Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/11057
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRodrigues, Juliana Pereira
dc.date.accessioned2023-12-22T01:46:09Z-
dc.date.available2023-12-22T01:46:09Z-
dc.date.issued2022-05-19
dc.identifier.citationRODRIGUES, Juliana Pereira. Desenvolvimento e caracterização de biocompósito para uso no tratamento de mamão (Carica papaya L.) pós-colheita. 2022. 98 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2022.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11057-
dc.description.abstractO mamão (Carica papaya L.) é um fruto muito consumido em todo o mundo. Por sua natureza climatérica e por possuir elevada atividade de água, o mamão é muito suscetível a doenças fúngicas pós-colheita. O uso de revestimentos adicionado de substâncias com atividade antimicrobiana diretamente sobre os frutos, é uma tecnologia pós-colheita desenvolvida para proporcionar o aumento da vida útil desses alimentos, que têm demonstrado bons resultados. O objetivo deste trabalho foi desenvolver revestimentos elaborados a partir dos biopolímeros alginato de sódio e quitosana, incorporado com nanopartículas de óxido de zinco ou benzoato de sódio para manutenção das características de qualidade pós-colheita do mamão (Carica papaya L.). Filmes obtidos a partir das soluções poliméricas desenvolvidas, que deram origem aos revestimentos também foram caracterizados. O uso da blenda polimérica, proporcionou a obtenção de filmes maleáveis, bem estruturados, com coloração tendendo ao amarelo e aparente transparência. O processo de reticulação e a adição de nanopartículas de óxido de zinco foi capaz de alterar as propriedades físicas do filme como espessura, tensão de ruptura, alongamento e módulo de Young, deixando-os mais finos, rígidos e resistentes, porém se apresentando altamente solúveis em água. Os filmes nanocompósitos demonstraram ação antifúngica in vitro sobre os fungos Colletotrichum sp. e Fusarium sp. isolados de frutos de mamão. O armazenamento dos frutos sob condição de refrigeração e alta umidade relativa, possibilitou a manutenção da qualidade dos frutos. O método de inoculação artificial IR (inocula e reveste) apresentou maior influência nas mudanças de cor instrumental e porcentagem de perda de massa dos frutos nos primeiros 7 dias de experimento. Os revestimentos produzidos possibilitaram um atraso na maturação dos frutos por pelo menos 7 dias em temperatura ambiente, quando comparados aos tratamentos controle.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiropor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectbiocompósitopor
dc.subjectpós-colheitapor
dc.subjectZnOpor
dc.subjectbenzoato de sódiopor
dc.subjectCarica papaya L.por
dc.subjectbiocompositeeng
dc.subjectpost-harvesteng
dc.subjectsodium benzoateeng
dc.titleDesenvolvimento e caracterização de biocompósito para uso no tratamento de mamão (Carica Papaya L.) pós-colheitapor
dc.title.alternativeDevelopment and characterization of a biocomposite for use in papaya (Carica Papaya L.) post-harvest treatmenteng
dc.typeDissertaçãopor
dc.description.abstractOtherPapaya (Carica papaya L.) is a fruit widely consumed around the world. Due to its climatic nature and high-water activity, papaya is very susceptible to post-harvest fungal diseases. The use of coatings added with substances with antimicrobial activity directly on the fruits is a post-harvest technology developed to provide an increase in the shelf life of these foods, which have shown good results. The objective of this work was to develop coatings made from the biopolymers of sodium alginate and chitosan, incorporated with zinc oxide nanoparticles or sodium benzoate to maintain the postharvest quality characteristics of papaya. Films obtained from the polymeric solutions developed, which gave rise to the coatings, were also characterized. The use of the polymeric blend provided the attainment of malleable, well-structured films, with a color tending to yellow and apparent transparency. The crosslinking process and the addition of zinc oxide nanoparticles was able to change the physical properties of the film such as thickness, tensile strength, elongation and Young's modulus, making them thinner, stiffer and more resistant, but presenting themselves as highly soluble in water. The nanocomposite films demonstrated in vitro antifungal action against Colletotrichum sp. and Fusarium sp. papaya fruit isolates. The storage of the fruits under refrigeration and high relative humidity, allowed the maintenance of the quality of the fruits. The artificial inoculation method inoculation and coating (IR) showed greater influence on changes in instrumental color and percentage of fruit mass loss in the first 7 days of the experiment. The coatings produced allowed a delay in fruit maturation for at least 7 days at room temperature, when compared to the control treatments.eng
dc.contributor.advisor1Silva, Otniel Freitas
dc.contributor.advisor1ID170.726.462-72por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4067206563384738por
dc.contributor.advisor-co1Soares, Antonio Gomes
dc.contributor.advisor-co1ID772.125.417-53por
dc.contributor.advisor-co2Coelho, Caroline Corrêa de Souza
dc.contributor.advisor-co2ID131.073.747-92por
dc.contributor.referee1Silva, Otniel Freitas
dc.contributor.referee2Fai, Ana Elizabeth Cavalcante
dc.contributor.referee3Chavez, Davy William Hidalgo
dc.creator.ID125.926.317-71por
dc.creator.IDhttps://orcid.org/0000-0003-0230-8204por
dc.creator.Latteshttp://lattes.cnpq.br/5732616125716725por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospor
dc.relation.referencesABNT. NBR 14725-4 - Fispq. Norma, [s. l.], 2010. AHMADI, F. et al. Chitosan based hydrogels: characteristics and pharmaceutical applications. Research in Pharmaceutical Sciences, [s. l.], v. 10, n. 1, p. 1–16, 2015. ALARA, O. R.; ABDURAHMAN, N. H.; ALARA, J. A. Carica papaya: comprehensive overview of the nutritional values, phytochemicals and pharmacological activities. [S. l.]: Springer Singapore, 2020-. ISSN 26624060. Disponível em: https://doi.org/10.1007/s13596-020-00481-3. ALBOOFETILEH, M. et al. Effect of nanoclay and cross-linking degree on the properties of alginate-based nanocomposite film. Journal of Food Processing and Preservation, [s. l.], v. 38, n. 4, p. 1622–1631, 2014. ALI, A.; HEI, G. K.; KEAT, Y. W. Efficacy of ginger oil and extract combined with gum arabic on anthracnose and quality of papaya fruit during cold storage. Journal of Food Science and Technology, [s. l.], v. 53, n. 3, p. 1435–1444, 2016. ALOUI, H. et al. Efficacy of the combined application of chitosan and Locust Bean Gum with different citrus essential oils to control postharvest spoilage caused by Aspergillus flavus in dates. International Journal of Food Microbiology, [s. l.], v. 170, n. 2014, p. 21–28, 2014. Disponível em: http://dx.doi.org/10.1016/j.ijfoodmicro.2013.10.017. ALPARSLAN, Y. et al. Effects of gelatin-based edible films enriched with laurel essential oil on the quality of rainbow trout (Oncorhynchus mykiss) fillets during refrigerated storage. Food Technology and Biotechnology, [s. l.], v. 52, n. 3, p. 325–333, 2014. ALVES, F. de L. et al. A cultura do mamoeiro Tecnologias de produção. Vitória, ES: Incaper, 2003. AMARAL, D. D. et al. Frequency of quiescent fungi and post-harvest alternative management of stem end rot in papaya. Revista Caatinga, [s. l.], v. 30, n. 3, p. 786–793, 2017. ANDERSEN, F. A. Final report on the safety assessment of Benzyl Alcohol, Benzoic Acid, and Sodium Benzoate. [S. l.: s. n.], 2001. ANNEGOWDA, H. V.; BHAT, R. Composition of Papaya Fruit and Papaya Cultivars. [S. l.]: Elsevier Inc., 2015. E-book. Disponível em: http://dx.doi.org/10.1016/B978-0-12-408117-8.00021-0. ANVISA. Aditivos alimentares e coadjuvantes de tecnologia. [S. l.], 2020. Disponível em: https://www.gov.br/anvisa/pt-br/setorregulado/regularizacao/alimentos/aditivos-alimentares. Acesso em: 3 maio 2022. ARCINIEGAS-GRIJALBA, P. A. et al. ZnO-based nanofungicides: Synthesis, characterization and their effect on the coffee fungi Mycena citricolor and Colletotrichum sp. Materials Science and Engineering C, [s. l.], v. 98, p. 808–825, 2019. ARCINIEGAS-GRIJALBA, P. A. et al. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Applied Nanoscience (Switzerland), [s. l.], v. 7, n. 5, p. 225–241, 2017. ARROYO, B. J. B. J. et al. Antimicrobial active edible coating of alginate and chitosan add ZnO nanoparticles applied in guavas (Psidium guajava L.). Food Chemistry, [s. l.], v. 309, n. August 2018, p. 125566, 2020. Disponível em: https://doi.org/10.1016/j.foodchem.2019.125566. ASSIS, O. B. G.; BRITTO, D. de. Revisão: coberturas comestíveis protetoras em frutas: fundamentos e aplicações. Brazilian Journal of Food Technology, [s. l.], v. 17, n. 2, p. 87–97, 2014. ASSIS, O. B. G.; BRITTO, D. de; FORATO, L. A. O Uso de Biopolímeros como Revestimentos Comestíveis Protetores Para Conservação de Frutas in natura e minimamente processadas. In: EMBRAPA INSTRUMENTAÇÃO AGROPECUÁRIA. BOLETIM DE PESQUISA E DESENVOLVIMENTO. [S. l.: s. n.], 2009. v. 29, p. 1–24. E-book. Disponível em: www.cnpdia.embrapa.br/publicacoes/download.php?file=BPD29_2009.pdf. ASTM. Standard Test Method for Tensile Properties of Thin Plastic Sheeting,. ASTM D 882-18. [S. l.: s. n.], 2018. Disponível em: http://www.ansi.org. AZEREDO, H. M. C. H. M. C.; WALDRON, K. W. K. W. Crosslinking in polysaccharide and protein films and coatings for food contact - A review. Trends in Food Science and Technology, [s. l.], v. 52, p. 109–122, 2016. Disponível em: http://dx.doi.org/10.1016/j.tifs.2016.04.008. BAMBALELE, N. L. et al. Recent Advances on Postharvest Technologies of Mango Fruit: A Review. International Journal of Fruit Science, [s. l.], v. 21, n. 1, p. 565–586, 2021. Disponível em: https://doi.org/10.1080/15538362.2021.1918605. BARBIERI, M. G. et al. Análise do desempenho das exportações brasileiras de mamão. Brazilian Journal of Development, [s. l.], v. 5, n. 8, p. 12010–12032, 2019. BARROS, W. K. F. C. et al. Utilização de revestimentos alternativos na conservação póscolheita de mamão “Sunrise solo”. AGRI-ENVIRONMENTAL SCIENCES, [s. l.], v. 5, n. 25254804, 2019. Disponível em: https://revista.unitins.br/index.php/agri-environmentalsciences/article/view/1205. BATALLER, M. et al. Ozone applications in the post-harvest of papaya (carica papaya l.): An alternative to amistar fungicide. Ozone: Science and Engineering, [s. l.], v. 34, n. 3, p. 151–155, 2012. BHANUSHREE, L. et al. Influence of chitosan on postharvest behavior of papaya ( Carica papaya L .) Fruits under different storage conditions Influence of chitosan on postharvest behavior of papaya ( Carica papaya L .) Fruits under different. [s. l.], v. 7, n. January, p. 2010–2014, 2018. BILL, M. et al. The efficacy of combined application of edible coatings and thyme oil in inducing resistance components in avocado (Persea americana Mill.) against anthracnose during post-harvest storage. Crop Protection, [s. l.], v. 64, p. 159–167, 2014. BRASIL. INSTRUÇÃO NORMATIVA No 37, DE 1o DE OUTUBRO DE 2018 - Imprensa Nacional. Brasilia, DF: [s. n.], 2018. Disponível em: https://www.in.gov.br/materia/- /asset_publisher/Kujrw0TZC2Mb/content/id/44304943/do1-2018-10-08-instrucao-normativa-n- 37-de-1-de-outubro-de-2018-44304612. Acesso em: 5 fev. 2021. BRASIL. INSTRUÇÃO NORMATIVA No 69, DE 6o DE NOVEMBRO DE 2018- Imprensa Nacional. Diário Oficial da União: 2018. Disponível em: https://www.gov.br/agricultura/pt-br/assuntos/inspecao/produtos-vegetal/legislacao-1/biblioteca87 de-normas-vinhos-e-bebidas/instrucao-normativa-no-69-de-6-de-novembro-de-2018.pdf/view. Acesso em: 4 fev. 2021. BRASIL, I. M. et al. Polysaccharide-based multilayered antimicrobial edible coating enhances quality of fresh-cut papaya. LWT - Food Science and Technology, [s. l.], v. 47, n. 1, p. 39–45, 2012. Disponível em: http://dx.doi.org/10.1016/j.lwt.2012.01.005. BRUKER. Guia para Espectroscopia FT-IR | Bruker. [S. l.], 2022. Disponível em: https://www.bruker.com/pt/products-and-solutions/infrared-and-raman/ft-ir-routinespectrometer/ what-is-ft-ir-spectroscopy.html. Acesso em: 18 jul. 2022. CALBO, A. G.; MORETTI, C. L.; HENZ, G. P. Technical Announcement: Breathing fruits and vegetables. (In Portuguese). Embrapa, [s. l.], p. 1–10, 2007. CASEMIRO, J. C. L. et al. Chitosan associated with plant extracts in the post-harvest control of anthracnose in papaya ‘formosa’. Summa Phytopathologica, [s. l.], v. 45, n. 1, p. 64–69, 2019. CASTELO BRANCO MELO, N. F. N. F. et al. Effects of fungal chitosan nanoparticles as eco-friendly edible coatings on the quality of postharvest table grapes. Postharvest Biology and Technology, [s. l.], v. 139, n. August 2017, p. 56–66, 2018. Disponível em: https://doi.org/10.1016/j.postharvbio.2018.01.014. CHABALA, L. F. G.; CUARTAS, C. E. E.; LÓPEZ, M. E. L. o. Release behavior and antibacterial activity of chitosan/alginate blends with aloe vera and silver nanoparticles. Marine Drugs, [s. l.], v. 15, n. 10, 2017. CHAUDHARY, S. et al. Chitosan nanoemulsions as advanced edible coatings for fruits and vegetables: Composition, fabrication and developments in last decade. International Journal of Biological Macromolecules, [s. l.], v. 152, p. 154–170, 2020. Disponível em: https://doi.org/10.1016/j.ijbiomac.2020.02.276. CHOPIN, N. et al. Design Polysaccharides of Marine Origin: Chemical Modifications to Reach Advanced Versatile Compounds. Current Organic Chemistry, [s. l.], v. 18, n. 7, p. 867– 895, 2014. Disponível em: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1385- 2728&volume=18&issue=7&spage=867. Acesso em: 11 out. 2020. CODEX ALIMENTARIUS. SODIUM BENZOATE. [S. l.], 2019. COELHO, C. C. de S. et al. Cellulose nanocrystals from grape pomace and their use for the development of starch-based nanocomposite films. International Journal of Biological Macromolecules, [s. l.], v. 159, p. 1048–1061, 2020. Disponível em: https://doi.org/10.1016/j.ijbiomac.2020.05.046. CORREA-PACHECO, Z. N. et al. The Effect of Nanostructured Chitosan and Chitosanthyme Essential Oil Coatings on Colletotrichum gloeosporioides Growth in vitro and on cv Hass Avocado and Fruit Quality. Journal of Phytopathology, [s. l.], v. 165, n. 5, p. 297–305, 2017. CORTEZ-VEGA, W. R. et al. Using edible coatings from Whitemouth croaker (Micropogonias furnieri) protein isolate and organo-clay nanocomposite for improve the conservation properties of fresh-cut “Formosa” papaya. Innovative Food Science and Emerging Technologies, [s. l.], v. 22, p. 197–202, 2014. COSME SILVA, G. M. et al. The chitosan affects severely the carbon metabolism in mango (Mangifera indica L. cv. Palmer) fruit during storage. Food Chemistry, [s. l.], v. 237, p. 372–378, 2017. CUQ, B. et al. Functional Properties of Myofibrillar Protein-based Biopackaging as Affected by Film Thickness. Journal of Food Science, [s. l.], v. 61, n. 3, p. 580–584, 1996. Disponível em: http://doi.wiley.com/10.1111/j.1365-2621.1996.tb13163.x. Acesso em: 22 jan. 2021. DA SILVA, M. A.; BIERHALZ, A. C. K.; KIECKBUSCH, T. G. Influence of drying conditions on physical properties of alginate films. Drying Technology, [s. l.], v. 30, n. 1, p. 72–79, 2012. DA SILVA NETO, O. P. et al. Ozone slows down anthracnose and increases shelf life of papaya fruits. Revista Brasileira de Fruticultura, [s. l.], v. 41, n. 5, p. 1–12, 2019. DALPONTE, I. et al. Degradação fotocatalítica de tartrazina com TiO2 imobilizado em esferas de alginato. Quimica Nova, [s. l.], v. 39, n. 10, p. 1165–1169, 2016. DARDER, M.; ARANDA, P.; RUIZ-HITZKY, E. Bionanocomposites: A new concept of ecological, bioinspired, and functional hybrid materials. Advanced Materials, [s. l.], v. 19, n. 10, p. 1309–1319, 2007. DE LA ROSA-GARCÍA, S. C. et al. Antifungal activity of ZnO and MgO nanomaterials and their mixtures against colletotrichum gloeosporioides strains from tropical fruit. Journal of Nanomaterials, [s. l.], v. 2018, p. 1–9, 2018. Disponível em: https://www.hindawi.com/journals/jnm/2018/3498527/. DE VASCONCELLOS SANTOS BATISTA, D. et al. Edible coatings in post-harvest papaya: impact on physical–chemical and sensory characteristics. Journal of Food Science and Technology, [s. l.], v. 57, n. 1, p. 274–281, 2020. DEAN, R. et al. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, [s. l.], v. 13, n. 4, p. 414–430, 2012. DEMARTELAERE, A. C. F. et al. Elicitors on the control of anthracnose and post-harvest quality in papaya fruits1. Pesquisa Agropecuária Tropical, [s. l.], v. 47, n. 2, p. 211–217, 2017. DENG, Z. et al. Cellulose nanomaterials emulsion coatings for controlling physiological activity, modifying surface morphology, and enhancing storability of postharvest bananas (Musa acuminate). Food Chemistry, [s. l.], v. 232, p. 359–368, 2017. Disponível em: http://dx.doi.org/10.1016/j.foodchem.2017.04.028. DHUMAL, C. V.; SARKAR, P. Composite edible films and coatings from food-grade biopolymers. Journal of Food Science and Technology, [s. l.], v. 55, n. 11, p. 4369–4383, 2018. Disponível em: https://doi.org/10.1007/s13197-018-3402-9. DIAS, L. R. C. et al. First Report of Papaya Fruit Anthracnose Caused by Colletotrichum okinawense in Brazil. Plant Disease, [s. l.], v. 104, n. 2, p. 573–573, 2020. Disponível em: https://apsjournals.apsnet.org/doi/10.1094/PDIS-06-19-1151-PDN. DIAS, M. R.; LEÃO, R. C.; COSTA, H. de S. Obtenção e processamento de microesferas de alginato / vidro bioativo. [s. l.], v. 12, p. 122–137, 2020. DOS PASSOS BRAGA, S. et al. Application of coatings formed by chitosan and Mentha essential oils to control anthracnose caused by Colletotrichum gloesporioides and C. brevisporum in papaya (Carica papaya L.) fruit. International Journal of Biological Macromolecules, [s. l.], v. 139, p. 631–639, 2019. ECHA. Zinc oxide - Registration Dossier - ECHA. [S. l.], 2020. Disponível em: https://echa.europa.eu/registration-dossier/-/registered-dossier/16139/7/3/1. Acesso em: 27 nov. 2020. EMAMIFAR, A.; BAVAISI, S. Nanocomposite coating based on sodium alginate and nano- ZnO for extending the storage life of fresh strawberries (Fragaria × ananassa Duch.). Journal of Food Measurement and Characterization, [s. l.], v. 14, n. 2, p. 1012–1024, 2020. Disponível em: https://doi.org/10.1007/s11694-019-00350-x. ESCAMILLA-GARCÍA, M. et al. Effect of an edible coating based on chitosan and oxidized starch on shelf life of Carica papaya L., and its physicochemical and antimicrobial properties. Coatings, [s. l.], v. 8, n. 9, 2018. FAO. Alginic Acid - Table of ContentsCompendium of Food Additive Specifications. Addendum 5. (FAO Food and Nutrition Paper - 52 Add. 5). Rome: [s. n.], 1997. Disponível em: http://www.fao.org/3/w6355e/w6355e00.htm#Contents. Acesso em: 14 out. 2020. FAO. Perdas e desperdícios de alimentos na América Latina e no Caribe. [S. l.], 2022. Disponível em: https://www.fao.org/americas/noticias/ver/pt/c/239394/. Acesso em: 23 abr. 2022. FAOSTAT. Crops - Papaya. [S. l.], 2021b. Disponível em: http://www.fao.org/faostat/en/#data/QC/visualize. Acesso em: 20 abr. 2021. FAOSTAT. Crops and livestock products. [S. l.], 2021a. Disponível em: https://www.fao.org/faostat/en/#data/QCL. Acesso em: 8 nov. 2021. FARIA, A. R. N. et al. A cultura do mamão. 3 ed.rev.aed. Brasília, DF.: Embrapa Informação Tecnológica, 2009. FARR, D. F.; ROSSMAN, A. Y. Fungal Databases, U.S. National Fungus Collections, ARS, USDA. [S. l.], 2020. Disponível em: https://nt.ars-grin.gov/fungaldatabases/index.cfm. Acesso em: 21 set. 2020. FDA. CFR - Code of Federal Regulations Title 21. [S. l.], 1984. Disponível em: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=184.1733. Acesso em: 3 maio 2022. FDA. CFR - Code of Federal Regulations Title 21. [S. l.], 2019. Disponível em: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=182&showFR =1&subpartNode=21:3.0.1.1.13.9. Acesso em: 23 out. 2020. FERREIRA, A. R. V.; ALVES, V. D.; COELHOSO, I. M. Polysaccharide-based membranes in food packaging applications. Membranes, [s. l.], v. 6, n. 2, p. 1–17, 2016. Disponível em: http://www.mdpi.com/2077-0375/6/2/22. Acesso em: 11 out. 2020. GALO, J. de Q. B. et al. Postharvest storage of papaya ‘Sunrise Solo’ with the use of chitosan. Revista Brasileira de Fruticultura, [s. l.], v. 36, n. 2, p. 305–312, 2014. GARCÍA-ESTRADA, R. S. et al. First Report of Papaya ( Carica papaya ) Anthracnose Caused by Colletotrichum plurivorum in Mexico. Plant Disease, [s. l.], v. 104, n. 2, p. 589–589, 2020. Disponível em: https://apsjournals.apsnet.org/doi/10.1094/PDIS-05-19-0914-PDN. GOMAA, M. et al. Use of seaweed and filamentous fungus derived polysaccharides in the development of alginate-chitosan edible films containing fucoidan: Study of moisture sorption, polyphenol release and antioxidant properties. [S. l.]: Elsevier Ltd, 2018-. ISSN 0268005X.v. 82 Disponível em: https://doi.org/10.1016/j.foodhyd.2018.03.056. GUERRA, I. C. D. et al. Coatings comprising chitosan and Mentha piperita L. or Mentha×villosa Huds essential oils to prevent common postharvest mold infections and maintain the quality of cherry tomato fruit. International Journal of Food Microbiology, [s. l.], v. 214, p. 168–178, 2015. Disponível em: http://dx.doi.org/10.1016/j.ijfoodmicro.2015.08.009. HAN, J. et al. Environmental stability and curcumin release properties of Pickering emulsion stabilized by chitosan/gum arabic nanoparticles. International Journal of Biological Macromolecules, [s. l.], v. 157, p. 202–211, 2020. Disponível em: https://doi.org/10.1016/j.ijbiomac.2020.04.177. HASAN, S. M. K.; FERRENTINO, G.; SCAMPICCHIO, M. Nanoemulsion as advanced edible coatings to preserve the quality of fresh-cut fruits and vegetables: a review. International Journal of Food Science and Technology, [s. l.], v. 55, n. 1, p. 1–10, 2020. HASSAN, B. et al. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, [s. l.], v. 109, p. 1095–1107, 2018. Disponível em: http://dx.doi.org/10.1016/j.ijbiomac.2017.11.097. HE, L. et al. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, [s. l.], v. 166, n. 3, p. 207–215, 2011. Disponível em: http://dx.doi.org/10.1016/j.micres.2010.03.003. HELAL, R. B.; HOSEN, S.; SHAMSI, S. Mycoflora associated with post-harvest disease of papaya (Carica papaya L.) and their pathogenic potentiality. Bangladesh Journal of Botany, [s. l.], v. 47, n. 3, p. 389–395, 2018. HSU, S. H. et al. Chitosan as scaffold materials: Effects of molecular weight and degree of deacetylation. Journal of Polymer Research, [s. l.], v. 11, n. 2, p. 141–147, 2004. IKRAM, E. H. K. et al. Phytochemicals of papaya and its traditional health and culinary uses - A review. Journal of Food Composition and Analysis, [s. l.], v. 41, p. 201–211, 2015. Disponível em: http://dx.doi.org/10.1016/j.jfca.2015.02.010. KANMANI, P.; RHIM, J.-W. Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydrate Polymers, [s. l.], v. 106, n. 1, p. 190–199, 2014. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0144861714001271. KAUR, J. et al. Nanomaterial loaded chitosan nanocomposite films for antimicrobial food packaging. Materials Today: Proceedings, [s. l.], v. 28, n. xxxx, p. 1904–1909, 2020. Disponível em: https://doi.org/10.1016/j.matpr.2020.05.309. KERCH, G. Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review. Trends in Food Science and Technology, [s. l.], v. 46, n. 2, p. 159–166, 2015. Disponível em: http://dx.doi.org/10.1016/j.tifs.2015.10.010. KHARCHOUFI, S. et al. Edible coatings incorporating pomegranate peel extract and biocontrol yeast to reduce Penicillium digitatum postharvest decay of oranges. Food Microbiology, [s. l.], v. 74, p. 107–112, 2018. KIM, K. W. et al. Antimicrobial activity against foodborne pathogens of chitosan biopolymer films of different molecular weights. LWT - Food Science and Technology, [s. l.], v. 44, n. 2, p. 565–569, 2011. Disponível em: http://dx.doi.org/10.1016/j.lwt.2010.08.001. KOLODZIEJCZAK-RADZIMSKA, A.; JESIONOWSKI, T. Zinc oxide-from synthesis to application: A review. Materials, [s. l.], v. 7, n. 4, p. 2833–2881, 2014. KONICA MINOLTA. Espaço de cor L * C * h Medindo várias cores com um colorímetro.Colorimetria: como medir diferenças de cor. [S. l.: s. n.], 2019. Disponível em: https://sensing.konicaminolta.us/br. . KULIG, D. et al. Study on alginate-chitosan complex formed with different polymers ratio. Polymers, [s. l.], v. 8, n. 5, p. 1–17, 2016. KWOK, D. Y.; NEUMANN, A. W. Contact angle measurement and contact angle interpretation. Advances in Colloid and Interface Science, [s. l.], v. 81, n. 3, p. 167–249, 1999. LAVINIA, M. et al. Antimicrobial activity and application of nanocomposite coating from chitosan and ZnO nanoparticle to inhibit microbial growth on fresh-cut papaya. Food Research, [s. l.], v. 4, n. 2, p. 307–311, 2020. LAWRIE, G. et al. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules, [s. l.], v. 8, n. 8, p. 2533–2541, 2007. LIMA, A. M. F. et al. Influence of plasticizer addition and crosslinking process on morphology, water absorption and mechanical properties of sodium alginate films | Influência da adição de plastificante e do processo de reticulação na morfologia, absorção de água e propriedad. Quimica Nova, [s. l.], v. 30, n. 4, p. 832–837, 2007. LIMA, A. M. F.; ANDREANI, L.; SOLDI, V. Influência da adição de plastificante e do processo de reticulação na morfologia, absorção de água e propriedades mecânicas de filmes de alginato de sódio. Química Nova, [s. l.], v. 30, n. 4, p. 832–837, 2007. LIMA OLIVEIRA, P. D. et al. Control of anthracnose caused by Colletotrichum species in guava, mango and papaya using synergistic combinations of chitosan and Cymbopogon citratus (D.C. ex Nees) Stapf. essential oil. International Journal of Food Microbiology, [s. l.], v. 266, n. November 2017, p. 87–94, 2018. Disponível em: https://doi.org/10.1016/j.ijfoodmicro.2017.11.018. LINKE, B. G. O.; CASAGRANDE, T. A. C.; CARDOSO, L. A. C. Food additives and their health effects: A review on preservative sodium benzoate. African Journal of Biotechnology, [s. l.], v. 17, n. 10, p. 306–310, 2018. LIU, Y. et al. Cation-controlled aqueous dispersions of alginic-acid-wrapped multiwalled carbon nanotubesSmall. [S. l.: s. n.], 2006. MA, H.; WILLIAMS, P. L.; DIAMOND, S. A. Ecotoxicity of manufactured ZnO nanoparticles - A review. Environmental Pollution, [s. l.], v. 172, p. 76–85, 2013. Disponível em: http://dx.doi.org/10.1016/j.envpol.2012.08.011. MARQUEZ-ZEQUERA, I. et al. First Report of Carica papaya Fruit Anthracnose Caused by Colletotrichum fructicola in Mexico. Plant Disease, [s. l.], v. 102, n. 12, p. 2649–2649, 2018. Disponível em: https://apsjournals.apsnet.org/doi/10.1094/PDIS-05-18-0736-PDN. MARTINS, D. M. S.; BLUM, L. E. B. Reduction of post-harvest anthracnose and dry rot of papaya by hydro-thermal treatment. Revista Caatinga, [s. l.], v. 27, n. 3, p. 98–105, 2014. MCHUGH, T. H. Protein-lipid interactions in edible films and coatings. Nahrung - Food, [s. l.], v. 44, n. 3, p. 148–151, 2000. MCHUGH, D. Technical Paper N° 441. [S. l.], 2003. Disponível em: https://www.feedipedia.org/node/17853. Acesso em: 12 out. 2020. MERCK S/A. Ficha de Informações de Segurança de Produtos Químicos - 108846 Óxido de zinco. Concessão: 2010. MOSQUERA-SÁNCHEZ, L. P. et al. Antifungal effect of zinc oxide nanoparticles (ZnONPs) on Colletotrichum sp., causal agent of anthracnose in coffee crops. Biocatalysis and Agricultural Biotechnology, [s. l.], v. 25, n. April, 2020. MOTELICA, L. et al. Biodegradable alginate films with zno nanoparticles and citronella essential oil-a novel antimicrobial structure. Pharmaceutics, [s. l.], v. 13, n. 7, 2021. NAIR, M. S. et al. Enhancing the functionality of chitosan- and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. International Journal of Biological Macromolecules, [s. l.], v. 164, p. 304–320, 2020. Disponível em: https://doi.org/10.1016/j.ijbiomac.2020.07.083. NERY-SILVA, F. A. et al. Inoculation methodology s of papaya fruits with fungi causing stem-end-rot. Ciência e Agrotecnologia, [s. l.], v. 31, n. 5, p. 1374–1379, 2007. NEŠIĆ, A. et al. Prospect of polysaccharide-based materials as advanced food packaging. Molecules, [s. l.], v. 25, n. 1, 2020. OECD/FAO. “Other products” in OECD-FAO Agricultural Outlook 2020-2029. Rome: OECD, 2020-. ISSN 2020-2029.(OECD-FAO Agricultural Outlook). Disponível em: http://dx.doi.org/10.1787/agr-outl-data-en. Acesso em: 12 maio 2021. OLIVEIRA, A. A. et al. Mamão: Fitossanidade. 1 ed.ed. Brasilia, DF: Embrapa Comunicação para Transferência de Tecnologia, 2000. ÖZDEMIR, K. S.; GÖKMEN, V. Extending the shelf-life of pomegranate arils with chitosan-ascorbic acid coating. LWT - Food Science and Technology, [s. l.], v. 76, p. 172–180, 2017. PADMAVATHY, N.; VIJAYARAGHAVAN, R. Enhanced bioactivity of ZnO nanoparticles - An antimicrobial study. Science and Technology of Advanced Materials, [s. l.], v. 9, n. 3, 2008. PARIONA, N. et al. Shape-dependent antifungal activity of ZnO particles against phytopathogenic fungi. Applied Nanoscience (Switzerland), [s. l.], v. 10, n. 2, p. 435–443, 2020. Disponível em: https://doi.org/10.1007/s13204-019-01127-w. PARREIDT, T. S. et al. The development of a uniform alginate-based coating for cantaloupe and strawberries and the characterization of water barrier properties. Foods, [s. l.], v. 8, n. 6, 2019. PEREIRA, T. et al. Gas diffusion in “Golden” papaya fruit at different maturity stages. Postharvest Biology and Technology, [s. l.], v. 54, n. 3, p. 123–130, 2009. PERES, N. A. R. et al. Identication and Characterization of Colletotrichum spp . affecting Fruit after Harvest in Brazil. J.Phytopathology, [s. l.], v. 150, n. 09311785, p. 128–134, 2002. PERES, Â. P. et al. Morphocultural and Genetic Variability of Fungi Associated With Stem- End Rot of Papaya. Ciência e Agrotecnologia, [s. l.], v. 27, n. 5, p. 1053–1062, 2003. PEREZ-GAGO, M. B. et al. Effect of whey protein-and hydroxypropyl methylcellulosebased edible composite coatings on color change of fresh-cut apples. Postharvest Biology and Technology, [s. l.], v. 36, p. 77–85, 2005. PIRES, M. et al. Compostos Antimicrobianos Em Filme De Polietileno–Tecnicas De Caracterização E Quantificação. 10o Congresso Brasileiro de Polímeros, [s. l.], n. February 2015, p. 9, 2009. Disponível em: http://www.ipen.br/biblioteca/cd/cbpol/2009/PDF/495.pdf. POSSOMAI, D. C. et al. Obtenção e avaliação das propriedades mecânicas de polímeros biodegradáveis a base de amido de milho e proteína do soro do leite. In: , 2017, Gramado, RS. 57o Congresso Brasileiro de Química ISBN 978-85-85905-21-7. Gramado, RS: [s. n.], 2017. Disponível em: http://www.abq.org.br/cbq/2017/trabalhos/12/12011-24773.html. REDDY, M. M. M. M. et al. Biobased plastics and bionanocomposites: Current status and future opportunities. Progress in Polymer Science, [s. l.], v. 38, n. 10–11, p. 1653–1689, 2013. Disponível em: http://dx.doi.org/10.1016/j.progpolymsci.2013.05.006. REMUNAN-LOPEZ, C.; BODMEIA, R. Mechanical, water uptake and permeability properties of crosslinked chitosan glutamate and alginate films. Journal of Controlled Release, [s. l.], v. 44, p. 215–225, 1997. REZENDE, J. A. M.; FANCELLI, M. L. Doenças do mamoeiro (Carica papaya L.). In: KIMATI, H. et al. (org.). Manual de fitopatologia Volume 2: Doenças de plantas cultivadas. 3 ed.ed. São Paulo: Agronômica Ceres, 1997. p. 453–463. RHIM, J. W. Physical and mechanical properties of water resistant sodium alginate films. LWT - Food Science and Technology, [s. l.], v. 37, n. 3, p. 323–330, 2004. RHIM, J. W.; NG, P. K. W. Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition, [s. l.], v. 47, n. 4, p. 411–433, 2007. RODRIGUES, J. P. et al. Current technologies to control fungal diseases in postharvest papaya (Carica papaya L.). Biocatalysis and Agricultural Biotechnology, [s. l.], v. 36, n. August, 2021. ROMANAZZI, G. et al. Effectiveness of postharvest treatment with chitosan and other resistance inducers in the control of storage decay of strawberry. Postharvest Biology and Technology, [s. l.], v. 75, p. 24–27, 2013. Disponível em: http://dx.doi.org/10.1016/j.postharvbio.2012.07.007. ROY, S.; RHIM, J. W. Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. International Journal of Biological Macromolecules, [s. l.], v. 148, p. 666–676, 2020. Disponível em: https://doi.org/10.1016/j.ijbiomac.2020.01.204. RUFINO, M. do S. M. et al. Bioactive compounds and antioxidant capacities of 18 nontraditional tropical fruits from Brazil. Food Chemistry, [s. l.], v. 121, n. 4, p. 996–1002, 2010. Disponível em: http://dx.doi.org/10.1016/j.foodchem.2010.01.037. SAINI, T. J.; GUPTA, S. G.; ANANDALAKSHMI, R. First report of papaya anthracnose caused by Colletotrichum salsolae in India . New Disease Reports, [s. l.], v. 35, p. 27, 2017. SALES, M. J. A.; SCHLEMMER, D.; RESCK, I. S. Preparação, caracterização e degradaç ão de blendas PS/TPS usando glicerol e óleo de buriti como plastificantes. Polimeros, [s. l.], v. 20, n. 1, p. 6–13, 2010. SANTANA, A. A.; KIECKBUSCH, T. G. Physical evaluation of biodegradable films of calcium alginate plasticized with polyols. Brazilian Journal of Chemical Engineering, [s. l.], v. 30, n. 4, p. 835–845, 2013. SANTOS, J. E. dos et al. Caracterização de quitosanas comerciais de diferentes origens. Polímeros, [s. l.], v. 13, n. 4, p. 242–249, 2003. SARENGAOWA et al. Effect of thyme oil–alginate-based coating on quality and microbial safety of fresh-cut apples. Journal of the Science of Food and Agriculture, [s. l.], v. 98, n. 6, p. 2302–2311, 2018. SARKHOSH, A. et al. Antifungal activity of five plant-extracted essential oils against anthracnose in papaya fruit. Biological Agriculture and Horticulture, [s. l.], v. 34, n. 1, p. 18–26, 2018. Disponível em: http://doi.org/10.1080/01448765.2017.1358667. SATRIAJI, K. P. et al. Antibacterial bionanocomposite films based on CaSO<inf>4</inf>- crosslinked alginate and zinc oxide nanoparticles. Food Packaging and Shelf Life, [s. l.], v. 24, 2020. SCHMIDT-MENDE, L.; MACMANUS-DRISCOLL, J. L. ZnO - nanostructures, defects, and devices. Materials Today, [s. l.], v. 10, n. 5, p. 40–48, 2007. SEIXAS, F. L. et al. Biofilms composed of alginate and pectin: Effect of concentration of crosslinker and plasticizer agents. Chemical Engineering Transactions, [s. l.], v. 32, p. 1693– 1698, 2013. SHAHMOHAMMADI, M.; JAVADI, M.; NASSIRI-ASL, M. An Overview on the Effects of Sodium Benzoate as a Preservative in Food Products. Biotechnology and Health Sciences, [s. l.], v. 3, n. 3, 2016. SHARMA, S. et al. Fabrication of antibacterial silver nanoparticle - Sodium alginatechitosan composite films. RSC Advances, [s. l.], v. 2, n. 13, p. 5837–5843, 2012. SHARMA, S.; BARMAN, K.; SIDDIQUI, M. W. Chitosan: Properties and roles in postharvest quality preservation of horticultural crops. [S. l.]: Elsevier Inc., 2016. E-book. Disponível em: http://dx.doi.org/10.1016/B978-0-12-804313-4/00009-8. SHIGEMATSU, E. et al. Edible coating with coconut water to preserve probiotic strains and sensory characteristics of minimally processed carrots. International Food Research Journal, [s. l.], v. 26, n. 4, p. 1285–1292, 2019. SHIVAS, R. G.; CAI, L. Cryptic fungal species unmasked. Microbiology Australia, [s. l.], v. 33, n. 1, p. 36, 2012. SILVA, S. H. de T. e. Confecção e caracterização físico-química e da atividade antimicrobiana de biofilmes nanocompósitos à base de alginato contendo nanopartículas de ZnO. 2017. 130 f. - Universidade Estadual de Campinas, [s. l.], 2017. SIRELKHATIM, A. et al. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters, [s. l.], v. 7, n. 3, p. 219–242, 2015. Disponível em: http://dx.doi.org/10.1007/s40820-015-0040-x. SIVAKUMAR, D.; WALL, M. M. Papaya Fruit Quality Management during the Postharvest Supply Chain. Food Reviews International, [s. l.], v. 29, n. 1, p. 24–48, 2013. SONG, Y. et al. Effect of sodium alginate-based edible coating containing different antioxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control, [s. l.], v. 22, n. 3–4, p. 608–615, 2011. SOUZA, V. G. L. et al. Biodegradable chitosan films with ZnO nanoparticles synthesized using food industry by-products—production and characterization. Coatings, [s. l.], v. 11, n. 6, 2021. SUHAG, R. et al. Film formation and deposition methods of edible coating on food products: A review. Food Research International, [s. l.], v. 136, n. March, p. 109582, 2020. Disponível em: https://doi.org/10.1016/j.foodres.2020.109582. SUPAPVANICH, S.; PROMYOU, S. Hot water incorporated with salicylic acid dips maintaining physicochemical quality of “Holland” papaya fruit stored at room temperature. Emirates Journal of Food and Agriculture, [s. l.], v. 29, n. 1, p. 18–24, 2017. TABASSUM, N.; KHAN, M. A. Modified atmosphere packaging of fresh-cut papaya using alginate based edible coating: Quality evaluation and shelf life study. Scientia Horticulturae, [s. l.], v. 259, n. March 2019, p. 108853, 2020. Disponível em: https://doi.org/10.1016/j.scienta.2019.108853. TAMIMI, N. et al. The effects of nano-zinc oxide morphology on functional and antibacterial properties of tapioca starch bionanocomposite. Food Science and Nutrition, [s. l.], v. 9, n. 8, p. 4497–4508, 2021. TARNOWSKI, T. L. B.; PLOETZ, R. C. First Report of Colletotrichum capsici Causing Postharvest Anthracnose on Papaya in South Florida. Plant Disease, [s. l.], v. 94, n. 8, p. 1065– 1065, 2010. Disponível em: https://apsjournals.apsnet.org/doi/10.1094/PDIS-94-8-1065B. TATAGIBA, J. S. et al. Control and favourable weather for anthracnose of papaya Anthracnose. Fitopatologia Brasileira, [s. l.], v. 27, n. 2, p. 186–192, 2002. TAVASSOLI-KAFRANI, E.; SHEKARCHIZADEH, H.; MASOUDPOUR-BEHABADI, M. Development of edible films and coatings from alginates and carrageenans. Carbohydrate Polymers, [s. l.], v. 137, p. 360–374, 2016. TAYEL, A. A. et al. Nanometals Appraisal In Food Preservation And Food-related Activities. In: GRUMEZESCU, A. M. (org.). Food Preservation, Nanotechnology in the Agri- Food Industry. [S. l.]: Elsevier Inc., 2017. p. 40. TRINDADE, A. V. et al. Mamão, Produção: aspectos técnicos. Brasília, DF.: Embrapa Comunicação para Transferência de Tecnologia, 2000. TURBIANI, F. R. B. Desenvolvilmento e Caracterização de Filmes de Alginato de Sódio Reticulados com Benzoato de Cálcio. [s. l.], p. 126, 2007. TURBIANI, F. R. B.; KIECKBUSCH, T. G.; GIMENES, M. L. Liberação de benzoato de cálcio de filmes de alginato de sódio reticulados com íons cálcio. Polímeros, [s. l.], v. 21, n. 3, p. 175–181, 2011. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14282011000300004&lng=pt&tlng=pt. VALERO, D. et al. Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biology and Technology, [s. l.], v. 77, p. 1–6, 2013. Disponível em: http://dx.doi.org/10.1016/j.postharvbio.2012.10.011. VASCONCELOS, M. O. P. de. Filmes bioativos de quitosana, alginato e suas blendas aditivadas com nanoZnO: produção e caracterização. 2016. 66 f. - Universidade Federal Rural de Pernambuco, [s. l.], 2016. VENTURA, J. A.; COSTA, H.; TATAGIBA, J. da S. Papaya Diseases and Integrated Control. In: NAQVI, S. A. M. H. (org.). Diseases of Fruits and Vegetables: Volume II. Dordrecht: Springer Netherlands, 2004. p. 201–269. E-book. Disponível em: http://link.springer.com/10.1007/1-4020-2607-2. VERMA, D. et al. Characterization of surface charge and mechanical properties of chitosan/alginate based biomaterials. Materials Science and Engineering C, [s. l.], v. 31, n. 8, p. 1741–1747, 2011. Disponível em: http://dx.doi.org/10.1016/j.msec.2011.08.005. VIEIRA, T. M.; MOLDÃO-MARTINS, M.; ALVES, V. D. Design of chitosan and alginate emulsion-based formulations for the production of monolayer crosslinked edible films and coatings. Foods, [s. l.], v. 10, n. 7, 2021. VILAPLANA, F.; STRÖMBERG, E.; KARLSSON, S. Environmental and resource aspects of sustainable biocomposites. Polymer Degradation and Stability, [s. l.], v. 95, n. 11, p. 2147– 2161, 2010. Disponível em: http://dx.doi.org/10.1016/j.polymdegradstab.2010.07.016. VITAL, A. C. P. et al. Quality and sensory acceptability of fish fillet (Oreochromis niloticus) with alginate-based coating containing essential oils. Journal of Food Science and Technology, [s. l.], v. 55, n. 12, p. 4945–4955, 2018. Disponível em: https://doi.org/10.1007/s13197-018-3429-y. WANG, H. et al. Preparation and characterization of multilayer films composed of chitosan, sodium alginate and carboxymethyl chitosan-ZnO nanoparticles. Food Chemistry, [s. l.], v. 283, n. November 2018, p. 397–403, 2019. Disponível em: https://doi.org/10.1016/j.foodchem.2019.01.022. WANG, Z. L. Zinc oxide nanostructures: Growth, properties and applications. Journal of Physics Condensed Matter, [s. l.], v. 16, n. 25, p. 829–858, 2004. WANG, L.; KHOR, E.; LIM, L. Y. Chitosan-alginate-CaCl2 system for membrane coat application. Journal of Pharmaceutical Sciences, [s. l.], v. 90, n. 8, p. 1134–1142, 2001. YADAV, S.; MEHROTRA, G. K.; DUTTA, P. K. Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chemistry, [s. l.], v. 334, n. June 2020, p. 127605, 2021. Disponível em: https://doi.org/10.1016/j.foodchem.2020.127605. YAN, X. L.; KHOR, E.; LIM, L. Y. Chitosan-alginate films prepared with chitosans of different molecular weights. Journal of Biomedical Materials Research, [s. l.], v. 58, n. 4, p. 358–365, 2001. YOUSSEF, A. M.; EL-SAYED, S. M. Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydrate Polymers, [s. l.], v. 193, n. March, p. 19–27, 2018. Disponível em: https://doi.org/10.1016/j.carbpol.2018.03.088. ZACTITI, É. M. Desenvolvimento e caracterização de filmes biodegradáveis de alginato de cálcio sem e com sorbato de potássio. 2004. 150 f. - Universidade Estadual de Campinas, [s. l.], 2004. ZENGIN, N. et al. The evaluation of the genotoxicity of two food preservatives: Sodium benzoate and potassium benzoate. Food and Chemical Toxicology, [s. l.], v. 49, n. 4, p. 763–769, 2011. ZHANG, G.; MA, Y. Spectroscopic studies on the interaction of sodium benzoate, a food preservative, with calf thymus DNA. Food Chemistry, [s. l.], v. 141, n. 1, p. 41–47, 2013. Disponível em: http://dx.doi.org/10.1016/j.foodchem.2013.02.122.por
dc.subject.cnpqCiência e Tecnologia de Alimentospor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/73468/2022%20-%20Juliana%20Pereira%20Rodrigues.Pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6648
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-05-30T19:29:24Z No. of bitstreams: 1 2022 - Juliana Pereira Rodrigues.Pdf: 2905347 bytes, checksum: 57a450ade5f61ae587c1d82ed716e419 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-05-30T19:29:24Z (GMT). No. of bitstreams: 1 2022 - Juliana Pereira Rodrigues.Pdf: 2905347 bytes, checksum: 57a450ade5f61ae587c1d82ed716e419 (MD5) Previous issue date: 2022-05-19eng
Appears in Collections:Mestrado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Juliana Pereira Rodrigues.Pdf2.84 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.