Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10582
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAguiar, Tamiris Conceição de
dc.date.accessioned2023-12-22T01:39:43Z-
dc.date.available2023-12-22T01:39:43Z-
dc.date.issued2021-05-28
dc.identifier.citationAGUIAR, Conceição Tamiris de. Padrão estrutural das substâncias húmicas utilizando como modelo os ácidos húmicos de solos e vermicomposto. 2021. 41 f. Dissertação (Mestrado em Agronomia, Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10582-
dc.description.abstractO processo de humificação da matéria orgânica do solo (MOS) assim como a identidade estrutural das substâncias húmicas (SH) constitui um dos temas mais debatidos na ciência do solo. Uma das principais discussões envolvidas são, os critérios relatados para questionar a teoria do húmus que carece ainda de dados e argumentação científica aceitável. Neste estudo colocamos em debate uma aproximação realizada aos padrões estruturais das SH, especificamente dos ácidos húmicos (AH) que demostra que, embora exista a necessidade de estudos ainda mais aprofundados na química dos húmus, as teorias existentes são válidas e as SH apresentam um padrão estrutural único e característico independente da fonte de origem. De acordo com esta linha, o objetivo foi obter os padrões e as diferenças estruturais de AH isolados de diferentes tipos de solos e de vermicompostos mediante caracterização espectroscópica 13C NMR CP MAS e técnicas quimiométricas. Foi utilizado espectros de oitenta amostras de AH previamente isolados e publicados e outros pertencentes ao banco de dados espectrais do Laboratório de Química Biológica do Solo. Os espectros pertencem a amostras de solos classificados como Organossolo, Latossolo, Cambissolo, Chernossolo, Planossolo arenoso, ambos do Brasil, Ferralítico Rojo (Cuba) e vermicomposto (Brasil). Todos os AH foram obtidos mediante a metodologia da Sociedade Internacional de substâncias Húmicas (IHSS) e os espectros 13C NMR CP MAS registrados nas mesmas condições experimentais. Todos os espectros foram avaliados utilizando o software ACD/Labs 2020 1.1. A quimiometria foi realizada aplicando aos espectros análises de componentes principais (PCA), curvas de resolução multivariada (MCR) e análises descritivas por meio do software The Unscrambler (version 10.4). Com o presente estudo concluem-se que independentemente do tipo de solo e a fonte de formação do AH, as SH se formam, e podem ser isoladas e caracterizadas. Todos os AH possuem um padrão estrutural semelhante, independente da origem, porém apresentam quantidades relativas diferentes de estruturas químicas em sua composição. As diferentes quantidades estruturais geram propriedades diferentes em cada AH como a hidrofilicidade, hidrofobicidade, aromaticidade e alifaticidade e por tanto haverá uma função semelhante, porém com intensidades diferentes para cada AH. Os dados indicam que as SH são um grupo de compostos com identidade estrutural única, e diferente das moléculas que lhe deram origem. Sugere que não existe um único processo de humificação, portanto em cada fonte de origem se desenvolverá uma humificação que dependem das características do ambiente e com isso, este processo ocorre com diferentes extensões.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectMatéria orgânicapor
dc.subjectEspectroscopiapor
dc.subjectQuimiometriapor
dc.subjectInterações organomineraispor
dc.subjectOrganic mattereng
dc.subjectSpectroscopy.eng
dc.subjectChemometryeng
dc.subjectOrgano-minerals interactionseng
dc.titlePadrão estrutural das substâncias húmicas utilizando como modelo os ácidos húmicos de solos e vermicompostopor
dc.title.alternativeStructural pattern of humic substances using humic acids of soil and vermicompost as a modeleng
dc.typeDissertaçãopor
dc.description.abstractOtherThe humification process of soil organic matter (SOM) as well as the structural identity of humic substances (HS) is one of the most debated topics in soil science. One of the main discussions involved is, the criteria reported to question the theory of humos still lacks data and acceptable scientific argumentation. In this study, we debate an approximation made to the structural patterns of HS, specifically humic acids (HA), which demonstrates that, although there is a need for even more in-depth studies on the chemistry of humus, existing theories are valid and HS present a pattern unique and characteristic structural independent of the source of origin. According to this line, the objective was to obtain the patterns and structural differences of eighty HA isolated from different types of soils and vermicompost through spectroscopic characterization 13C NMR CP MAS and chemometric techniques. Eighty previously isolated and published HA samples and others belonging to the spectral database of the Laboratory of Biological Chemistry of Soil were used. The spectra belong to soil samples classified as Organosol, Latosols, Cambisolo, Chernossol, Sandy Planossol, both from Brazil, Ferralitic Rojo (Cuba), and vermicompost (Brazil). All HA were obtained using the methodology (IHSS) and 13C NMR CP MAS spectra recorded under the same experimental conditions. All spectra were evaluated using the ACD / Labs 2020 1.1. Chemometrics was performed by applying principal component analysis (PCA), multivariate resolution curves (MCR) and descriptive analysis using the software The Unscrambler (version 10.4). With the present study, it is concluded that regardless of the type of soil and the source of HA formation, SH form and can be isolated and characterized. All HA have a similar structural pattern, regardless of origin, but have different relative amounts of chemical structures in their composition. The different structural quantities generate different properties in each HA such as hydrophilicity, hydrophobicity, aromaticity and aliphaticity and therefore there will be a similar function, but with different intensities for each HA. The data indicate that SH are a group of compounds with a unique structural identity and different from the molecules that gave rise to them. It suggests that there is not a single humification process, therefore, in each source of origin a humification will be develop depending on the characteristics of the environment and with that, this process occurs with different extensions.eng
dc.contributor.advisor1García, Andrés Calderín
dc.contributor.advisor1ID061.145.927-27por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8896375232574274por
dc.contributor.referee1García, Andrés Calderín
dc.contributor.referee2Pereira, Marcos Gervasio
dc.contributor.referee3Fontana, Ademir
dc.creator.ID122.146.377-29por
dc.creator.Latteshttp://lattes.cnpq.br/0603621640023337por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Agronomia - Ciência do Solopor
dc.relation.referencesASSUNÇÃO, S. A., PEREIRA, M. G., ROSSET, J. S., BERBARA, R. L. L., GARCÍA, A. C. Carbon input and the structural quality of soil organic matter as a function of agricultural management in a tropical climate region of Brazil. Science of the Total Environment, 658, 901-911, 2019. COLLADO, S., OULEGO, P., SUÁREZ-IGLESIAS, O., & DÍAZ, M. Biodegradation of dissolved humic substances by fungi. Applied microbiology and biotechnology, v.102, n. 8, p. 3497-3511, 2018. DE CASTRO, T. A. V. T., BERBARA, R. L. L., TAVARES, O. C. H., DA GRAÇA MELLO, D. F., PEREIRA, E. G., DE SOUZA, C. D. C. B., ... & GARCÍA, A. C. Humic Acids Induce a Eustress State Via Photosynthesis and Nitrogen Metabolism Leading to a Root Growth Improvement in Rice Plants. Plant Physiology and Biochemistry, 2021. DROSOS, M., NEBBIOSO, A., & PICCOLO, A. Humeomics: A key to unravel the humusic pentagram. Applied soil ecology, v. 123, p. 513-516, 2018. FISCHER, T. Humic supramolecular structures have polar surfaces and unpolar cores in native soil. Chemosphere, v. 183, p. 437-443, 2017. GARCÍA, A. C., VAN TOL DE CASTRO, T. A., SANTOS, L. A., TAVARES, O. C. H., CASTRO, R. N., BERBARA, R. L. L., & GARCÍA‐MINA, J. M. Structure–property–function relationship of humic substances in modulating the root growth of plants: A review. Journal of Environmental Quality, v. 48, n. 6, p. 1622-1632, 2019. GARCÍA, A. C., DE SOUZA, L. G. A., PEREIRA, M. G., CASTRO, R. N., GARCÍAMINA, J. M., ZONTA, E., ... & BERBARA, R. L. L. Structure-property-function relationship in humic substances to explain the biological activity in plants. Scientific reports, v. 6, n. 1, p. 1-10, 2016. GERKE, J. Concepts and misconceptions of humic substances as the stable part of soil organic matter: A review. Agronomy, v. 8, n. 5, p. 76, 2018. GOMES, E.T.M., R.L.L. BERBARA, M.G. PEREIRA, S.S. URQUIAGA, O.C.H. TAVARES, S.A. ASSUNÇÃO, AND A.C. GARCÍA. Effects of farmed managements in sandy soils on composition and stabilization of soil humic substances. Land Degrad. Dev. v. 29, n. 1, p. 68–79, 2018. HAYES, M. H., & SWIFT, R. S. An appreciation of the contribution of Frank Stevenson to the advancement of studies of soil organic matter and humic substances. Journal of soils and sediments, v. 18, n. 4, p. 1212-1231, 2018. HAYES, M. H., & SWIFT, R. S. Vindication of humic substances as a key component of organic matter in soil and water. Advances in Agronomy, v. 163, p. 1, 2020. IHSS. 2021. What are humic substances? Int. Humic Substances Soc. https:// humicsubstances. org/ (Accessed March 2021). KEELER, C., KELLY, E. F., & MACIEL, G. E. Chemical–structural information from solidstate 13C NMR studies of a suite of humic materials from a lower montane forest soil, Colorado, USA. Geoderma, v. 130, n. 1-2, p. 124-140, 2006. KLEBER, M., and J. LEHMANN. Humic substances extracted by alkali are invalid proxies for the dynamics and functions of organic matter in terrestrial and aquatic ecosystems. J. Environ. Qual. v. 48, p. 207–216, 2019. Kononova, M.M. 1966. Soil organic matter. 2nd ed. Pergamon, Oxford, UK. LEHMANN, J., & KLEBER, M. The contentious nature of soil organic matter. Nature, v. 528, n. 7580, p. 60-68, 2015. NEBBIOSO, A., & PICCOLO, A. Advances in humeomics: enhanced structural identification of humic molecules after size fractionation of a soil humic acid. Analytica Chimica Acta, v. 720, p. 77-90, 2012. NEBBIOSO, A., PICCOLO, A. Basis of a humeomics science: Chemical fractionation and molecular characterization of humic biosuprastructures. Biomacromolecules v. 12, n. 4, p. 1187–1199, 2011. OLK, D. C., BLOOM, P. R., PERDUE, E. M., MCKNIGHT, D. M., CHEN, Y., FARENHORST, A., ... & HARIR, M. Environmental and agricultural relevance of humic fractions extracted by alkali from soils and natural waters. Journal of environmental quality, v. 48, n. 2, p. 217-232, 2019. PICCOLO, A., SPACCINI, R., DROSOS, M., VINCI, G., & COZZOLINO, V. The molecular composition of humus carbon: recalcitrance and reactivity in soils. In The future of soil carbon. Academic Press, p. 87-124, 2018. PICCOLO, A. In memoriam Prof. F.J. Stevenson and the question of humic substances in soil. Chem. Biol. Technol. Agric. v. 3, n. 23, 2016. SCHMIDT, M. W., TORN, M. S., ABIVEN, S., DITTMAR, T., GUGGENBERGER, G., JANSSENS, I. A., ... & TRUMBORE, S. E. Persistence of soil organic matter as an ecosystem property. Nature, v. 478, n. 7367, p. 49-56, 2011. SCHNITZER, M. Organic matter characterization. 2.ed. In: PAGE, A.L., ed. Methods of soil analysis. Part 2. Chemical and microbiological properties. Madison, ASA/SSSA, p.581-593, 1982. SCHNITZER, M., & MONREAL, C. M. Quo vadis soil organic matter research? A biological link to the chemistry of humification. Advances in agronomy, v. 113, p. 143-217, 2011. SEN, D. O. U., JUN, S. H. A. N., XIANGYUN, S. O. N. G., RUI, C. A. O., MENG, W. U., CHENGLIN, L. I., & SONG, G. U. A. N. Are humic substances soil microbial residues or unique synthesized compounds? A perspective on their distinctiveness. Pedosphere, v. 30, n. 2, p.159-167, 2020. SIMPSON, M. J., & SIMPSON, A. J. NMR of soil organic matter. In Encyclopedia of Spectroscopy and Spectrometry (3rd ed.). Elsevier Ltd., 2016. SONG, Y.; SUN, Y.; ZHANG, X.; ZHOU, J.; ZHANG, L. Homogeneous quaternization of cellulose in NaOH/Urea aqueous solutions as gene carriers. Biomacromolecules, v. 9, p. 2259-2264, 2008. SUPRAHUMIC, Supramolecular Humic Systems in the Environment. Disponível em:<http://www.suprahumic.unina.it/> Acesso em: 10 de mar. de 2021. SWIFT R. S. Organic matter characterization. In: Sparks DL (ed) Methods of soil analysis. Part 3—chemical methods, Soil Science Society of America book series. Soil Science Society of America, Madison, p. 1011–1070, 1996. SWIFT, R. S. In. Methods of soil analysis: chemical methods; Sparks, D. L., ed.; SSSA: Madison, 1996. THURMAN, E. M., WERSHAW, R. L., MALCOLM, R. L., & PINCKNEY, D. J. Molecular size of aquatic humic substances. Organic Geochemistry, v. 4, n. 1, p. 27-35, 1982. TIPPING, E., & OHNSTAD, M. Aggregation of aquatic humic substances. Chemical Geology, v. 44, n. 4, p. 349-357, 1984. TURRO, N. J. Molecular structure as a blueprint for supramolecular structure chemistry in confined spaces. Proceedings of the National Academy of Sciences, v.102, n. 31, p. 10766-10770, 2005. UENO, A., SHIMIZU, S., TAMAMURA, S., OKUYAMA, H., NAGANUMA, T., & KANEKO, K. Anaerobic decomposition of humic substances by Clostridium from the deep subsurface. Scientific reports, v. 6, n.1, p. 1-9, 2016. VIORATTI, O. T. M. Estrutura da matéria orgânica em um cambissolo e um chernossolo do estado do Rio de Janeiro. Dissertação (Mestrado em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica. 2020. WELLS, M. J. Supramolecular answers to the organic matter controversy. Journal of Environmental Quality, v. 48, n. 6, p.1644-1651, 2019. WELLS, M. J., & STRETZ, H. A. Supramolecular architectures of natural organic matter. Science of the Total Environment, v. 671, p. 1125-1133, 2019. WHITESIDES, G. M., & BONCHEVA, M. Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proceedings of the National Academy of Sciences, v. 99, n. 8, p. 4769-4774, 2002.por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/70955/2021%20-%20Tamiris%20Concei%c3%a7%c3%a3o%20de%20Aguiar.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6044
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-10-06T18:38:37Z No. of bitstreams: 1 2021 - Tamiris Conceição de Aguiar.pdf: 5639219 bytes, checksum: c4d4192de8d4016be0bfe32d1f38d756 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-10-06T18:38:37Z (GMT). No. of bitstreams: 1 2021 - Tamiris Conceição de Aguiar.pdf: 5639219 bytes, checksum: c4d4192de8d4016be0bfe32d1f38d756 (MD5) Previous issue date: 2021-05-28eng
Appears in Collections:Mestrado em Agronomia - Ciência do Solo

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2021 - Tamiris Conceição de Aguiar.pdf5.51 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.