Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/11249
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSouza, Rafael Eloy de
dc.date.accessioned2023-12-22T01:49:20Z-
dc.date.available2023-12-22T01:49:20Z-
dc.date.issued2020-02-18
dc.identifier.citationSOUZA, Rafael Eloy de. Síntese de adesivo lignina-fenol-formaldeído para painéis de madeira. 2020. 40 f. Dissertação (Mestrado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2020.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11249-
dc.description.abstractA lignina é um subproduto gerado em larga escala no processo de polpação da madeira e atualmente tem sido utilizada para geração de energia na própria fábrica. Devido a sua estrutura fenólica, ela vem sendo estudada para diversos fins de aplicação em diferentes produtos no mercado. Uma alternativa para utilização dessa lignina tem sido a de usos em adesivos fenólicos para painéis de madeira. Porém, devido a baixa reatividade da lignina kraft de eucalipto com o formaldeído durante o processo de síntese do adesivo, muitos estudos vêm sendo realizados para melhorar essa característica da lignina e assim obter um adesivo com propriedades comparativas aos atuais adesivos para madeiras encontrados no mercado. A fenolação tem sido uma metodologia promissora para aumentar a reatividade da lignina. A partir dessa premissa, esse trabalho objetivou-se em fenolar a lignina kraft de eucalipto para síntese e caracterização de adesivos fenólicos. Foram sintetizados seis adesivos lignina-fenol-formaldeído usando lignina fenolada e não fenolada em proporções de substituição de 30%, 40% e 50% do fenol, e adicionalmente foi preparado uma amostra controle, em que não houve substituição do fenol por lignina. Utilizou-se também uma amostra de adesivo comercial a fim de comparação dos resultados, totalizando oito tratamentos. Para cada tratamento foram confeccionados um painel compensado sob mesmas condições (tempo, temperatura e pressão) e produzidos oito corpos de prova para realização do teste de resistência da linha de cola ao esforço de cisalhamento. O processo de fenolação aumentou em 14,7% a reatividade da lignina kraft, havendo incremento de componentes fenólicos nas estruturas da lignina. A utilização de lignina teve efeitos nas propriedades dos adesivos sintetizados, tanto para os de lignina não fenolada, quanto para os de lignina fenolada. De acordo com os resultados encontrados, não houve diferença estatística, ao nível de 95% de probabilidade pelo teste de Scott-Knott, entre os tratamentos para o teste de resistência da linha de cola ao esforço de cisalhamento, exceto pelos tratamentos com 30% de substituição por lignina fenolada e não fenolada, atendendo os requisitos mínimos de resistência ao cisalhamento especificado pela norma europeia EN 314-2 (1993). Foi possível a utilização da lignina kraft para síntese dos adesivos fenol formaldeído em substituição parcial ao fenol. O adesivo considerado melhor foi o de 50% de substituição de lignina fenolada devido a maior taxa de substituição e melhor tempo de formação de gel.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectlignina kraftpor
dc.subjectsubprodutopor
dc.subjecteucaliptopor
dc.subjectfenolaçãopor
dc.subjectfenol formaldeídopor
dc.subjectkraft lignineng
dc.subjectbyproductpor
dc.subjecteucalyptuspor
dc.subjectphenolationpor
dc.subjectphenol formaldehydepor
dc.titleSíntese de adesivo lignina-fenol-formaldeído para painéis de madeirapor
dc.title.alternativeSynthesis of lignin-phenol-formaldehyde adhesive for wood panelseng
dc.typeDissertaçãopor
dc.description.abstractOtherLignin is a by-product generated on a large scale in the wood pulping process and has currently been used to generate energy in the pulp mill itself. Due to its phenolic structure, it has been studied for several application purposes in different products on the market. An alternative to the use of this lignin has been to use phenolic adhesives for wood boards. However, due to the low reactivity of eucalypt kraft lignin with formaldehyde during the adhesive synthesis process, many studies have been carried out to improve this characteristic of lignin and thus obtain an adhesive with properties comparable to the current wood adhesives found on the market. Phenolation has been a promising methodology for increasing the reactivity of lignin. Based on this premise, this work aimed to phenolate an eucalypt kraft lignin for the synthesis and characterization of phenolic adhesives. Six lignin-phenol-formaldehyde adhesives samples were synthesized using phenolated and non-phenolated lignin in substitution proportions of 30%, 40% and 50% of the phenol, in addition it was prepared a control sample, in which there was no substitution of phenol by lignin. A commercial adhesive sample was also used in order to compare the results, totalizing eight treatments. For each treatment, a plywood was made under the same conditions (time, temperature, and pressure), and eight specimens were produced to perform the test of resistance of the glue line to shear strength. The phenolation process increased the reactivity of lignin kraft by 14.7%, with an increase in phenolic components in the lignin structure. The use of lignin had effects on the properties of the synthesized adhesives, both for non-phenolated lignin and for phenolated lignin. According to the results found, there was no statistical difference, at the 95% probability level in the Scott-Knott test, among the treatments for the test of resistance of the glue line to shear strength, except for the treatments with 30% substitution by phenolated lignin and non-phenolated. The other treatments met the minimum requirements for shear strength specified by the European standard EN 314-2 (1993). Kraft lignin has shown promise in the production of lignin-based bioproducts. It was possible to use kraft lignin to synthesize phenol formaldehyde adhesives in partial replacement to phenol. The adhesive with 50% of replacement with phenolated lignin was considered the best from the adhesives synthesized due to higher percentage of replacement and faster gel time.eng
dc.contributor.advisor1Gomes, Fernando José Borges
dc.contributor.advisor1ID064.999.456-81por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0502504979310236por
dc.contributor.advisor-co1Brito, Edvá Oliveira
dc.contributor.advisor-co1ID208.400.981-20por
dc.contributor.advisor-co2Lelis, Roberto Carlos Costa
dc.contributor.advisor-co2ID497.049.906-34por
dc.contributor.referee1Gomes, Fernando José Borges
dc.contributor.referee2Santos, Fernando Almeida
dc.contributor.referee3Longue Júnior, Dalton
dc.contributor.referee4Batalha, Larisse Aparecida Ribas
dc.creator.ID086.921.466-76por
dc.creator.Latteshttp://lattes.cnpq.br/0648250603620769por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Florestaspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Ambientais e Florestaispor
dc.relation.referencesABNT (Associação Brasileira de Normas Técnicas), 1986. ABNT. NBR ISO 12466-1: Madeira Compensada - Qualidade de colagem parte 1: métodos de ensaio. Rio de Janeiro, Brazil. ASTM (AMerican Society for Testing and Materials), 1994. Annual book of ASTM standards: Adhesives. Washington D.C., USA Bajwa D.S., Pourhashem G., Ullah A.H., Bajwa S.G., 2019. A concise review of current lignin production, applications, products, and their environmental impact. Industrial Crops and Products 139, 111526, 11p. https://doi.org/10.1016/j.indcrop.2019.111526 Baker D., Rials, T., 2013. Recent advances in low-cost carbon fiber manufacture from lignin. J. Appl. Polym. Sci. 130(2), 713-728. https://doi.org/10.1002/app.39273 Bianche J.J., 2014. Interface madeira-adesivo e resistência de juntas coladas com diferentes adesivos e gramatura. Thesis (Federal University of Viçosa), Minas Gerais, Brazil. Bianche J.J., Carneiro A.C.O., Ladeira J.P.S., Teixeira A.P.M., Pereira F.A., Oliveira B.S., 2016. Shear strength in the glue line of Eucalyptus sp. and Pinus sp.wood. Revista Árvore 40(6), 1109-1117. http://dx .doi.org/10.1590/0100-67622016000600017 Boschetti W.T.N., Carvalho A.M.M.L., Carneiro A.C.O., Santos L.C., Poyares L.B.Q., 2019. Potential of kraft lignin as an additive in briquette production. Nordic Pulp & Paper Research Journal v .34(1), 6p. https://doi.org.10.1515/npprj-2018-0002 Brunow G., Lundquist K., Gellerstedt G., 1999. Lignin. In: Sjöström E., Alén, R. Analytical methods in Wood Chemistry, Pulping, and Papermaking. Springer Series in Wood Science. Springer-Verlag. New York., USA. Chakar F.S., Ragauskas A.J., 2004. Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products 20(2), 131–141. https://doi.org/10.1016/j.indcrop.2004.04.016 Chung H., Washburn N.R., 2016. Extraction and Types of Lignin, in Faruk, O., Sain, M. (Eds.), Lignin in polymer composites. Elsevier, UK, pp.13-26. Danielson B., Simonson R., 1998. Kraft lignin in phenol formaldehyde resin. Part 1. Partial replacement of phenol by kraft lignin in phenol formaldehyde adhesives for plywood. Journal of Adhesion Science and Technology 12(9), 923-939. https://doi.org/10.1163/156856198X00542 Dias, L.M.S., 2014. Síntese e caracterização de adesivos de lignina Kraft de eucalipto. Dissertation (Federal University of Lavras), Minas Gerais, Brazil. Du X., Li J., Lindstrom M.E., 2014. Modification of industrial softwood kraft lignin using Mannich reaction with and without phenolation pretreatment. Industrial Crops and Products 54, 729-735. https://doi.org/10.1016/j.indcrop.2013.11.035 Du J., 2018. Utilization of Kraft Softwood Lignin in Phenol Formaldehyde Adhesives and Phenolic Foams. Dissertation (North Carolina State University), North Carolina, USA. European Standart (EN), 1993. EN 314-1: Plywood – bonding quality: part 1 – test methods. In: Comité Européen de Normalisation (CEN), Bruxelas. Ferdosian F., Pan Z., Gao G., Zhao B., 2017. Bio, -Based Adhesives and Evaluation for Wood Composites Application. Polymers 9, 70. https://www.doi.org/10.3390/polym9020070 Ghorbani M., Mahendran A.R., Van Herwijnen H.W.G., Liebner F., Konnerth J., 2018. Paperbased laminates produced with kraft lignin-rich phenol–formaldehyde resoles meet requirements for outdoor usage. European Journal of Wood and Wood Products 76(2), 481- 487. https://doi.org/10.1007/s00107-017-1248-x Ghorbani M., Liebner F., Van Herwijnen H.W.G., Pfungen L., Krahofer M., Budjav E., Konnerth J., 2016. Liginin Phenol Formaldehyde Resoles: The Impact of Lignin type on Adhesive Properties. Bioresources 11(3), 6727-6741. https://doi.org/10.15376/biores.11.3.6727-6741 Goldmann W.M., Ahola J., Mankinen O., Kantola A.M., Telkki V-V., Transkanen J., 2017. Determination of Phenolic Hydroxyl Groups in Technical Lignins by Ionization Difference Ultraviolet Spectrophotometry (Δε-IDUS method). Periodica Ploytechnica Chemical Engineering, 9269. https://doi.org/10.3311/PPch.9269 Goldschmid O., 1954. Determination of phenolic hydroxyl content of lignin preparations by Ultraviolet Spectrophotometry. Analytical chemistry, 26, p. 1421-1423. https://doi.org.10.1021/ac60093a009 Ház A., Jablonský M., Surina I., Kacik F., Bubeníková T., Durkovic J., 2019. Chemical Composition and Thermal Behavior of Kraft Lignins. Forests 10(6): 483, p. 1-12. https://doi.org/10.3390.f10060483 Huang J., Fu S., Gan L, 2019. Lignin Chemistry and Applications. Chemical Industrial Press. Elsevier, Amsterdam, Netherlands. Hu L., Pan H., Zhou Y., Zhang M., 2011. Methods to improve lignin’s reactivity as a phenol substitute and as a replacement for other phenolic compounds: a brief review. Bioresources 6, p. 3515-3525. https://doi.org/10.15376/biores.6.3.3515-3125 Jablonsky M., Kocis J., Ház A., Sima J., 2015. Characterization and comparison by UV spectroscopy of precipitated lignins and commercial lignosulfonates, Cellulose Chemistry and Technology, v.49, p. 267-274. Jiang X., Liu J., Du X., Hu Z., Chang H-m, Jammel H., 2018. Phenolation to improve lignin reactivity toward thermosets application. ACS Sustainable Chemistry & Engineering, v. 6, n. 4, p. 5504-5512. https://doi.org/10.1021/acssuschemeng.8b00369 Kalami S., Arefmanesh M., Master E., Nejad M., 2017. Replacing 100% of phenol in phenolic adhesive formulations with lignin. Journal of Applied Polymer Science 134(30), 45124. https://doi.org/10.1002/app.45124 Khan M.A., Ashraf S.M., Malhotra, V. P., 2004. Development and characterization of a wood adhesive using bagasse lignin. International Journal of Adhesion and Adhesives 24(6), 485- 493. https://doi.org/10.1016/j.ijadhadh.2004.01.003 Klett A.S., 2017. Purification, Fractionation, and Characterization of Lignin from Kraft Black Liquor for Use as a Renewable Biomaterial. Dissertation (Clemson University), South Carolina, USA. Kosiková B., Duris M., Demianová V., 2000. Conversion of lignin biopolymer into surfaceactive derivatives. European Polymer Journal 36, 1209-1212. https://doi.org/10.1016/S0014- 3057(99)00163-9 Kouisni L., Holt-Hindle P., Maki, Paleologou M., 2012. The LignoForce System: A new process for the production of high-quality lignin from black liquor. Pulp and Paper Canada - Ontario115(1), 18-22. Laurichesse S., Averous L., 2014. Chemical modification of lignins: Towards biobased polymers. Prog. Polym. Sci. 39(7), 1266-1290. https//doi.org/10.1016/j.progpolymsci.2013.11.004 Lin S.Y., Dence C.W.,1992.Methods in Lignin Chemistry. Springer-Verlag. State University of New York. USA. https://doi.org/10.1007/978-3-642-74065-7 Lu L., Pan H., Zhou Y., Zhang M., 2011. Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: a brief review. Bioresources 6(3), 3515-3525. https://doi.org/10.15376/biores.6.3.3515-3525 Machado G., Santos F., Lourega R., Mattia J., Faria D., Eichler P., Auler A., 2020. Biopolymers from Lignocellulosic Biomass. In: Ingle A.P., Chandel A.K.; Silva, S.S.(Eds.), Lignocellulosic Biorefining Technologies, First Edition. John Wiley & Sons Ltd., USA, pp.125-158. Magalhães M., Vital B.R.; Carneiro A.C.O., Silva C.M.S., Fialho L.F., Figueiró C.G., Ferreira J.C., 2019. Adição de lignina Kraft à resina fenólica para a fabricação de compensados. Revista Ciência da Madeira 10 (2), 142-149. https://doi.org/10.12953/2177-6830/rcm.v10n2p142-149 Mainka H., Täger O., Körner E., Hilfert L., Busse S., Edelmann F.T., Herrmann A.S., 2015. Lignin - an alternative precursor for sustainable and cost-effective automotive carbon fiber. Journal of Materials Research and Technology 4(3), 283-296. https://doi.org/10.1016/j.jmrt.2015.03.004 Mankar, S., Chaudhari, A., Soni, I., 2012. Lignin in phenol formaldehyde adhesive. Int. J. Knowl. Eng. 3(1), 116-118. ISSN: 0976-5824 McCarthy J.L., Islam A., 2000. Lignin chemistry, technology, and utilization: A brief history. In Lignin: Historical, Biological, and Materials Perspectives; ACS. Symp. Ser. 742; American Chemical Society: Washington, DC, 2-99. https://doi.org/10.1021/bk-2000-0742.ch00 Pilato L., 2010. Phenolic Resins: A Century of Progress. Springer: Bound Brook, New Jersey. Pizzi A., Mittal K.L., 2011. Wood Adhesives. CRC Press: Boca Raton, Florida. Pizzi A., Mittal K.L., 2003. Handbook of Adhesives Technology, 2nd edition, Revised and Expanded. Taylor & Francis Group, New York. Prado R., Erdocia X., Serrano L., Labidi, J., 2012. Lignin purification with green solvents. Cellulose Chemistry and Technology 46 (3-4), 221-225. Sameni J., Krigstin S., Rosa D.S., Leao A., Sain M., 2013. Thermal characteristics of lignin residue from industrial processes. BioResources 9(1), 725-737. https://doi.org/10.15376/biores.9.1.725-737 Santos L.C., 2015. Síntese e caracterização de adesivos lignina fenol formaldeído para madeiras e derivados. Dissertation (Federal University of Viçosa), Minas Gerais, Brazil. SCAN (Scandinavian Pulp, Paper and Board) (2009). SCAN 38:01. Scan Test Methods. Stockholm, Sweden. Sedliacik, J., 2010.Technology of low-temperature production of plywood bonded with modified phenol-formaldehyde resin. Wood Res. 55(4), 123-130. ISSN: 1336-4561 Smolarski, N. High-Value Opportunities for Lignin: unlocking its potential. Frost & Sullivan, 2012. Solt P., Van Herwijnen H.W.G., Konnerth J., 2019. Thermoplastic and moisture-dependent behavior of lignin phenol formaldehyde resins. J. Appl. Polym. Sci. 136(40), 1-8. https://doi.org/10.1002/app.48011 Stewart, D., 2008. Lignin as a base material for materials applications: Chemistry, application and economics. Industrial Crops and Products 27, 202-207. https://doi.org/10.1016/j.indcrop.2007.07.008 TAPPI (Technical Association of Pulp and Paper Industry) (1998). T222 om- 98 - Tappi Test Methods. Atlanta, GA, USA. TAPPI (Technical Association of Pulp and Paper Industry) (2002). T211 om-93 - Ash in wood, pulp, paper and paperboard: combustion at 525°C. Tappi Test Methods. Atlanta, GA, USA. Tarasov D., Leitch M., Fatehi, P., 2018. Lignin–carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review. Biotechnology for biofuels, 11(1), 269. https://doi.org/10.1186/s13068-018-1262-1 TAPPI (Technical Association of the Pulp and Paper Industry) (1991). Tappi UM 250- Acidsoluble lignin in wood and pulp. TAPPI Standard Methods, Atlanta, GA, USA. Terzioglu P., Parn F.N., Sicak Y., 2020. Lignin composites or biomedical applications: status, challenges and perspectives. In: Sharma S., Kumar A. (Eds.), Lignin, Biosynthesis and transformation for industrial applications. Springer Series on Polymer and Composite Materials. Springer Nature Switzerland, pp. 253- 272. Tomani P., 2010. The Lignoboost Process. Celulose Chemistry and technology 44, 53-58. Wang H., Eberhardt T.L., Wang C., Gao S., Pan H., 2019. Demethylation of Alkali Lignin with Halogen Acids and Its Application to Phenolic Resins. Polymers 11, 1771. https://doi.org/10.3390/polym11111771 Wensley A., 2004. Corrosion in Alkaline Pulping Liquors. NACE International Corrosion 2004 Conference, New Orleans, LA., 1-13. Yang S., Wen J-L., Yuan T-Q., Sun R-C., 2014. Characterization and phenolation of biorefinery technical lignins for lignin–phenol–formaldehyde resin adhesive synthesis. RSC Adv., 4, p. 57996-58004. https://doi.org/10.1039/C4RA09595B Zhang F., Jiang X., Lin J., Zhao G., Chang H-M., Jameel H., 2018. Reactivity improvement by phenolation of wheat straw lignin isolated from a biorefinery process. New Journal of Chemistry 5. httppor
dc.subject.cnpqRecursos Florestais e Engenharia Florestalpor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/72045/2020%20-%20Rafael%20Eloy%20de%20Souza.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6297
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-01-31T18:20:38Z No. of bitstreams: 1 2020 - Rafael Eloy de Souza.pdf: 1505766 bytes, checksum: 82eedd4cd4e486c28fe2d213061b27f5 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-01-31T18:20:38Z (GMT). No. of bitstreams: 1 2020 - Rafael Eloy de Souza.pdf: 1505766 bytes, checksum: 82eedd4cd4e486c28fe2d213061b27f5 (MD5) Previous issue date: 2020-02-18eng
Appears in Collections:Mestrado em Ciências Ambientais e Florestais

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2020 - Rafael Eloy de Souza.pdf1.47 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.