Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10798
Full metadata record
DC FieldValueLanguage
dc.contributor.authorConceição Neto, Ricardino da
dc.date.accessioned2023-12-22T01:43:09Z-
dc.date.available2023-12-22T01:43:09Z-
dc.date.issued2021-02-12
dc.identifier.citationCONCEIÇÃO NETO, Ricardino da. Padrões de coocorrência de espécies de formigas de solo em reflorestamento de Mata Atlântica de pequena escala espacial. 2021. 48 f. Dissertação (Mestrado em Biologia Animal) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10798-
dc.description.abstractO uso de modelos nulos na análise de padrões de coocorrência tornou-se uma alternativa viável para se avaliar as estrutura de comunidades. As comunidades locais são formadas a partir do pool regional de espécies sob a influência de vários fatores. Nosso estudo investigou alguns fatores que podem influenciar a formação da comunidade local de formigas de solo, utilizando matrizes de presença/ausência obtidas de uma floresta plantada no sudeste do Brasil. Analisamos os padrões de coocorrência de 52 espécies de formigas, de acordo com as guildas, tipos de habitat, períodos de amostragem e algoritmos de randomização. O padrão aleatório de distribuição das espécies predominou na comunidade, perfazendo 70% dos resultados, seguido pela segregação, com 21,7%, e padrão de agregação, com 8,3% dos resultados. Os padrões de coocorrência não aleatórios foram mais frequentes para formigas onívoras, habitats heterogêneos, período seco e algoritmo de randomização fixo-fixo. As frequências de agregação e segregação foram quase as mesmas entre as guildas de formigas, prevalecendo os padrões de segregação em todos os casos. Matrizes de habitat heterogêneos mostraram muito mais segregação do que agregação de pares de espécies, enquanto os resultados para as matrizes de habitat homogêneos eram dependentes das espécies de árvores. Quanto aos períodos de amostragem, encontramos apenas segregação no período chuvoso, enquanto no período seco, os padrões de agregação e segregação ocorreram com pequenas diferenças nas frequências. Padrões de coocorrência agregado dos pares formigas nunca foram encontrados no algoritmo fixo-fixo. Nossos resultados mostraram a importância de analisar vários fatores ao usar padrões de coocorrência de espécies para entender a formação de comunidades locais. Embora a comunidade de formigas demonstre na maioria dos casos uma estrutura aleatória na distribuição de pares de espécies, mesmo trabalhando em pequena escala espacial, encontramos evidências a favor da hipótese de especialização arbórea, sugerindo a importância do uso de diferentes espécies arbóreas em projetos de restauração para recuperar a diversidade de espécies de formigas fundamentais para o bom funcionamento do ecossistema.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectFiltros ambientaispor
dc.subjectCompetiçãopor
dc.subjectRestauraçãopor
dc.subjectMata Atlânticapor
dc.subjectEnvironmental filterseng
dc.subjectCompetitioneng
dc.subjectEstorationeng
dc.subjectAtlantic foresteng
dc.titlePadrões de coocorrência de espécies de formigas de solo em reflorestamento de Mata Atlântica de pequena escala espacialpor
dc.title.alternativePatterns of cooccurrence of species of soil ants in reforestation of small-scale Atlantic Foresteng
dc.typeDissertaçãopor
dc.description.abstractOtherThe use of null models in analyzes of co-occurrence patterns has become a viable alternative to evaluate community structures. Local communities are formed from the regional species pool under the influence of several factors. Our study investigated some factors that may influence local ground-dwelling ant community formation using presence/absence matrices obtained from a planted forest in southeastern Brazil. We analyzed occurrence patterns of 52 ant species according to ant guilds, habitat types, sampling time, and randomization algorithms. The random pattern of species distribution predominated in the community, making up 70% of the results, followed by segregation, with 21.7%, and aggregation pattern, with 8.3% of the results. Non-random co-occurrence patterns were more frequent for omnivorous ants, heterogeneous habitats, dry period, and fixed-fixed randomization algorithm. The frequencies of aggregation and segregation were almost the same between ant guilds, with segregation patterns prevailing in all cases. Heterogeneous habitat matrices showed much more segregation than an aggregation of species pairs, whereas the results for the homogeneous habitat matrices were dependent upon tree species. Regarding the sampling time, we found only segregation in the rainy, whereas in the dry period, aggregation and segregation patterns occurred with small differences in frequencies. Aggregation species co-occurrence patterns of ants were never found in the fixed-fixed algorithm. Our results showed the importance of analyzing several factors when using species co-occurrence patterns to understand the formation of local communities. Although ant community demonstrates in most cases a random structure in the distribution of species pairs, even working on a small spatial scale, we found evidence in favor of the tree specialization hypothesis, suggesting the importance of using different tree species in restoration projects to recover the diversity of ant species that are fundamental for the good functional of the ecosystem.eng
dc.contributor.advisor1Queiroz, Jarbas Marcal de
dc.contributor.advisor1ID445.546.641-04por
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-4175-1834por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3716769685247180por
dc.contributor.referee1Queiroz, Jarbas Marcal de
dc.contributor.referee1ID445.546.641-04por
dc.contributor.referee1IDhttps://orcid.org/0000-0002-4175-1834por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/3716769685247180por
dc.contributor.referee2Freitas, André Felippe Nunes de
dc.contributor.referee2IDhttps://orcid.org/0000-0002-5149-9070por
dc.contributor.referee2Latteshttp://lattes.cnpq.br/0505744611172472por
dc.contributor.referee3Vargas, André Barbosa
dc.contributor.referee3IDhttps://orcid.org/0000-0002-8340-8217por
dc.contributor.referee3ID077.074.477-00por
dc.contributor.referee3Latteshttp://lattes.cnpq.br/5010028970449973por
dc.contributor.referee4Abreu, Rodolfo Cesar Real de
dc.contributor.referee4IDhttps://orcid.org/0000-0002-8797-4654por
dc.contributor.referee4Latteshttp://lattes.cnpq.br/8289532949210116por
dc.creator.ID101.251.777-20por
dc.creator.IDhttps://orcid.org/0000-0002-8540-6071por
dc.creator.Latteshttp://lattes.cnpq.br/8732979151253901por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Biologia Animalpor
dc.relation.referencesAGOSTI, D.; MAJER, J. D.; ALONSO, L. E. Ants: Standard methods for measuring and monitoring biodiversity. Washington, DC: Smithsonian Institution Press, 2000. ALMEIDA-GOMES, M.; ROCHA, C. F. D. Landscape connectivity may explain anuran species distribution in an Atlantic forest fragmented area. Landscape Ecology, v. 29, n. 1, p. 29–40, 2014. ANDERSEN, A. N. A Classification of Australian Ant Communities, Based on Functional Groups Which Parallel Plant Life-Forms in Relation to Stress and Disturbance. Journal of Biogeography, v. 22, n. 1, p. 15–29. 1995. ANDERSEN, A. N.; MAJER, J. D. Ants Show the Way Down Under: Invertebrates as Bioindicators in Land Management. Frontiers in Ecology and the Environment, v. 2, n. 6, p. 291, ago. 2004. ANTMAP. Disponível em: <http://www.antmaps.org>. Acesso em 24 de fev. 2021. AQUINO, A. M. et al. Amostragem da Mesofauna Edáfica utilizando Funis de Berlese- Tüllgren Modificado. Embrapa, p. 4. 2006. ARMBRECHT, I. Enigmatic Biodiversity Correlations: Ant Diversity Responds to Diverse Resources. Science, v. 304, n. 5668, p. 284–286. 2004. AZEVEDO, A. D. et al. Estoque de Carbono em Áreas de Restauração Florestal da Mata Atlântica. FLORESTA, v. 48, n. 2, p. 183. 2018. BACCARO, F. B.; FERRAZ, G. Estimating density of ant nests using distance sampling. Insectes Sociaux, v. 60, n. 1, p. 103–110. 2013. BACCARO, F. B. et al. Guia para os gêneros de formigas do Brasil. Manaus: Editora INPA, 28 2015. BAITELLO, J. B. Lauraceae. In: Flora Fanerogâmica do Estado de São Paulo. São Paulo: Fapesp/RiMa, 2003. p. 149–223. BESTELMEYER, B. T. et al. Field Techniques for the Study of Ground-Dwelling Ants: An Overview, Description and Evaluation. In: AGOSTI, D. et al. (Eds.). . Ants : Standard Methods for Measuring and Monitoring Biodiversity. Washington, DC.: Smithsonian Institution Press, 2000. p. 122–144. BRANDÃO, C. R. F.; SILVESTRE, R.; DELABIE, J. H. C. Neotropical Ants (Hymenoptera) Functional Groups. In: PANIZZI, A. R.; PARRA, J. R. P. (Eds.). Insect Bioecology and Nutrition for Integrated Pest Management. CRC Press, 2012. p. 213–236. BUSCHINGER, A. Social parasitism among ants: A review (Hymenoptera: Formicidae). Myrmecological News, v. 12, p. 219–235. 2009. CALCATERRA, L.; CABRERA, S.; BRIANO, J. Local co-occurrence of several highly invasive ants in their native range: are they all ecologically dominant species? Insectes Sociaux, v. 63, n. 3, p. 407–419. 2016. CAMAROTA, F. et al. Co-occurrence patterns in a diverse arboreal ant community are explained more by competition than habitat requirements. Ecology and Evolution, v. 6, n. 24, p. 8907–8918. 2016. CARNAVAL, A. C. et al. Stability Predicts Genetic Diversity in the Brazilian Atlantic Forest Hotspot. Science, v. 323, n. 5915, p. 785–789. 2009. CASIMIRO, M. S.; SANSEVERO, J. B. B.; QUEIROZ, J. M. What can ants tell us about ecological restoration? A global meta-analysis. Ecological Indicators, v. 102, p. 593–598. 2019. CERDÁ, X.; ARNAN, X.; RETANA, J. Is competition a significant hallmark of ant 29 (Hymenoptera: Formicidae) ecology? Myrmecological News, v. 18, n. 1, p. 131–147. 2013. CERDÁ, X.; DEJEAN, A. Predation by ants on arthropods and other animals. In: NATIONAL ACADEMY OF SCIENCES (U.S.) (Ed.). Predation in the Hymenoptera: An Evolutionary Perspective, 2011. p. 39–78. COLE, B. J. Assembly of Mangrove Ant Communities: Patterns of Geographical Distribution. The Journal of Animal Ecology, v. 52, n. 2, p. 339–347. 1983. CONNOR, E. F.; SIMBERLOFF, D. The Assembly of Species Communities: Chance or Competition? Ecology, v. 60, n. 6, p. 1132–1140. 1979. CRIST, T. O.; MACMAHON, J. A. Harvester Ant Foraging and Shrub-Steppe Seeds: Interactions of Seed Resources and Seed Use. Ecology, v. 73, n. 5, p. 1768–1779, out. 1992. DASH, S. T. A taxonomic revision of the new world Hypoponera Santschi, 1938 (Hymenoptera: Formicidae). The University of Texas at El Paso. 2011. DÁTTILO, W.; IZZO, T. J. Temperature Influence on Species Co-Occurrence Patterns in Treefall Gap and Dense Forest Ant Communities in a Terra-Firme Forest of Central Amazon, Brazil. Sociobiology, v. 59, n. 2, p. 351. 2014. DEJEAN, A. et al. How territoriality and host-tree taxa determine the structure of ant mosaics. The Science of Nature, v. 102, n. 5–6, p. 33. 2015. DELABIE, J. H. C. et al. Sampling effort and choice of methods. In: AGOSTI, D. et al. (Eds.). . Ants: Standard Methods for Measuring and Monitoring Biodiversity. Washington, DC.: Smithsonian Institution Press, 2000. p. 145–154. DONOSO, D. A.; JOHNSTON, M. K.; KASPARI, M. Trees as templates for tropical litter arthropod diversity. Oecologia, v. 164, n. 1, p. 201–211. 2010. DRAKE, J. A.; FLUM, T.; HUXEL, G. R. On Defining Assembly Space: A Reply to Grover 30 and Lawton. The Journal of Animal Ecology, v. 63, n. 2, p. 488, abr. 1994. DRAKE, J. A. et al. On the nature of the assembly trajectory. In: WEIHER, E.; KEDDY, P. A. (Eds.). . Ecological Assembly Rules: Perspectives, Advances, Retreats. [s.l.] Cambridge University Press, 1999. p. 233–250. DUNN, R. R. Recovery of Faunal Communities During Tropical Forest Regeneration. Conservation Biology, v. 18, n. 2, p. 302–309. 2004. EHRENFELD, J. G. Effects of Exotic Plant Invasions on Soil Nutrient Cycling Processes. Ecosystems, v. 6, n. 6, p. 503–523. 2003. ELLWOOD, M. D. F. et al. Competition can lead to unexpected patterns in tropical ant communities. Acta Oecologica, v. 75, p. 24–34. 2016. FEITOSA, R. DOS S. M. Revisão taxonômica e análise filogenética de Heteroponerinae (Hymenoptera, Formicidae). Ribeirão Preto: Universidade de São Paulo, 20 2011. FICHAUX, M. et al. Habitats shape taxonomic and functional composition of Neotropical ant assemblages. Oecologia, v. 189, n. 2, p. 501–513. 2019. FISHER, B. L. et al. Applying the ALL Protocol: Selected Case Study. In: AGOSTI, D. et al. (Eds.). . Ants: Standard Methods for Measuring and Monitoring Biodiversity. Washington, DC.: Smithsonian Institution Press, 2000. p. 207–214. FOLGARAIT, P. J. Ant biodiversity and its relationship to ecosystem functioning: a review. Biodiversity and Conservation, v. 7, n. 9, p. 1221–1244, set. 1998. GOTELLI, N. J. Null Model Analysis of Species Co-Occurrence Patterns. Ecology, v. 81, n. 9, p. 2606–2621, 2000. GOTELLI, N. J.; ELLISON, A. M. Biogeography at a Regional Scale: Determinants of Ant Species Density in New England Bogs and Forests. Ecology, v. 83, n. 6, p. 1604–1609, 2002. 31 GOTELLI, N. J. et al. Counting ants (Hymenoptera: Formicidae): Biodiversity sampling and statistical analysis for myrmecologists. Myrmecological News, v. 15, p. 13–19. 2011. GOTELLI, N. J.; GRAVES, G. R. Null Models in Ecology. Washington, DC.: Smithsonian Institution Press, 1996. GOTELLI, N. J.; HART, E. M.; ELLISON, A. M. EcoSimR: Null model analysis for ecological data. R package version 0.1.0. 2015 GROVER, J. P.; LAWTON, J. H. Experimental Studies on Community Convergence and Alternative Stable States: Comments on a Paper by Drake et al. The Journal of Animal Ecology, v. 63, n. 2, p. 484, abr. 1994. HAKALA, S. M.; SEPPÄ, P.; HELANTERÄ, H. Evolution of dispersal in ants (Hymenoptera: Formicidae): a review on the dispersal strategies of sessile superorganisms. Myrmecological News, v. 29, p. 35–55. 2019. HAUKISALMI, V.; HENTTONEN, H. Analysing interspecific associations in parasites: alternative methods and effects of sampling heterogeneity. Oecologia, v. 116, n. 4, p. 565–574. 1998. HÖLLDOBLER, B.; WILSON, E. O. The Ants. Harvard University Press. 1990. INMET. Disponível em: <https://portal.inmet.gov.br/ >. Acesso em 24 de fev. 2021. JEŠOVNIK, A.; SCHULTZ, T. R. Revision of the fungus-farming ant genus Sericomyrmex Mayr (Hymenoptera, Formicidae, Myrmicinae). ZooKeys, v. 670, p. 1–109. 2017. JOHNSON, R. A. A taxonomic revision of South American species of the seed-harvester ant genus Pogonomyrmex (Hymenoptera: Formicidae). Part I. Zootaxa, v. 4029, n. 1, p. 001–142. 2015. 32 KASPARI, M. Litter ant patchiness at the 1-m2 scale: disturbance dynamics in three Neotropical forests. Oecologia, v. 107, n. 2, p. 265–273. 1996. KASPARI, M. A primer on ant ecology. In: AGOSTI, D. et al. (Eds.). . Ants standard methods for measuring and monitoring biodiversity. Washington, DC.: Smithsonian Institution Press, 2000. p. 9–24. KEMPF, W. W. F. A taxonomic study on the ant tribe Cephalotini (Hymenoptera: Formidicidae). Cornell University. 1951. KRASNOV, B. R.; STANKO, M.; MORAND, S. Are ectoparasite communities structured? Species co-occurrence, temporal variation and null models. Journal of Animal Ecology, v. 75, n. 6, p. 1330–1339. 2006. LAVENDER, T. M.; SCHAMP, B. S.; LAMB, E. G. The Influence of Matrix Size on Statistical Properties of Co-Occurrence and Limiting Similarity Null Models. PLOS ONE, v. 11, n. 3, p. e0151146. 2016. LEVINGS, S. C. Seasonal, Annual, and Among-site Variation in the Ground Ant Community of a Deciduous Tropical Forest: Some Causes of Patchy Species Distributions. Ecological Monographs, v. 53, n. 4, p. 435–455. 1983. LOBRY DE BRUYN, L. A. Ants as bioindicators of soil function in rural environments. In: Invertebrate Biodiversity as Bioindicators of Sustainable Landscapes. [s.l.] Elsevier, 1999. p. 425–441. LONGINO, J. T. A taxonomic review of the genus Azteca (Hymenoptera: Formicidae) in Costa Rica and a global revision of the aurita group. Zootaxa, v. 1491, n. 1, p. 1–63. 2007. LONGINO, J. T.; CODDINGTON, J.; COLWELL, R. K. The Ant Fauna of a Tropical Rain Forest: Estimating Species Richness Three Different Ways. Ecology, v. 83, n. 3, p. 689–702. 2002. 33 LOPES, C. T.; VASCONCELOS, H. L. Evaluation of three methods for sampling ground- dwelling Ants in the Brazilian Cerrado. Neotropical Entomology, v. 37, n. 4, p. 399–405. 2008. LORENZI, H. Árvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil. Nova Odessa: Editora Plantarum, 1992. LORENZI, H. Árvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil. Nova Odessa: Editora Plantarum, 1998. LOWMAN, M. D. Litterfall and Leaf Decay in Three Australian Rainforest Formations. The Journal of Ecology, v. 76, n. 2, p. 451. 1988. MANTOVANI, M. et al. Diversidade de espécies e estrutura sucessional de uma formação secundária da floresta ombrófila densa. Scientia Forestalis/Forest Sciences, n. 67, p. 14–26. 2005. MARCON, T. R. et al. Guia ilustrado de Leguminosae Juss. arbóreas do Corredor de Biodiversidade Santa Maria - PR. Biota Neotropica, v. 13, n. 3, p. 350–373. 2013. MAYHÉ-NUNES, A. J. Definição de termos para as projeções mesossomais das operárias de Mycocepurus Forel, 1893 (Hymenoptera, Formicidae). Contribuições Avulsas sobre a História natural do Brasil. Série Zoologia, v. 27, p. 1–7. 2000. MCGLYNN, T. P.; KIRKESY, S. E. The effects of food presentation and microhabitat upon resource monopoly in a ground-foraging ant (Hymenoptera: Formicidae) community. Revista de Biología Tropical, v. 48, p. 629–642. 2000. MEJÍA-DOMÍNGUEZ, N. R. et al. Individual Canopy-tree Species Effects on Their Immediate Understory Microsite and Sapling Community Dynamics. Biotropica, v. 43, n. 5, p. 572–581. 2011. 34 MITTELBACH, G. G.; MCGILL, B. J. Community Ecology. Oxford University Press, 2019. NÓBREGA, A. M. F. DA et al. Regeneração natural em remanescentes florestais e áreas reflorestadas da várzea do rio Mogi-Guaçu, Luiz Antônio - SP. Revista Árvore, v. 32, n. 5, p. 909–920. 2008. PIREDA, S. et al. Morpho-anatomical and ultrastructural analysis of extrafloral nectaries in Inga edulis (Vell.) Mart. (Leguminosae). Nordic Journal of Botany, v. 36, n. 7, p. e01665. 2018. PITZALIS, M. et al. The effects of biome and spatial scale on the co-occurrence patterns of a group of Namibian beetles. Acta Oecologica, v. 83, p. 29–37. 2017. PIZO, M. A.; OLIVEIRA, P. S. Interaction between ants and seeds of a nonmyrmecochorous neotropical tree, Cabralea canjerana (Meliaceae), in the Atlantic forest of southeast Brazil. American Journal of Botany, v. 85, n. 5, p. 669–674. 1998. POL, R. G.; LOPEZ DE CASENAVE, J.; PIRK, G. I. Influence of temporal fluctuations in seed abundance on the foraging behaviour of harvester ants (Pogonomyrmex spp.) in the central Monte desert, Argentina. Austral Ecology, v. 36, n. 3, p. 320–328. 2011. QGIS DEVELOPMENT TEAM. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2018. R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2019. RAHIM, A.; OHKAWARA, K. Invasive Ants Affect Spatial Distribution Pattern and Diversity of Arboreal Ant Communities in Fruit Plantations, in Tarakan Island, Borneo. Sociobiology, v. 66, n. 4, p. 527–535. 2019. REED, S. C.; CLEVELAND, C. C.; TOWNSEND, A. R. Controls Over Leaf Litter and Soil Nitrogen Fixation in Two Lowland Tropical Rain Forests. Biotropica, v. 39, n. 5, p. 585–592. 35 2007. RIBAS, C. R.; SCHOEREDER, J. H. Are all ant mosaics caused by competition? Oecologia, v. 131, n. 4, p. 606–611. 2002. RÍOS-CASANOVA, L.; VALIENTE-BANUET, A.; RICO-GRAY, V. Ant diversity and its relationship with vegetation and soil factors in an alluvial fan of the Tehuacán Valley, Mexico. Acta Oecologica, v. 29, n. 3, p. 316–323. 2006. ROCHA, C. F. D. et al. A survey of the leaf-litter frog assembly from an Atlantic forest area (Reserva Ecológica de Guapiaçu) in Rio de Janeiro State, Brazil, with an estimate of frog densities. Tropical Zoology, v. 20, p. 99–108. 2007. SÁ, D. et al. Estrutura e grupos ecológicos de um fragmento de floresta estacional semidecidual no Triângulo Mineiro, Brasil. Caminhos de gografia, v. 13, n. 44, p. 89–101. 2012. SANSEVERO, J. B. B. et al. Natural Regeneration in Plantations of Native Trees in Lowland Brazilian Atlantic Forest: Community Structure, Diversity, and Dispersal Syndromes. Restoration Ecology, v. 19, n. 3, p. 379–389. 2011. SIEVERT, C. Interactive Web-Based data visualization with R, plotly, and shiny. Chapman and Hall/CRC Florida. 2020. SILVA, B. F. et al. Ants Promote Germination of the Tree Guarea guidonia by Cleaning its Seeds. Floresta e Ambiente, v. 26, n. 3, e20180151. 2019. SILVA, B. F. et al. Diaspore Abundance Promotes more Interaction with Ants in a Brazilian Atlantic Forest. Floresta e Ambiente, v. 27, n. 4, e20180238. 2020. SILVA, F. H. O. et al. Mini-Winkler Extractor and Pitfall Trap as Complementary Methods to Sample Formicidae. Neotropical Entomology, v. 42, n. 4, p. 351–358. 2013. SILVA, P. S. D. et al. Do leaf-litter attributes affect the richness of leaf-litter ants? Neotropical 36 Entomology, v. 40, n. 5, p. 542–547. 2011. SILVA, R. R.; BRANDÃO, C. R. F. Morphological patterns and community organization in leaf-litter ant assemblages. Ecological Monographs, v. 80, n. 1, p. 107–124. 2010. SOARES, S. M.; SCHOEREDER, J. H. Ant-nest distribution in a remnant of tropical rainforest in southeastern Brazil. Insectes Sociaux, v. 48, n. 3, p. 280–286. 2001. SOSA-CALVO, J.; SCHULTZ, T. R. Three Remarkable New Fungus-Growing Ant Species of the Genus Myrmicocrypta (Hymenoptera: Formicidae), With a Reassessment of the Characters That Define the Genus and Its Position Within the Attini. Annals of the Entomological Society of America, v. 103, n. 2, p. 181–195. 2010. STONE, L.; ROBERTS, A. The checkerboard score and species distributions. Oecologia, v. 85, n. 1, p. 74–79. 1990. SUMPTER, D. J. . The principles of collective animal behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, v. 361, n. 1465, p. 5–22. 2006. TAMASHIRO, J.Y. & ESCOBAR, N.A.G.E.. Mimosoideae In: Tozzi, A.M.G.A.,et. al. Flora Fanerogâmica do Estado de São Paulo. Instituto de Botânica, São Paulo, vol. 8, pp: 84-166. 2016. VARGAS, A. B. et al. Efeitos de fatores ambientais sobre a mirmecofauna em comunidade de restinga no Rio de Janeiro, RJ. Neotropical Entomology, v. 36, n. 1, p. 28–37. 2007. VELLEND, M. The Theory of Ecological Communities (MPB-57). Princeton: Princeton University Press, 2016. VELOSO, H. P.; RANGEL-FILHO, A. L. R.; LIMA, J. C. A. Classificação da vegetação brasileira, adaptada a um sistema universal. Rio de Janeiro: IBGE, 1991. WALTHER, G.-R. Community and ecosystem responses to recent climate change. 37 Philosophical Transactions of the Royal Society B: Biological Sciences, v. 365, n. 1549, p. 2019–2024. 2010. WARD, D.; BEGGS, J. Coexistence, habitat patterns and the assembly of ant communities in the Yasawa islands, Fiji. Acta Oecologica, v. 32, n. 2, p. 215–223. 2007. WEIHER, E.; KEDDY, P. A. Ecological Assembly Rules: Perspectives, Advances, Retreats. Cambridge University Press, 2001. WILBY, A.; SHACHAK, M. Harvester ant response to spatial and temporal heterogeneity in seed availability: pattern in the process of granivory. Oecologia, v. 125, n. 4, p. 495–503. 2000. WILLOTT, S. J.; COMPTON, S. G.; INCOLL, L. D. Foraging, food selection and worker size in the seed harvesting ant Messor bouvieri. Oecologia, v. 125, n. 1, p. 35–44. 2000. YOUNG, T. P.; CHASE, J. M.; HUDDLESTON, R. T. Succession and assembly as conceptual bases in community ecology and ecological restoration. Ecological Restoration, v. 19, p. 5- 19, 2001. YUSAH, K. M. et al. Ant mosaics in Bornean primary rain forest high canopy depend on spatial scale, time of day, and sampling method. PeerJ, v. 6, p. e4231, 2018.por
dc.subject.cnpqBiologia Geralpor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/74292/2021%20-%20Ricardino%20da%20Concei%c3%a7%c3%a3o%20Neto.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6817
dc.originais.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2023-08-08T12:32:13Z No. of bitstreams: 1 2021 - Ricardino da Conceição Neto.pdf: 1263873 bytes, checksum: 537e11b76a84d4d8e77bb316833d8f90 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-08-08T12:32:13Z (GMT). No. of bitstreams: 1 2021 - Ricardino da Conceição Neto.pdf: 1263873 bytes, checksum: 537e11b76a84d4d8e77bb316833d8f90 (MD5) Previous issue date: 2021-02-12eng
Appears in Collections:Mestrado em Biologia Animal

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2021 - Ricardino da Conceição Neto.pdf2021 - Ricardino da Conceição Neto1.23 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.