Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10747
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMagalhães, Oséias Martins
dc.date.accessioned2023-12-22T01:42:39Z-
dc.date.available2023-12-22T01:42:39Z-
dc.date.issued2019-02-21
dc.identifier.citationMAGALHÃES, Oséias Martins. Relações entre fatores ambientais e dimorfismos alar e sexual em Rhagovelia Robusta Gould, 1931 (Insecta: Hemiptera: Veliidae). 2019. 74 f. Dissertação (Mestrado em Biologia Animal) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2019.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10747-
dc.description.abstractEm Gerromorpha, é possível observar dois fenômenos bem estudados em áreas temperadas: o polimorfismo alar, em que indivíduos de determinadas espécies podem ser ápteros, micrópteros, braquípteros ou macrópteros, havendo coexistência de diferentes formas em uma mesma população; e a variação de características somáticas entre machos e fêmeas, as quais podem estar relacionadas ao conflito sexual. Rhagovelia robusta Gould, 1931 é uma espécie onde tais fenômenos ocorrem de modo evidente. Assim, esta dissertação teve como objetivo geral definir as relações entre os dimorfismos alar e sexual em R. robusta, além do papel de fatores ambientais na determinação das formas alares. Primeiramente, foram avaliados os padrões de forma e tamanho de diferentes formas alares e sexos de R. robusta e quais as relações entre os dimorfismos alar e sexual. Foi observado que há variações significativas de determinadas estruturas entre machos e fêmeas, assim como de machos de diferentes formas alares. Nos machos, pronoto e fêmur posterior sofrem modificações alométricas, que estão integradas entre si. Tal integração está ligada às respostas adaptativas às necessidades de dispersão e reprodução. Posteriormente, foi analisado como fatores ambientais influenciam na abundância das formas alares de R. robusta. Evidenciou-se que diferentes condições climáticas ocorrentes durante o período de desenvolvimento influenciam na abundância do morfotipo macróptero. A maior abundância dele foi associada a temperaturas médias maiores e estações chuvosas, enquanto foi influenciada negativamente por temperaturas menores e épocas secas. Esses resultados refletem a adaptação da espécie, através de morfotipos diferentes, à variabilidade da disponibilidade de recursos ao longo do tempo. Em épocas secas, o ambiente é mais homogêneo e há menos recursos disponíveis, sendo menos viável investir no aparato de voo e custos envolvidos na dispersão. Por outro lado, os machos ápteros proporcionalmente mais abundantes nessa época tem maior capacidade de cópula, garantindo uma maior taxa de reprodução e a continuidade da população no habitat. Em épocas de alta pluviosidade, com maior heterogeneidade e disponibilidade de recursos, é possível maior investimento no desenvolvimento de indivíduos macrópteros e na dispersão para novas áreas.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectGerromorphapor
dc.subjectconflito sexualpor
dc.subjectseleção sexualpor
dc.subjectmorfometriapor
dc.subjectfatores climáticospor
dc.subjectGerromorphaeng
dc.subjectsexual conflicteng
dc.subjectsexual selectioneng
dc.subjectmorphometryeng
dc.subjectclimatic factorseng
dc.titleRelações entre fatores ambientais e dimorfismos alar e sexual em Rhagovelia Robusta Gould, 1931 (Insecta: Hemiptera: Veliidae)por
dc.title.alternativeRelationships between environmental factors and alar and sexual dimorphisms in Rhagovelia Robusta Gould, 1931 (Insecta: Hemiptera: Veliidae)eng
dc.typeDissertaçãopor
dc.description.abstractOtherGerromorpha display two phenomena well studied in temperate areas: alary polymorphism, in some species individuals can be apterous, micropterous, brachypterous, or macropterous, with different forms coexisting in a same population; and the variation of somatic characteristics between males and females, which can be relate to sexual conflict. Rhagovelia robusta Gould, 1931 is a species where both phenomena are evident. Thus, the present dissertation aims to define the relations between alary and sexual dimorphism in R. robusta, as well as the role of environmental factors in the determination of alary forms. We evaluated patterns of shape and size in different alary forms and sexes of R. robusta and the relations between alary and sexual dimorphisms. Our results shows the significant variations on certain structures between males and females, as well as between males of different alary forms. Males presents allometric modifications on the pronotum and posterior femur, and appear are integrated to each other. Such integration is tied to the adaptive responses to the needs for dispersal and reproduction. Subsequently, we analyzed how environmental factors influence the abundance of alary forms of R. robusta. Our results show that different climatic conditions, occurring during the developing period of the individuals, influence the abundance of the alate morphotype. A higher abundance is associated to higher mean temperatures and rainy seasons, while it is negatively affected by lower temperatures and dry seasons. These results reflect the adaptation of the species, through the different morphotypes, to the variable resource availability through time. During dry seasons, the environment is more homogeneous and there are less resources, thus it is less viable to invest in the flight apparatus and the costs involved in the dispersion. On the other hand, the apterous males that are proportionally more abundant during these periods have higher copulation capacity, ensuring a higher reproduction rate and the continuity of the species in the habitat. During high pluviosity seasons, with higher heterogeneity and resource availability, it is possible to invest more in the development of alate individuals and in the dispersion to new areas.eng
dc.contributor.advisor1Moreira, Felipe Ferraz Figueiredo
dc.contributor.advisor1IDCPF: 106.487.357-02por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3193402678222768por
dc.contributor.advisor-co1Coutinho, Carolina Branco Dale
dc.contributor.referee1Moreira, Felipe Ferraz Figueiredo
dc.contributor.referee2Silva, Fernanda Avelino Capistrano da
dc.contributor.referee3Dociele, Tatiana Nascimento
dc.creator.IDCPF: 117.999.417-52por
dc.creator.Latteshttp://lattes.cnpq.br/6716488966275681por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Biologia Animalpor
dc.relation.referencesAndersen, N. M. (1981). Semiaquatic bugs: phylogeny and classification of the Hebridae (Heteroptera: Gerromorpha) with revisions of Timasius, Neotimasius and Hyrcanus. Systematic Entomology, 6(4), 377-412. Andersen, N. M. (1982). The semiaquatic bugs (Heteroptera, Gerromorpha), phylogeny, adaptations, biogeography and classification. Entomonograph, 3, 1-455. Andersen, N. M. (1993). Classification, phylogeny, and zoogeography of the pond skater genus Gerris Fabricius (Hemiptera: Gerridae). Canadian Journal of Zoology, 71(12), 2473-2508. Arnqvist, G., & Rowe, L. (2005). Sexual conflict Princeton University Press. Princeton, New Jersey, 1-381. Brinkhurst, R. O. (1959). Alary polymorphism in the Gerroidea (Hemiptera-Heteroptera). The Journal of Animal Ecology, 211-230. Calder, W. A. (1996). Size, function, and life history. Courier Corporation, 488pp. Fairbairn, D. J. (1992). The origins of allometry: size and shape polymorphism in the common waterstrider, Gerris remigis Say (Heteroptera, Gerridae). Biological Journal of the Linnean Society, 45(2), 167-186. Gayon, J. (2000). History of the concept of allometry. American Zoologist, 40(5), 748-758. 14 Gould, S. J. (1966). Allometry and size in ontogeny and phylogeny. Biological Reviews, 41(4), 587-638. Grazia J., Fernandes J.A.M. (2012). Subordem Heteroptera Linnaeus, 1758. In: Rafael J.A., Melo G.A.R., de Carvalho C.J.B., Casari S.A. & Constantino R. (eds) Insetos do Brasil: Diversidade e Taxonomia. Editora Holos, Ribeirão Preto, pp369-398. Harada, T., & Nishimoto, T. (2007). Feeding conditions modify the photoperiodically induced dispersal of the water strider, Aquarius paludum (Heteroptera: Gerridae). European Journal of Entomology, 104(1), 33-37. Harada, T., & Spence, J. R. (2000). Nymphal density and life histories of two water striders (Hemiptera: Gerridae). The Canadian Entomologist, 132(3), 353-363. Harrison, R. G. (1980). Dispersal polymorphisms in insects. Annual Review of Ecology and Systematics, 11(1), 95-118. Hirooka, Y., Hagizuka, C., & Ohshima, I. (2016). The effect of combinations of food insects for continuous rearing of the wing polymorphic water strider Limnogonus fossarum fossarum (Hemiptera: Gerridae). Journal of Insect Science, 16(1), 1-7. Huxley, J. S., & Teissier, G. (1936). Terminologie et notation dans la description de la croissance relative. Comptes Rendus des Séances de la Société de Biologie et ses filiales, 121, 934-936. Järvinen, O., & Vepsäläinen, K. (1976). Wing dimorphism as an adaptive strategy in water‐striders (Gerris). Hereditas, 84(1), 61-68. Kaitala, A., & Dingle, H. (1993). Wing dimorphism, territoriality and mating frequency of the waterstrider Aquarius remigis (Say). Annales Zoologici Fennici , 163-168. LaBarbera, M. (1989). Analyzing body size as a factor in ecology and evolution. Annual review of ecology and systematics, 20(1), 97-117. Moreira F.F.F. (2015). The Semiaquatic Gerromorphans. In: Panizzi A.R., Grazia. J. (eds) True bugs (Heteroptera) of the Neotropics. Springer Science Business Media, Dordrecht, pp113-156. 15 Padilla-Gil, D. N., & Moreira, F. F. (2013). Checklist, taxonomy and distribution of the Rhagovelia Mayr, 1865 (Hemiptera: Heteroptera: Veliidae) of the Americas. Zootaxa, 3640, 409-424. Panizzi A.R. & Parra J.R.P. (2012). Insect Bioecology and Nutrition for Integrated Pest Management. CRC Press, 750pp. Perry, J.C. & Rowe, L. (2012). Sexual Conflict and Antagonistic Coevolution across Water Strider Populations. Evolution, 552 (66), 544-557. Polhemus D.A. (1997). Systematics of the genus Rhagovelia Mayr (Heteroptera: Veliidae) in the Western Hemisphere (exclusive of the angustipes complex). Entomological Society of America, Lanham, 386pp. Ridley M. (1993). Evolution. Blackwell Scientific Publications, Boston. 670pp. Riess M.J. (1989). The Allometry of Growth and Reproduction. Cambridge University Press, 200pp. Roff, D. A. (1986). The evolution of wing dimorphism in insects. Evolution, 40(5), 1009-1020. Schmidt-Nielsen, K. (1984). Scaling: why is animal size so important?. Cambridge University Press, 253pp. Sun, X. Y., Wang, Y. H., Dong, Z. E., Wu, H. Y., Chen, P. P., & Xie, Q. (2018). Identifying Differential Gene Expression in Wing Polymorphism of Adult Males of the Largest Water Strider: De novo Transcriptome Assembly for Gigantometra gigas (Hemiptera: Gerridae). Journal of Insect Science, 18(6), 1-10. Vepsäläinen, K. (1973). The distribution and habitats of Gerris Fabr. species (Heteroptera, Gerridae) in Finland. Annales Zoologici Fennici, 419-444. Ahlroth P., Alatalo R.V., Hyvarinen E., Suhonen J. (1999) Geographical variation in wing polymorphism of the waterstrider Aquarius najas (Heteroptera, Gerridae). Journal of Evolutionary Biology 12(1), 156-160. Andersen N.M. (1993) The evolution of wing polymorphism in water striders (Gerridae): a phylogenetic approach. Oikos, 433-443. Andersen NM (1973). Seasonal polymorphism and developmental changes in organs of flight and reproduction in bivoltine pondskaters (Hem. Gerridae). Insect Systematics & Evolution, 4(1), 1-20. Andersen, N. M. (1982). The semiaquatic bugs (Heteroptera, Gerromorpha), phylogeny, adaptations, biogeography and classification. Entomonograph, 3, 1-455. Andrewartha H.G. (1952). Diapause in relation to the ecology of insects. Biological Reviews, 27(1), 50-107. Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988). The New S Language Pacific Grove. Wadsworth & Brooks/Cole, 702pp. Bispo, P. D. C., Oliveira, L. G., Crisci, V. L., & Silva, M. M. (2001). A pluviosidade como fator de alteração da entomofauna bentônica (Ephemeroptera, Plecoptera e Trichoptera) em córregos do Planalto Central do Brasil. Acta Limnologica Brasiliensia, 13(2), 1-9. Brasil L.S., Juen L., Giehl N.F.S. & Cabette H.S.R. (2017). Effect of environmental and temporal factors on patterns of rarity of ephemeroptera in stream of the Brazilian Cerrado. Neotropical entomology, 46(1), 29-35. Brinkhurst, R. O. (1959). Alary polymorphism in the Gerroidea (Hemiptera-Heteroptera). The Journal of Animal Ecology, 211-230. 31 Crumière, A. J. J., Armisen, D., Vargas-Lowman, A., Kubarakos, M., Moreira, F. F. F., & Khila, A. (2018). Escalation and constraints of antagonistic armaments in water striders. bioRxiv, 430322. 1-36. Curto de Casas S.I., Carcavallo R.U., Galíndez Girón I., Burgos J.J., Jurberg J., and Lent H. (1999). Bioclimatic factors and zones of life. Atlas of Chagas disease vectors in the Americas, 3, 793-838. De Marco, P. (1998). The Amazonian Campina dragonfly assemblage: patterns in microhabitat use and behaviour in a foraging habitat (Anisoptera). Odonatologica, 27(2), 239-248. Denno R.F. (1994). Life history variation in planthoppers. In: Planthoppers: Their Ecology and Management, Chapman & Hall, pp. 163-215. Denno R.F., Olmstead K.L. & McCloud E.S. (1989). Reproductive cost of flight capability: a comparison of life history traits in wing dimorphic planthoppers. Ecological Entomology, 14(1), 31-44. Denno, R. F., & Grissell, E. E. (1979). The adaptiveness of wing‐dimorphism in the salt marsh‐inhabiting planthopper, Prokelisia marginata (Homoptera: Delphacidae). Ecology, 60(1), 221-236. Denno, R. F., Raupp, M. J., Tallamy, D. W., & Reichelderfer, C. F. (1980). Migration in heterogeneous environments: differences in habitat selection between the wing forms of the dimorphic planthopper, Prokelisia marginata (Homoptera: Delphacidae). Ecology, 61(4), 859-867. Denno, R. F., Roderick, G. K., Olmstead, K. L., & Dobel, H. G. (1991). Density-related migration in planthoppers (Homoptera: Delphacidae): the role of habitat persistence. The American Naturalist, 138(6), 1513-1541. Esteves, F. D. A. (1988). Fundamentos de limnologia. Interciência/Finep, 826pp. Fairbairn D. & Desranleau L. (1987). Flight threshold, wing muscle histolysis, and alary polymorphism: correlated traits for dispersal tendency in the Gerridae. Ecological Entomology, 12(1), 13-24. 32 Fairbairn D.J. (1988). Adaptive significance of wing dimorphism in the absence of dispersal: a comparative study of wing morphs in the waterstrider, Gerris remigis. Ecological Entomology, 13(3), 273-281. Giehl N.F., Fonseca P.V., Dias-Silva K., Brasil, L.S. & Cabette H.S. (2015). Effect of the abiotic factors on Brachymetra albinervis albinervis (Heteroptera: Gerridae). Iheringia. Série Zoologia, 105(4), 411-415. Harada, T., & Nishimoto, T. (2007). Feeding conditions modify the photoperiodically induced dispersal of the water strider, Aquarius paludum (Heteroptera: Gerridae). European Journal of Entomology, 104(1), 33. Hardie J., Lees A.D. (1985). Endocrine control of polymorphism and polyphenism. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology, Pergamon, New York, pp. 441– 90. Harrison R.G. (1980). Dispersal polymorphisms in insects. Annual Review of Ecology and Systematics, 11(1), 95-118. Hearon J.Z. (1952). Rate behaviour of metabolic systems. Physiological Reviews - American Journal of Physiology, 32, 499-523. Hirooka, Y., Hagizuka, C., & Ohshima, I. (2016). The effect of combinations of food insects for continuous rearing of the wing polymorphic water strider Limnogonus fossarum fossarum (Hemiptera: Gerridae). Journal of Insect Science, 16(1). Howe R.W. (1967). Temperature effects on embryonic development in insects. Annual review of entomology, 12(1), 15-42. Instituto Nacional de Meteorologia (INMET) -. Disponível em: <http:// www.inmet.gov.br/portal/>. Acessado em: 16.09.2018. Janković-Hladni, M. I. (2018). Hormones and metabolism in insect stress (historical survey). In Hormones and Metabolism in Insect. Stress CRC Press, 26pp. Johnson, B. (1966). Wing polymorphism in aphids IV. The effect of temperature and photoperiod. Entomologia experimentalis et applicata, 9(3), 301-313. Kassambara A (2017). Ggpubr:“ggplot2” based publication ready plots. R package version 0.1.6. 120pp 33 Khila, A., Abouheif, E., & Rowe, L. (2012). Function, developmental genetics, and fitness consequences of a sexually antagonistic trait. Science, 336(6081), 585-589. Kneitel, J. M., & Chase, J. M. (2004). Trade‐offs in community ecology: linking spatial scales and species coexistence. Ecology Letters, 7(1), 69-80. Krohne, D. T. (2001). General ecology. Brooks/Cole Publishing Company, 459pp. Lamb K.P. & White D. (1966). Effect of temperature, starvation and crowding on production of alate young by the cabbage aphid (Brevicoryne brassicae). Entomologia Experimentalis et Applicata, 9(2), 179-184. Legendre P & Legendre L (1988). Numerical Ecology. Elsevier Science, 840pp. Leps J. and Smilauer P. (2003). Multivariate Analysis of Ecological Data using CANOCO. Cambridge, University Press, 269pp. Magalhães O.M., Moreira F.F.F. and Galvão C. (2016). A new species of Rhagovelia Mayr, 1865 (Hemiptera: Heteroptera: Veliidae) from Pará State, with an updated key to Brazilian species of the robusta group. Zootaxa, 4171(3), 586-594. Marimon B.S., Felfili J.M., Lima E.D.S., Gonçalves W.M. & Marimon-júnior B.H. (2010). Environmental determinants for natural regeneration of gallery forest at the Cerrado / Amazonia boundaries in Brazil. Acta Amazonica, 40, (1), 107-118. Matthee J J (1951). The Structure and Physiology of the Egg of Locustana par. Dalina, Walk, 316pp. Moreira F.F.F. (2015) The Semiaquatic Gerromorphans. In: Panizzi AR, Grazia J (eds) True bugs (Heteroptera) of the Neotropics. Springer Science+Business Media, Dordrecht, pp.113-156. Nagaba Y., Tufail M., Inui H. & Takeda, M. (2011). Hormonal regulation and effects of four environmental pollutants on vitellogenin gene transcription in the giant water bug, Lethocerus deyrollei (Hemiptera: Belostomatidae). Journal of insect conservation, 15(3), 421-431. Nijhout H.F. (1994). Insect Hormones. Princeton University Press. 267pp. Odum, E.P. & Barret, G.W. (2011). Fundamentos de Ecologia. Cengage Learning. 1-612. 34 Oksanen J., Blanchet F.G., Kindt R., Legendre P, Minchin P.R., O’hara RB, and Oksanen M.J. (2013). Package ‘vegan’. Community ecology package, version 2.0, 297pp. Paiva, C. M., & Fernandes, F. R. (2016). Estudo da Produtividade Primária do Bioma Mata Atlântica via Sensoriamento Remoto. Anuário do Instituto de Geociências, 38(2), 05-14. Panizzi A.R., Parra J.R.P. (2012) Insect Bioecology and Nutrition for Integrated Pest Management. CRC Press, Boca Raton, 750pp. Peel M.C., Finlayson B.L. & McMahon T.A. (2007). World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 11, 1633–1644. Polhemus D.A. (1997) Systematics of the genus Rhagovelia Mayr (Heteroptera: Veliidae) in the Western Hemisphere (exclusive of the angustipes complex). Entomological Society of America, Lanham, 386pp. Preziosi R.F. & Fairbairn D.J. (1992). Genetic population structure and levels of gene flow in the stream dwelling waterstrider, Aquarius (= Gerris) remigis (Hemiptera: Gerridae). Evolution, 46(2), 430-444. R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL. https://www.R-project.org/. Rocha D.D.S., Jurberg J., Carcavallo R.U., Presgrave O.A., Cunha V. & Galvão C. (2001). Influência da temperatura e umidade no desenvolvimento ninfal de Rhodnius robustus. Revista de Saúde Pública, 35, 400-406. Roff D.A. (1986) The evolution of wing dimorphism in insects. Evoltion 40, 1009-1020. Roff D.A., Fairbairn D.J. (1991). Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta. American Zoologist 31, 51-243. Schaefers G.A. & Judge F.D. (1971). Effects of temperature, photoperiod, and host plant on alary polymorphism in the aphid, Chaetosiphon fragaefolii. Journal of Insect Physiology, 17(2), 365-379. Silva V. (2000). Meteorologia e Climatologia (INMET). Brasília Distrito Federal, 515pp. Simmons, A. D., & Thomas, C. D. (2004). Changes in dispersal during species’ range expansions. The American Naturalist, 164(3), 378-395. 35 Southwood, T. R. E. (1961, June). A hormonal theory of the mechanism of wing polymorphism in Heteroptera. In Proceedings of the Royal Entomological Society of London. Series A, General Entomology, 36 (4), 63-66 Southwood, T. R. E. (1962). Migration of terrestrial arthropods in relation to habitat. Biological reviews, 37(2), 171-211. Stanley W.F. (1931). The effect of temperature on vestigial wing in Drosophila melanogaster, with temperature-effective periods. Physiological Zoology, 4(3), 394-408. Strahler A.N. (1957). Quantitative classification of watershed geomorphology. Transactions of the American Geophysical Union, 38. 913–920. Van Belleghem, S. M., Roelofs, D., & Hendrickx, F. (2015). Evolutionary history of a dispersal‐associated locus across sympatric and allopatric divergent populations of a wing‐polymorphic beetle across Atlantic Europe. Molecular ecology, 24(4), 890-908. Vepsäläinen K. (1974). Determination of wing length and diapause in water‐striders (Gerris Fabr., Heteroptera). Hereditas, 77(2), 163-175. Vepsäläinen, K. (1978). Wing dimorphism and diapause in Gerris: determination and adaptive significance. In: Evolution of insect migration and diapause. Springer, pp.218-256. Wagner, D. L., & Liebherr, J. K. (1992). Flightlessness in insects. Trends in ecology & evolution, 7(7), 216-220. Wickham H., Francois R., Henry L. & Müller K. (2016). The dplyr package. R Core Team. 75pp. Zera A.J. & Denno R.F. (1997). Physiology and ecology of dispersal polymorphism in insects. Annual review of entomology, 42(1), 207-230. Zera A.J., Innes D.J. & Saks M.E. (1983). Genetic and environmental determinants of wing polymorphism in the waterstrider Limnoporus canaliculatus. Evolution, 37(3), 513-522. Adams D.C., Collyer M.L. e Sherratt E. (2016). Geometric Morphometric Analyses of 2D/3D Landmark Data. R Version 3.0.0, 145pp. Adams, D. C., & Collyer, M. L. (2016). On the comparison of the strength of morphological integration across morphometric datasets. Evolution, 70(11), 2623-2631. Adams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71(1), 5-16. Andersen, N. M. (1982). The semiaquatic bugs (Heteroptera, Gerromorpha), phylogeny, adaptations, biogeography and classification. Entomonograph, 3, 1-455. Arnqvist G. & Rowe L (2002). Antagonistic coevolution between the sexes in a group of insects. Nature, 415(6873), 9-787. Arnqvist, G., & Rowe, L. (1995). Sexual conflict and arms races between the sexes: a morphological adaptation for control of mating in a female insect. Proceedings of the Royal Society, 261(1360), 123-127. Bacon, J. A. (1956). A taxonomic study of the genus Rhagovelia (Hemiptera, Veliidae) of the Western Hemisphere. Estudio taxonómico del género Rhagovelia (Hemiptera, Veliidae) del hemisferio occidental. The University of Kansas Science Bulletin, 38(10), 695-913. Bookstein, F. L. (1985). Morphometrics in evolutionary biology: the geometry of size and shape change, with examples from fishes. Academy of Natural Sciences. 1-277. 69 Bookstein, F. L., Gunz, P., Mitteroecker, P., Prossinger, H., Schaefer, K., & Seidler, H. (2003). Cranial integration in Homo: singular warps analysis of the midsagittal plane in ontogeny and evolution. Journal of Human Evolution, 44(2), 167-187. Brodsky A.K. (1994). The evolution of insect flight. Oxford University Press. 244pp. Brown, W. D., Crespi, B. J., & CHOE, J. (1997). 21'Sexual conflict and the evolution of mating systems. The evolution of mating systems in insects and arachnids, 352-377. Cardini, A., Jansson, A. U., & Elton, S. (2007). A geometric morphometric approach to the study of ecogeographical and clinal variation in vervet monkeys. Journal of Biogeography, 34(10), 1663-1678. Chambers, J. M., & Hastie, T. J. (1992). Statistical models in S. Wadsworth & Brooks/Cole Advanced Books & Software. 624pp. Chapman, T., Arnqvist, G., Bangham, J., & Rowe, L. (2003). Sexual conflict. Trends in Ecology & Evolution, 18(1), 41-47. Crumière, A. J. J., Armisen, D., Vargas-Lowman, A., Kubarakos, M., Moreira, F. F. F., & Khila, A. (2018). Escalation and constraints of antagonistic armaments in water striders. bioRxiv, 430322. 1-36. De Marco, P. (1998). The Amazonian Campina dragonfly assemblage: patterns in microhabitat use and behaviour in a foraging habitat (Anisoptera). Odonatologica, 27(2), 239-248. Ditrich T. & Papácek M. (2010). Effect of population density on the development of Mesovelia furcata (Mesoveliidae), Microvelia reticulata and Velia caprai (Veliidae) (Heteroptera: Gerromorpha). European Journal of Entomology, 107(4), 579-587. Dryden, I. L., & Mardia, K. V. (2016). Statistical shape analysis: with applications in R. John Wiley & Sons, 496pp. Eberhard W.G. (1985). Sexual Selection and Animal Genitalia. Harvard Univ. Press, Cambridge. 244pp. Emlen, D. J. (2001). Costs and the diversification of exaggerated animal structures. science, 291(5508), 1534-1536. 70 Fairbairn, D. J. (1997). Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females. Annual review of ecology and systematics, 28(1), 659-687. Fairbairn, D.J. (1992). The origins of allometry: size and shape polymorphism in the common waterstrider, Gerris remigis Say (Heteroptera, Gerridae). Biological Journal of the Linnean Society, 45(2), 167-186. Fornel, R., & Cordeiro-Estrela, P. (2012). Morfometria geométrica e a quantificação da forma dos organismos. Temas em Biologia: Edição comemorativa aos, 20, 101-120. Guerra, P. A. (2011). Evaluating the life‐history trade‐off between dispersal capability and reproduction in wing dimorphic insects: a meta‐analysis. Biological Reviews, 86(4), 813-835. Harrison, R. G. (1980). Dispersal polymorphisms in insects. Annual Review of Ecology and Systematics, 11(1), 95-118. Hovanitz W. (1963). Insect Polymorphism. Symposia of the Royal Entomological Society of London: Number One. J. S. Kennedy, The Quarterly Review of Biology, (1)38, 92-93. Khattree R,, Naik D,N, (2000). Multivariate data reduction and discrimination with SAS software. SAS Institute Inc, 558pp. Klingenberg, C. P., & Marugán-Lobón, J. (2013). Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. Systematic biology, 62(4), 591-610. Langellotto G.A., Denno R.F., Ott J.R. (2000). A trade‐off between flight capability and reproduction in males of a wing‐dimorphic insect. Ecology, 81(3), 865-875. Magalhães O.M., Moreira F.F.F., Galvão C. (2016). A new species of Rhagovelia Mayr, 1865 (Hemiptera: Heteroptera: Veliidae) from Pará State, with an updated key to Brazilian species of the robusta group. Zootaxa, 4171(3), 586-594. Marimon, B. S., Felfili, J. M., Lima, E. D. S., Duarte, W. M. G., & Marimon-Júnior, B. H. (2010). Environmental determinants for natural regeneration of gallery forest at the Cerrado/Amazonia boundaries in Brazil. Acta Amazonica, 40(1), 107-118. 71 Marquaridt, D. W. (1970). Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics, 12(3), 591-612. Miller R.G. (1981) Simultaneous Statistical Inference. Springer. 299pp. Naimi B. (2015). Usdm: Uncertainty Analysis for Species Distribution Models. R package version 1.1.15. https://CRAN.R-project.org/package=usdm. Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and earth system sciences discussions, 4(2), 439-473. Polhemus D.A. (1997) Systematics of the genus Rhagovelia Mayr (Heteroptera: Veliidae) in the Western Hemisphere (exclusive of the angustipes complex). Entomological Society of America, Lanham,.386pp. R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL. https://www.R-project.org/. Rohlf F.J. (2010). tpsDig Version 2.16 Shareware Program. Stony Brook: Department of Ecology and Evolution, State University of New York. Rohlf, F. J., & Corti, M. (2000). Use of two-block partial least-squares to study covariation in shape. Systematic Biology, 49(4), 740-753. Rohlf, F. J., & Marcus, L. F. (1993). A revolution morphometrics. Trends in ecology & evolution, 8(4), 129-132. Rowe L. & Arnqvist G. (2002). Sexually antagonistic coevolution in a mating system: combining experimental and comparative approaches to address evolutionary processes. Evolution, 56(4), 754-767. Rowe L.; Arnqvist G.; Sih A. & Krupa J. (1994). Sexual conflict and the evolutionary ecology of mating patterns: water striders as a model system. Trends in Ecology & Evolution, 9(8), 289-293. Sane S.P. (2003). The aerodynamics of insect flight. Journal of experimental biology, 206(23), 4191-4208. Schlager S (2014). Package Morpho. R package version 3.0.7. 1-162 72 Sokal R.R. & Rohlf F.J. (1981). Biometry. Freeman and Company, 859pp. Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913-920. Vepsäläinen K. (1971). Roles of photoperiodism and genetic switch in alary polymorphism in Gerris,(Heteroptera, Gerridae)(a preliminary report). Acta entomologica fennica, 141,1-73. Vepsäläinen K. (1974). Determination of wing length and diapause in water‐striders (Gerris Fabr., Heteroptera). Hereditas, 77(2), 163-175. Wickham H. (2016). ggplot2: elegant graphics for data analysis. Springer, 212pp. Wigglesworth V.B. (1954). The Physiology of Insect Metamorphosis. Cambridge University Press, 166pp Yandell B.S. (1997) Practical Data Analysis for Designed Experiments. Chapman and Hall, 440pp Zelditch, M. L., Swiderski, D. L., Sheets, H. D., & Fink, W. L. (2004). Ordination methods in Geometric Morphometrics for Biologists: A Primer. Elsevier Academic Press.155-187.por
dc.subject.cnpqZoologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/67261/2019%20-%20Os%c3%a9ias%20Martins%20Magalh%c3%a3es.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5168
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2021-10-25T21:43:49Z No. of bitstreams: 1 2019 - Oséias Martins Magalhães.pdf: 3909284 bytes, checksum: 7dc05e35370ab13e67f9e26cbaf600eb (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-10-25T21:43:50Z (GMT). No. of bitstreams: 1 2019 - Oséias Martins Magalhães.pdf: 3909284 bytes, checksum: 7dc05e35370ab13e67f9e26cbaf600eb (MD5) Previous issue date: 2019-02-21eng
Appears in Collections:Mestrado em Biologia Animal

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2019 - Oséias Martins Magalhães.pdf2019 - Oséias Martins Magalhães3.82 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.