botany; 65:553-558 de Faria, S.M. de, Lima, H.C., Mucci, E.S.F and Sprent, J.I. 1987. Nodulation of legume trees from south east Brazil.. Plant and Soil, 99: 347-356 de Faria, S.M., Lewis, G.P., Sprent, J.I., & Suherland, J.M.1989. Occurrence of nodulation in the Leguminosae. New Phytologist, 111:185-192 42 de Faria, S.M. Lima, H.C., Olivares, F.L., Melo, R.B. & Xavier, R.P.1999. Nodulação em espécies florestais, especificidade hospedeira e implicações na sistemática de leguminosae. Soil Fertility, Soil Biology, and Plant Nutrition Interrelationships. 667-686 de Faria, S. M., H. C. de Lima, A. A. Franco, E. S. F. Mucci, J. I. Sprent. 1987. Nodulation of legume trees from South East Brazil. Plant and Soil 99: 347-356. de Faria, S. M., G.T. Hay, J. I. Sprent. 1988. Entry of rhizobia into roots of Mimosa scabrella Bentham occurs between epidermal cells. Journal of General Microbiology 134: 2291-2296. de Faria, S. M., H. C. de Lima. 1998. Additional studies of the nodulation status of legume species in Brazil. Plant and Soil 200: 185-192. de Faria, S. M.,Diedhiou, A.G., Lima H.C.de, Ribeiro, R.D., Galiana, A. Castilho, A.F. and Henriques, J.C. 2010 Evaluation the nodulation status of leguminous species from the Amazonian forest of Brazl. Journal Experimental Botany 62 (11):3119-3127. de Souza F A & Declerck S 2003. Mycelium development and architecture, and spore production of Scutellospora reticulata in monoxenic culture with Ri T-DNA transformed carrot roots. Mycologia, v.95, n.6,p.1004-1012. de Souza & Berbara 1999. Ontogeny of Glomus clarum in Ri T-DNA transformed roots. Mycologia, v.91, n.2,p.343-350, 1999. Eom, A.H.; Hartnett, D.C.; Wilson, G.W.T. Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia, 122:435-444,2000. Flores-Aylas, W. W.; Saggin-Júnior, O. J.; Siqueira, J. O.; David, A. C. Efeito de Glomus etunicatum e fósforo no crescimento inicial de espécies arbóreas em semeadura direta. Pesquisa Agropecuária Brasileira, Brasília, v.38, n.2, p.257-266, fev. 2003 Fortin J.A.; Declerck, S. & Strullu D.G. 2005 In vitro culture of mycorrhizas – Part 1 State of Art. In: Vitro Culture of Mycorrhizas Series: Soil Biology, Vol. 4 Declerck, Stéphane; Strullu, Désiré-Georges; Fortin, J. André (Eds.), XXIV, p. 3-16. Fougnies, L. et al. Arbuscular Mycorrhizal Colonization and nodulation improve flooding tolerance in Pterocarpus Officinalis Jacq. Seedings. Mychorriza. Berlin. V.7. n.1, p. 159-166, Feb.2006. Franco, A. A., de Faria S. M. 1997. The contribution of N2-fixing tree legumes to land reclamation and sustainability in the tropics. Soil Biology Biochemestry 29: 897-903. Frey-Klett P, Garbaye J, Tarkka M. The mycorrhiza helper bacteria revisited. New Phytol 176: 22–36. 2007 Genre, A., Chabaud, M., Timmers, T., Bonfante, P. and Barker, D.G. 2005. Arbuscular Mycorrhizal Fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermalcells before infection. Plant and Cell 17:3489-3499. 43 Gillis M, Van Tran V, Bardin R, Goor M, Hebbar P, Willems A, Segers P, Kersters K, Giraud, E., Moulin, L., Vallenet, D. 2007. Legumes symbioses : absence of nod genes in photosynthetic bradyrhizobia. Science, 316:1307-1312 Gonçalves, C.A., Goi, S.R., Neto, J.J. Crescimento e Nodulação de Inga marginata em resposta à adição de nitrogênio, fósforo e inoculação com rizóbio. Floresta e Ambiente. v. 6, n.1, p.118 - 126, jan./dez. 1999 Heulin T, Fernandez MP. 1995. Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. International Journal of Systematic Bacteriology. 45: 274-289. Hirsch, A.M., Kapulnik, Y. Signal transduction pathways in mycorrhizal associations: Comparisons with the Rhizobium- Legume Symbiosis. Fungal Gen and Biol 23:205–212. 1998. Giovannetti, M. & Mosse, B. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84: 489-500. 1980. Gyaneshwar, P., James, E.K., Reddy, P.M., Ladha, J.K. 2002. Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium tolerant rice varieties. New Phytologist 154: 131-146. Haukka K, Lindstrom K, Young JPW. 1998. Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Applied and Environmental Microbiology 64: 419-426. Högburg, P., 1997. 15N natural abundance in soil-plant systems. New Phytologist 137: 179-203. Iwamoto T, Tani K, Nakamura K, Suzuki Y, Kitagawa M, Eguchi M, Nasu M. 2000. Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE. FEMS Microbiology Ecology 32: 129-141. Jesus, E. da C., Schiavo, J. A. e de Faria, S. M. 2005. Dependência de micorrizas para a nodulação de leguminosas arbóreas tropicais. Rev. Árvore, 29 (4):545-552. Khan IA, Ayub N, Mirza SN, Nizami SM, Azam M. Synergistic effect of dual inoculation (vesicular-arbuscular mycorrhizae) on the growth and nutrients uptake of Medicago sativa. Pak J Bot 40:939–945. 2008 Kistner, C. Parniske, M. 2002. Evolution of signal transduction in intracellular symbiosis. Trends in Plant Science, 7(11):511-518 Lavin M, Pennington RT, Klitgaard BB, Sprent JI, de Lima HC, Gasson PE. 2001. The dalbergioid legumes (Fabaceae): Delimitation of a pantropical monophyletic clade. American Journal of Botany 88: 503-533. Lewis, G.P. 1987. Legumes of Bahia. Kew, Royal Botanic Gardens. 44 Lewis, G.P., Schrire, Mackinder, B. and Lock, M. 2005. Legumes of the world. The Royal Botanic Gardens Kew Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R. 2003. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302: 630-633. Lovell CR, Piceno YM, Quattro JM, Bagwell CE. 2000. Molecular analysis of diazotroph diversity in the rhizosphere of the smooth cordgrass, Spartina alterniflora. Applied and Environmental Microbiology 66: 3814-22. Lodwig, E.M., Hosie, A.H.F., Bourdes, A., Findlay, K., Allaway, D., Karunakaran R. Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature. 422:722–6. 2003 Marin, V. A.; Baldani, V. L. D.; Teixeira, K. R. S.; Baldani, J. I. Fixação Biológica de Nitrogênio: Bactérias Fixadoras de Nitrogênio de Importância para a Agricultura Tropical. Disponível em: <http://www.cnpab.embrapa.br/ publicacoes/download/doc091.pdf> Acesso em: 15 de junho de 2007. Markmann, K. & Parniske, M. 2009. Evolution of root endosymbiosis with bacteria: how novel are nodules? Cell 14(2):77-86 Mello, A.H., Silva, E.M.R., Saggin Júnior, O.J. 2012. Dependência Micorrízica Da Leguminosa Mimosa artemisiana Heringer & Paula. Agroecossitemas. v. 4, n. 2, p. 67-78, 2012. Mia MAB, Shamsuddin ZH. 2010. Rhizobium as a crop enhancer and biofertilizer for increased cereal production. Afr J Biotechnol 9:6001–6009 Miller, R. M.; Reinhardt, D. R.; Jastrow, J. D. External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia, Berlin, v.103, n.1, p.17–23, July 1995. Moreira, F. M. S., M. Gillis, B. Pot, K. Kersters, A. A. Franco. 1993. Characterization of rhizobia isolated from different divergence groups of tropical Leguminosae by comparative polyacrylamide gel electrophoresis of their total proteins. Systematic and Applied Microbiology 16: 135-146. Moreira, F. M. S.; Siqueira, J. O. Microbiologia e Bioquímica do Solo. Lavras: Editora UFLA, 2 ed, 2006. Moulin, L., A. Munive, B. Dreyfus, C. Boivin-Masson. Nodulation of legumes by members of the β-subclass of Proteobacteria. Nature 411:948-950. 2001. Moulin, L., Chen, W-M., Béna, G., Dreyfus, B., Boivin-Massson, C. Rhizobia: the family is expanding. Pages 61-65 in: Nitrogen Fixation: Global Perspectives. T. Finan, M. O’Brian, D. Layzell, K. Vessey, and W. Newton, eds. CAB International. 2002. 45 Oyaizu, H., S. Matsumoto, K. Minamisawa, T. Gamou. Distribution of rhizobia in leguminous plants surveyed by phylogenetic identification. Journal of General and Applied Microbiology 39: 339-354. 1993. Palmer, K.M., Turner, S.L., Young, J.P.W. Sequence Diversity of the Plasmid Replication Gene repC in the Rhizobiaceae. Plasmid 44: 209-219. 2000. Parniske, M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol. 6(10):763-75. Review. 2008 Pouyu-Rojas, E.; Siqueira, J.O. & Santos, J.G.D. Compatibilidade simbiótica de fungos micorrízicos arbusculares com mudas de espécies arbóreas tropicais. R. Bras. Ci. Solo, 30:413-424, 2006. Rodriguez, A.; Clapp, J. P.; Dodd, J. C. Ribosomal RNA gene sequence diversity in arbuscular mycorrhizal fungi (Glomeromycota). The Journal of Ecology, Oxford, v.92, n.6, p.986-989, Dec. 2004. Redecker D., Hijri,M., Dulieu,H. & Sanders,I.R. (1999). Phylogenetic analysis of a dataset of fungal 5.8S rDNA sequences shows that highly divergent copies of internal transcribed spacers reported from Scutellospora castanea are of ascomycete origin. Fungal Genetics and Biology 28(3):238-244. Rigottier-Gois L, Turner SL, Young JPW, Amarger N. 1998. Distribution of repC plasmid-replication sequences among plasmids and isolates of Rhizobium leguminosarum bv. viciae from field populations. Microbiology 144: 771-780. Rivas R, Velazquez E, Willems A, Vizcaino N, Subba-Rao NS, Mateos PF, Gillis M, Dazzo FB, Martinez-Molina E. 2002. A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) Druce Applied and Environmental Microbiology 68: 5217-5222. Scannerini, S., Bonfante, P. Bacteria and bacterialike objects in endomycorrhizal fungi. In: Margulis L, Fester R (eds) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press: Cambridge, pp 273–287. 1991. Sieverding,E.1991. Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Eschborn: GTZ,. 371 p. Somasegaran, P., Hoben, H.J. 1994. Handbook for rhizobia: methods in Legume-rhizobium technology. Springer-Verlag, New York. Smith, S E & Read, D J. Mycorrhizal symbiosis. London, UK: Academic Press, 1997. Sprent, J.I., Geoghegan, I.E., Whitty, P.W., James, E.K. 1996. Natural abundance of 15N and 13C in nodulated legumes and other plants in the Cerrado and neighbouring regions of Brazil. Oecologia 105: 440-446. Sprent JI, Parsons R. 2000. Nitrogen fixation in legume and non-legume trees. Field Crops Research 65: 183-196. 46 Sprent. 2001. Flooding-tolerant legume symbioses from the Brazilian Pantanal. New Phytologist 150:723-738. Sprent, J. I. 2001. Nodulation in legumes. Royal Botanic Gardens, Kew, London. Sprent, J. I. 2009. Legume nodulation: A Global Perspective. Wiley-Blackwell Swedlow JR, Hu K, Andrews PD, Roos DS, Murray JM. 2002. Measuring tubulin content in Toxoplasma gondii: A comparison of laser-scanning confocal and wide-field fluorescence microscopy. Proceedings of the National Academy of Sciences 99: 2014-2019. Sy, A., Giraud, E., Jourand, P., Garcia, N., Willems, A., de Lajudie, P., Prin, Y., Neyra, M., Gillis, M., Boivin-Masson, C., Dreyfus, B. 2001a. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. Journal of Bacteriology 183: 214-220. Tavasolee A, Aliasgharzad N, Jouzani GS, Mardi M, Asgharzadeh A. 2011. Interactive effects of arbuscular mycorrhizal fungi and rhizobial strains on chickpea growth and nutrient content in plant. Afr J Biotechnol 10:7585–7591 Tirlapur UK, Konig K. 1999. Near-infrared femtosecond laser pulses as a novel non-invasive means for dye-permeation and 3D imaging of localised dye-coupling in the Arabidopsis root meristem. Plant Journal 20: 363-370. Trinick, M. J. 1980. Relationships amongst the fast-growing rhizobia of Lablab purpureus, Leucaena leucocephala, Mimosa spp., Acacia farnesiana and Sesbania grandiflora and their affinities with other rhizobial groups. J. Appl. Bacteriol. 49:39-53. Turner SL, RigottierGois L, Power RS, Amarger N, Young JPW. 1996. Diversity of repC plasmid-replication sequences in Rhizobium leguminosarum Microbiology 142: 1705-1713. Turner SL, Knight KAL, Young JPW. 2002. Identification and analysis of rhizobial plasmid origins of transfer. FEMS Microbiology Ecology 42: 227-234. van Berkum, P., Eardly, B.D. 1998. Molecular evolutionary systematics of the Rhizobiaceae. In: Spaink et al. (eds) Rhizobiaceae – Molecular Biology of the Model Plant-Associated Bacteria. Pp. 1-24. Kluwer, Dordrecht. van Berkum, P., Eardly, B.D. 2002. The aquatic budding bacterium Blastobacter denitrificans is a nitrogen-fixing symbiont of Aeschynomene indica. Applied and Environmental Microbiology 68: 1132-1136. van der Heijden, M G A; Klironomos, J N; Ursic, M; Moutoglis, P; Streitwolf, E R; Boller, T; Wiemken, A; Sanders, I R. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature London, v.396, n.6706,p.69-72, 1998. 47 Vandamme, P., J. Goris, W. M. Chen, P. de Vos, A. Willems. 2002. Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Systematic and Applied Microbiology 25:507-512. Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW. 2003. Co-existing grass species have distinctive arbuscular mycorrhizal communities. Molecular Ecology 12: 3085-3095. Verma, S. C., S. P. Chowdhury, A. K. Tripathi. 2004. Phylogeny based on 16S rDNA and nifH sequences of Ralstonia taiwanensis strains isolated from nitrogen-fixing nodules of Mimosa pudica, in India. Canadian Journal of Microbiology 50: 313-322. Versalovic J, Schneider M, de Bruijn FJ, Lupski JR. 1994. Genomic fingerprinting of bacteria using repetitive sequence based polymerase chain reaction. Methods in Molecular and Cell Biology 5: 25-40. Vincent, J. M. 1970. A manual for the practical study of root-nodule bacteria. IBP handbook 15. Blackwell Scientific Publications, Oxford. Wang, E.T., Rogel, M.A., de los Santos, A.G., Martínez-Romero, J., Cevallos, M.A., Martínez-Romero, E. 1999. Rhizobium etli bv. Mimosae, a novel biovar isolated from Mimosa affinis. International Journal of Systematic Bacteriology. 49: 1479-1491. Wang X, Pan Q, Chen F, Yan X, Liao H. Effects of coinoculation with arbuscular mycor-rhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza.21:173–81. 2011 Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M. 1992. Proposal of Burkholderia gen-nov and transfer of 7 species of the genus Pseudomonas homology group-II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb-nov. Microbiology and Immunology 36: 1251-1275. Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H. and Nishiuchi, Y. 1995. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) cob. Nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiol. Immunol. 39: 897-904. Young JPW. 1992. In: Biological Nitrogen Fixation. (Eds: Stacey, G., Burris, R. H., Evans, H. J.). New York, Chapman and Hall Young JPW. 1996. Phylogeny and taxonomy of rhizobia. Plant and Soil 186: 45-52. Young, J.P.W. 2004. In: Nitrogen fixation: 1888-2001. VI. Genomes and genomics of nitrogen-fixing organisms. (Eds: R. Palacios and W. E. Newton), Kluwer Academic Publishers, Dordrecht, The Netherlands. Wojciechowski, M. F., M. Lavin, and M. J. Sanderson. 2004. A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. American Journal of Botany 91: 1846-1862por
dc.subject.cnpqRecursos Florestais e Engenharia Florestalpor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/4832/2014%20-%20Joel%20Quintino%20de%20Oliveira%20Junior.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/19486/2014%20-%20Joel%20Quintino%20de%20Oliveira%20Junior.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/25763/2014%20-%20Joel%20Quintino%20de%20Oliveira%20Junior.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/32198/2014%20-%20Joel%20Quintino%20de%20Oliveira%20Junior.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/38578/2014%20-%20Joel%20Quintino%20de%20Oliveira%20Junior.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/44998/2014%20-%20Joel%20Quintino%20de%20Oliveira%20Junior.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/51326/2014%20-%20Joel%20Quintino%20de%20Oliveira%20Junior.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/57826/2014%20-%20Joel%20Quintino%20de%20Oliveira%20Junior.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/1358
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2017-01-09T10:11:25Z No. of bitstreams: 1 2014 - Joel Quintino de Oliveira Junior.pdf: 986333 bytes, checksum: 680ec4322bce52cb9979155c6978ea36 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2017-01-09T10:11:25Z (GMT). No. of bitstreams: 1 2014 - Joel Quintino de Oliveira Junior.pdf: 986333 bytes, checksum: 680ec4322bce52cb9979155c6978ea36 (MD5) Previous issue date: 2014-02-28eng
Appears in Collections:Mestrado em Ciências Ambientais e Florestais

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2014 - Joel Quintino de Oliveira Junior.pdf2014 - Joel Quintino de Oliveira Junior963.22 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.