Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10302
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSouza, Raquel do Nascimento de
dc.date.accessioned2023-12-21T19:00:42Z-
dc.date.available2023-12-21T19:00:42Z-
dc.date.issued2017-05-17
dc.identifier.citationSOUZA, Raquel do Nascimento de. A apipuntura influencia o balanço de fenótipos de micróglia/macrófagos, a neuroinflamação e o fator anti-apoptótico no modelo de lesão medular por compressão em ratos wistar. 2017. 91 f. Tese (Doutorado Multicêntrico em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2017.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10302-
dc.description.abstractO objetivo do presente estudo foi investigar os tipos celulares e os mecanismos fisiológicos envolvidos com a apipuntura no modelo de lesão medular moderada (SCI) por compressão. Para indução da SCI, um cateter fogarty de embolectomia foi inflado com 15μL de água destilada no espaço extradural, entre as vértebras T8 e T9, por 5 minutos em ratos Wistar. Inicialmente, avaliou se a melhora da capacidade e da coordenação locomotora pelo teste de avaliação da capacidade locomotora (teste BBB) e da passarela gradeada nos grupos: 1- Grupo Veneno de Abelha (VB) no ponto de acupuntura - aplicação do VB na dose de 0,08 mg/kg diluído em 20μL de salina nos acupontos (E36 - Zunsanli + VG3 - Yaoyangquan); 2- Grupo VB em não ponto (VB-NP) – aplicação do VB em região que não fosse ponto de acupuntura na mesma dose que o grupo VB-E36+VG3; 3- Grupo Controle (CTL-SCI) – grupo com SCI que não foi submetido a nenhum tipo de tratamento. Nesse primeiro ensaio experimental, detectou-se que a melhora locomotora estava realmente associada à estimulação dos acupontos E36+VG3 pelo VB, já que o grupo VB-NP e o grupo CTL-SCI não apresentaram melhora significativa da capacidade locomotora parcial como o grupo VB-E36+VG3. Nossos resultados indicaram que a melhora da capacidade locomotora estava correlacionada à significativa redução da perda de tecido medular espinal promovido pela apipuntura. A próxima etapa da pesquisa investigou os tipos celulares, os fatores neuroinflamatórios, os fatores apoptóticos e a sobrevivência de neurônios e de oligodendrócitos. A apipuntura reduziu a ativação de micróglia/macrófagos no 1°, 3° e 5° dias, enquanto, a ativação de astrócitos só foi influenciada pela apipuntura no 3° dia. A apipuntura também apresentou influencia sobre a polarização de micróglia/macrófagos associados aos fenótipos pro (M1) e anti-inflamatórios (M2), no qual, a expressão de RNAm da iNOS, - marcador do fenótipo M1, foi reduzido no 3° e 5° dia e as expressões de RNAm da Arginase-1 e TGF-β, - marcadores M2, foram reduzidas apenas no 5° dia. A redução da expressão de RNAm do fator inflamatório - COX-2, influenciado pela apipuntura ocorreu no 1° e 5°dia, enquanto, a redução do NF-kB ocorreu somente no 3° dia . A apipuntura não demonstrou influencia sobre a expressão de RNAm da caspase-3 em nenhum dos tempos estudados, mas promoveu aumento significativo da expressão da proteína antiapoptótica, - o BCL-2, no 5° dia. Por fim, a apipuntura influenciou a preservação de neurônios e oligodendrócitos no tecido medular espinal no 7° dia após a SCI. Dessa forma, o conjunto de resultados sugere que a apipuntura, aplicada nos acupontos E36+VG3, foi capaz de promover recuperação parcial da locomoção e os resultados indicaram que esta melhora locomotora pode estar associada a uma influencia da apipuntura sobre a redução da ativação de astrócitos, modulação sobre a polarização de micróglia/macrófagos, sobre a redução da neuroinflamação no aumento do conteúdo da proteína antiapoptótica, o BCL-2, e na neuroproteção de neurônios e oligodendrócitos no tecido medular espinal após a SCIpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectApipunturapor
dc.subjectmicróglia/macrófagospor
dc.subjectpolarização M1 e M2por
dc.subjectastrócitospor
dc.subjectinflamaçãopor
dc.subjectapoptosepor
dc.subjectveneno de abelhapor
dc.subjectlesão medularpor
dc.subjectApipunctureeng
dc.subjectmicroglia / macrophageseng
dc.subjectM1 and M2 polarizationeng
dc.subjectastrocyteseng
dc.subjectinflammationeng
dc.subjectapoptosiseng
dc.subjectbee venomeng
dc.subjectspinal cord injuryeng
dc.titleA apipuntura influencia o balanço de fenótipos de micróglia/macrófagos, a neuroinflamação e o fator anti-apoptótico no modelo de lesão medular por compressão em ratos wistarpor
dc.title.alternativeThe apipuncture influences the balance of microglia / macrophages phenotypes, neuroinflammation and anti-apoptotic factor in the model of spinal cord injury by compression in wistar ratseng
dc.typeTesepor
dc.description.abstractOtherThe aim of the present study was to investigate the cell types and physiological mechanisms related to the use of apipuncture in the model of moderate spinal cord injury (SCI) by compression in Wistar rats. For induction of SCI, a fogarty embolectomy catheter was inflated with 15μL of distilled water in the extradural space, between the T8 and T9 vertebrae, for 5 minutes. Initially, it was evaluated the improvement of the locomotor capacity and coordination by locomotor rating scale (BBB test) and the grid walkway in the following groups: 1- Bee Venom Group (VB) at the acupuncture point - application of BV at the dose of 0.08 mg / kg diluted in 20μL of saline in acupoints (E36 - Zunsanli + VG3 - Yaoyangquan); 2-VB group at no point (VB-NP) - application of VB in a region that was not an acupuncture point at the same dose as the VB-E36 + VG3 group; 3 - Control Group (CTL-SCI) - group with SCI that did not undergo any type of treatment. In this first experimental trial, it was detected that the locomotor improvement was actually associated with the stimulation of the E36 + VG3 acupoints by the VB, since the VB-NP group and the CTL-SCI group did not show significant improvement of the partial locomotor capacity as the VB-E36 + VG3 group. Our results indicated that the improvement of the locomotor capacity was correlated to the significant reduction of spinal cord tissue loss promoted by apipuncture. The next step of the research investigated cell types, neuroinflammatory and apoptotic factors, and survival of neurons and oligodendrocytes. The apipuncture reduced the activation of microglia / macrophages in the 1st, 3rd and 5th days, whereas, the activation of astrocytes was only influenced by apipuncture on the 3rd day. The apipuncture also had an influence on microglia / macrophage polarization associated with pro (M1) and anti-inflammatory (M2) phenotypes, in which iNOS mRNA expression - marker of the M1 phenotype was reduced in the 3rd and 5th Day and Arginase-1 and TGF-β (M2 markers) mRNA expression were reduced only on the 5th day. The reduction of COX-2 (inflammatory factor) mRNA expression influenced by apipuncture occurred on day 1 and 5, while the reduction of NF-kB occurred only on day 3. The apipuncture showed no influence over caspase-3 mRNA expression in any of the analysed times, but promoted a significant increase in the expression of the anti-apoptotic protein BCL-2 on the 5th day. Finally, apipuncture influenced the preservation of neurons and oligodendrocytes in spinal cord tissue on the 7th day after SCI. Thus, the set of results suggests that apipuncture, applied in E36 + VG3 acupoints, was able to promote partial recovery of locomotion. This locomotor improvement may be associated with an influence of apipuncture on the reduction of astrocyte activation, modulation on microglial / macrophage polarization, reduction of neuroinflammation through the increase of anti-apoptotic protein content, BCL-2, and neuroprotection of neurons and oligodendrocytes in spinal cord tissue after SCI.eng
dc.contributor.advisor1Medeiros, Magda Alves de
dc.contributor.advisor1ID096.592.487-38por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6392136073564306por
dc.contributor.referee1Medeiros, Magda Alves de
dc.contributor.referee2Allodi, Silvana
dc.contributor.referee3Resende, Victor Túlio Ribeiro de
dc.contributor.referee4Malvar, David do Carmo
dc.contributor.referee5Santiago, Marcelo Felippe
dc.creator.ID110.603.277-24por
dc.creator.Latteshttp://lattes.cnpq.br/3151736859168960por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma Multicêntrico de Pós-Graduação em Ciências Fisiológicaspor
dc.relation.references1. Ahuja C S, Wilson J R, Nori S, Kotter M R N, Druschel C, Curt A, Fehlings M G (2017) Traumatic spinal cord injury. Nature Reviews Disease Primers 3:17018. 2. Alkabie S, Boileau A J (2016) The Role of Therapeutic Hypothermia After Traumatic Spinal Cord Injury--A Systematic Review. World neurosurgery 86:432-449. 3. Almeida R T, Galdino G, Perez A C, Silva G, Romero T R, Duarte I D (2017) St36 electroacupuncture activates nNOS, iNOS and ATP-sensitive potassium channels to promote orofacial antinociception in rats. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society 68:27-33. 4. Ansari M A (2015) Temporal profile of M1 and M2 responses in the hippocampus following early 24h of neurotrauma. Journal of the neurological sciences 357:41-49. 5. Aoki T, Narumiya S (2012) Prostaglandins and chronic inflammation. Trends in pharmacological sciences 33:304-311. 6. Barbieri S (2003) Reactive oxygen species mediate cyclooxygenase-2 induction during monocyte to macrophage differentiation: critical role of NADPH oxidase. Cardiovascular Research 60:187-197. 7. Bareyre F M (2008) Neuronal repair and replacement in spinal cord injury. Journal of the neurological sciences 265:63-72. 8. Basso D M, Beattie M S, Bresnahan J C (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. Journal of neurotrauma 12:1-21. 9. Becker D, Mcdonald J W, 3rd (2012) Approaches to repairing the damaged spinal cord: overview. Handbook of clinical neurology 109:445-461. 10. Bennett M L, Bennett F C, Liddelow S A, Ajami B, Zamanian J L, Fernhoff N B, Mulinyawe S B, Bohlen C J, Adil A, Tucker A, Weissman I L, Chang E F, Li G, Grant G A, Hayden Gephart M G, Barres B A (2016) New tools for studying microglia in the mouse and human CNS. Proceedings of the National Academy of Sciences of the United States of America 113:E1738-E1746. 11. Bianchetti L, Barczyk M, Cardoso J, Schmidt M, Bellini A, Mattoli S (2012) Extracellular matrix remodelling properties of human fibrocytes. Journal of Cellular and Molecular Medicine 16:483-495. 12. Bilimoria P M, Stevens B (2015) Microglia function during brain development: New insights from animal models. Brain research 1617:7-17. 13. Bonaparte K L, Hudson C A, Wu C, Massa P T (2006) Inverse regulation of inducible nitric oxide synthase (iNOS) and arginase I by the protein tyrosine phosphatase SHP-1 in CNS glia. Glia 53:827-835. 14. Bowers C A, Kundu B, Rosenbluth J, Hawryluk G W J (2016) Patients with Spinal Cord Injuries Favor Administration of Methylprednisolone. PloS one 11:e0145991. 75 15. Brommer B, Engel O, Kopp M A, Watzlawick R, Müller S, Prüss H, Chen Y, Devivo M J, Finkenstaedt F W, Dirnagl U, Liebscher T, Meisel A, Schwab J M (2016) Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level. Brain : a journal of neurology 139:692-707. 16. Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nature reviews Immunology 5:641-654. 17. Cai M, Choi S M, Yang E J (2015) The effects of bee venom acupuncture on the central nervous system and muscle in an animal hSOD1G93A mutant. Toxins 7:846-858. 18. Carson M J, Thrash J C, Walter B (2006) The cellular response in neuroinflammation: The role of leukocytes, microglia and astrocytes in neuronal death and survival. Clinical neuroscience research 6:237-245. 19. Casano A M, Peri F (2015) Microglia: multitasking specialists of the brain. Developmental cell 32:469-477. 20. Chen J, Lariviere W R (2010) The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. Progress in neurobiology 92:151-183. 21. Chen S H, Oyarzabal E A, Hong J S (2016) Critical role of the Mac1/NOX2 pathway in mediating reactive microgliosis-generated chronic neuroinflammation and progressive neurodegeneration. Current opinion in pharmacology 26:54-60. 22. Chen S H, Oyarzabal E A, Sung Y F, Chu C H, Wang Q, Chen S L, Lu R B, Hong J S (2015) Microglial regulation of immunological and neuroprotective functions of astroglia. Glia 63:118-131. 23. Chen Y, Zhou J, Li J, Yang S B, Mo L Q, Hu J H, Yuan W L (2012) Electroacupuncture pretreatment prevents cognitive impairment induced by limb ischemia-reperfusion via inhibition of microglial activation and attenuation of oxidative stress in rats. Brain research 1432:36-45. 24. Chen Y J, Zhu H, Zhang N, Shen L, Wang R, Zhou J S, Hu J G, Lu H Z (2015) Temporal kinetics of macrophage polarization in the injured rat spinal cord. Journal of neuroscience research 93:1526-1533. 25. Cherry J D, Olschowka J A, O’banion M K (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. Journal of neuroinflammation 11:98-98. 26. Chikuda H, Yasunaga H, Takeshita K, Horiguchi H, Kawaguchi H, Ohe K, Fushimi K, Tanaka S (2014) Mortality and morbidity after high-dose methylprednisolone treatment in patients with acute cervical spinal cord injury: a propensity-matched analysis using a nationwide administrative database. Emergency medicine journal : EMJ 31:201-206. 27. Choi B T, Kang J, Jo U B (2005) Effects of electroacupuncture with different frequencies on spinal ionotropic glutamate receptor expression in complete Freund's adjuvant-injected rat. Acta histochemica 107:67-76. 76 28. Choi D C, Lee J Y, Lim E J, Baik H H, Oh T H, Yune T Y (2012) Inhibition of ROS-induced p38MAPK and ERK activation in microglia by acupuncture relieves neuropathic pain after spinal cord injury in rats. Experimental neurology 236:268-282. 29. Choi D C, Lee J Y, Moon Y J, Kim S W, Oh T H, Yune T Y (2010) Acupuncture-mediated inhibition of inflammation facilitates significant functional recovery after spinal cord injury. Neurobiology of disease 39:272-282. 30. Cizkova D, Novotna I, Slovinska L, Vanicky I, Jergova S, Rosocha J, Radonak J (2011) Repetitive intrathecal catheter delivery of bone marrow mesenchymal stromal cells improves functional recovery in a rat model of contusive spinal cord injury. Journal of neurotrauma 28:1951-1961. 31. Conti A, Miscusi M, Cardali S, Germanò A, Suzuki H, Cuzzocrea S, Tomasello F (2007) Nitric oxide in the injured spinal cord: Synthases cross-talk, oxidative stress and inflammation. Brain Research Reviews 54:205-218. 32. Cregg J M, Depaul M A, Filous A R, Lang B T, Tran A, Silver J (2014) Functional regeneration beyond the glial scar. Experimental neurology 253:197-207. 33. Czeh M, Gressens P, Kaindl A M (2011) The yin and yang of microglia. Developmental neuroscience 33:199-209. 34. David S, Greenhalgh A D, Kroner A (2015) Macrophage and microglial plasticity in the injured spinal cord. Neuroscience 307:311-318. 35. David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nature reviews Neuroscience 12:388-399. 36. David S, Lopez-Vales R, Wee Yong V (2012) Harmful and beneficial effects of inflammation after spinal cord injury: potential therapeutic implications. Handbook of clinical neurology 109:485-502. 37. David S, Zarruk J G, Ghasemlou N (2012) Chapter Five - Inflammatory Pathways in Spinal Cord Injury. In: International review of neurobiology, vol. Volume 106 (Jeffrey LG and Ephraim FT, eds), pp 127-152: Academic Press. 38. David S, Zarruk J G, Ghasemlou N (2012) Inflammatory pathways in spinal cord injury. International review of neurobiology 106:127-152. 39. De Rivero Vaccari J P, Dietrich W D, Keane R W (2016) Therapeutics targeting the inflammasome after central nervous system injury. Translational research : the journal of laboratory and clinical medicine 167:35-45. 40. Devivo M J (2012) Epidemiology of traumatic spinal cord injury: trends and future implications. Spinal cord 50:365-372. 41. Dibaj P, Nadrigny F, Steffens H, Scheller A, Hirrlinger J, Schomburg E D, Neusch C, Kirchhoff F (2010) NO mediates microglial response to acute spinal cord injury under ATP control in vivo. Glia 58:1133-1144. 77 42. Dietrich W D, Atkins C M, Bramlett H M (2009) Protection in Animal Models of Brain and Spinal Cord Injury with Mild to Moderate Hypothermia. Journal of Neurotrauma 26:301-312. 43. Ding Y, Yan Q, Ruan J W, Zhang Y Q, Li W J, Zhang Y J, Li Y, Dong H, Zeng Y S (2009) Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats. BMC neuroscience 10:35. 44. Dingu N, Deumens R, Taccola G (2016) Electrical Stimulation Able to Trigger Locomotor Spinal Circuits Also Induces Dorsal Horn Activity. Neuromodulation : journal of the International Neuromodulation Society 19:38-46. 45. Disabato D J, Quan N, Godbout J P (2016) Neuroinflammation: the devil is in the details. Journal of neurochemistry 139 Suppl 2:136-153. 46. Dorsher P T, Mcintosh P M (2011) Acupuncture's Effects in Treating the Sequelae of Acute and Chronic Spinal Cord Injuries: A Review of Allopathic and Traditional Chinese Medicine Literature. Evidence-based complementary and alternative medicine : eCAM 2011:428108. 47. Draijer C, Boorsma C E, Robbe P, Timens W, Hylkema M N, Ten Hacken N H, Van Den Berge M, Postma D S, Melgert B N (2016) Human asthma is characterized by more IRF5+ M1 and CD206+ M2 macrophages and less IL-10+ M2-like macrophages around airways compared with healthy airways. The Journal of allergy and clinical immunology. 48. Dulin J N, Moore M L, Grill R J (2013) The dual cyclooxygenase/5-lipoxygenase inhibitor licofelone attenuates p-glycoprotein-mediated drug resistance in the injured spinal cord. Journal of neurotrauma 30:211-226. 49. Elieh Ali Komi D, Shafaghat F, Zwiener R D (2017) Immunology of Bee Venom. Clinical reviews in allergy & immunology. 50. Esposito E, Cuzzocrea S (2011) Anti-TNF therapy in the injured spinal cord. Trends in pharmacological sciences 32:107-115. 51. Esposito E, Mazzon E, Paterniti I, Impellizzeri D, Bramanti P, Cuzzocrea S (2010) Olprinone attenuates the acute inflammatory response and apoptosis after spinal cord trauma in mice. PloS one 5:e12170. 52. Eugenin J, Vecchiola A, Murgas P, Arroyo P, Cornejo F, Von Bernhardi R (2016) Expression Pattern of Scavenger Receptors and Amyloid-beta Phagocytosis of Astrocytes and Microglia in Culture are Modified by Acidosis: Implications for Alzheimer's Disease. Journal of Alzheimer's disease : JAD 53:857-873. 53. Fernandez-Velasco M, Gonzalez-Ramos S, Bosca L (2014) Involvement of monocytes/macrophages as key factors in the development and progression of cardiovascular diseases. The Biochemical journal 458:187-193. 54. Fleming J C, Norenberg M D, Ramsay D A, Dekaban G A, Marcillo A E, Saenz A D, Pasquale-Styles M, Dietrich W D, Weaver L C (2006) The cellular inflammatory 78 response in human spinal cords after injury. Brain : a journal of neurology 129:3249-3269. 55. Forgione N, Chamankhah M, Fehlings M G (2017) A Mouse Model of Bilateral Cervical Contusion-Compression Spinal Cord Injury. Journal of neurotrauma 34:1227-1239. 56. Franke H, Illes P (2014) Nucleotide signaling in astrogliosis. Neuroscience letters 565:14-22. 57. Freire-Regatillo A, Argente-Arizón P, Argente J, García-Segura L M, Chowen J A (2017) Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals. Frontiers in Endocrinology 8:51. 58. Furlan J C, Craven B C, Massicotte E M, Fehlings M G (2016) Early Versus Delayed Surgical Decompression of Spinal Cord after Traumatic Cervical Spinal Cord Injury: A Cost-Utility Analysis. World neurosurgery 88:166-174. 59. Gao H M, Hong J S (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends in immunology 29:357-365. 60. Garner C C, Kindler S, Gundelfinger E D (2000) Molecular determinants of presynaptic active zones. Current Opinion in Neurobiology 10:321-327. 61. Genovese T, Mazzon E, Esposito E, Muia C, Di Paola R, Crisafulli C, Bramanti P, Cuzzocrea S (2007) N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone reduces severity of experimental spinal cord injury. Shock (Augusta, Ga) 27:258-265. 62. Gensel J C, Zhang B (2015) Macrophage activation and its role in repair and pathology after spinal cord injury. Brain research 1619:1-11. 63. Gianaris A, Liu N-K, Wang X-F, Oakes E, Brenia J, Gianaris T, Ruan Y, Deng L-X, Goetz M, Vega-Alvarez S, Lu Q-B, Shi R, Xu X-M (2016) Unilateral microinjection of acrolein into thoracic spinal cord produces acute and chronic injury and functional deficits. Neuroscience 326:84-94. 64. Glennie R A, Batke J, Fallah N, Cheng C L, Rivers C S, Noonan V K, Dvorak M F, Fisher C G, Kwon B K, Street J (2017) Rural and Urban Living in Persons with Spinal Cord Injury and Comparing Environmental Barriers, Their Health and Quality of Life Outcomes. Journal of neurotrauma. 65. Greenhalgh A D, Passos Dos Santos R, Zarruk J G, Salmon C K, Kroner A, David S (2016) Arginase-1 is expressed exclusively by infiltrating myeloid cells in CNS injury and disease. Brain, behavior, and immunity 56:61-67. 66. Hackett A R, Lee D H, Dawood A, Rodriguez M, Funk L, Tsoulfas P, Lee J K (2016) STAT3 and SOCS3 regulate NG2 cell proliferation and differentiation after contusive spinal cord injury. Neurobiology of disease 89:10-22. 67. Han X, Huang X, Wang Y, Chen H (2010) A study of astrocyte activation in the periinfarct region after cerebral ischemia with electroacupuncture. Brain injury 24:773-779. 79 68. Hausmann O N (2003) Post-traumatic inflammation following spinal cord injury. Spinal cord 41:369-378. 69. Hayashi A M, Matera J M, Da Silva T S, Pinto A C, Cortopassi S R (2007) Electro-acupuncture and Chinese herbs for treatment of cervical intervertebral disk disease in a dog. Journal of veterinary science 8:95-98. 70. Hoffmann C (2000) COX-2 in brain and spinal cord implications for therapeutic use. Current medicinal chemistry 7:1113-1120. 71. Hoogland I C, Houbolt C, Van Westerloo D J, Van Gool W A, Van De Beek D (2015) Systemic inflammation and microglial activation: systematic review of animal experiments. Journal of neuroinflammation 12:114. 72. Hu X, Leak R K, Shi Y, Suenaga J, Gao Y, Zheng P, Chen J (2015) Microglial and macrophage polarization-new prospects for brain repair. Nature reviews Neurology 11:56-64. 73. Huang S, Tang C, Sun S, Cao W, Qi W, Xu J, Huang J, Lu W, Liu Q, Gong B, Zhang Y, Jiang J (2015) Protective Effect of Electroacupuncture on Neural Myelin Sheaths is Mediated via Promotion of Oligodendrocyte Proliferation and Inhibition of Oligodendrocyte Death After Compressed Spinal Cord Injury. Molecular neurobiology 52:1870-1881. 74. Hwang D S, Kim S K, Bae H (2015) Therapeutic Effects of Bee Venom on Immunological and Neurological Diseases. Toxins 7:2413-2421. 75. Hwang H S, Kim Y S, Ryu Y H, Lee J E, Lee Y S, Yang E J, Choi S M, Lee M S (2011) Electroacupuncture Delays Hypertension Development through Enhancing NO/NOS Activity in Spontaneously Hypertensive Rats. Evidence-based complementary and alternative medicine : eCAM 2011:130529. 76. Jazayeri S B, Beygi S, Shokraneh F, Hagen E M, Rahimi-Movaghar V (2015) Incidence of traumatic spinal cord injury worldwide: a systematic review. European Spine Journal 24:905-918. 77. Jessen K R (2004) Glial cells. The International Journal of Biochemistry & Cell Biology 36:1861-1867. 78. Ji L-L, Guo M-W, Ren X-J, Ge D-Y, Li G-M, Tu Y (2016) Effects of electroacupuncture intervention on expression of cyclooxygenase 2 and microglia in spinal cord in rat model of neuropathic pain. Chinese Journal of Integrative Medicine 1-7. 79. Jiang S H, Tu W Z, Zou E M, Hu J, Wang S, Li J R, Wang W S, He R, Cheng R D, Liao W J (2014) Neuroprotective effects of different modalities of acupuncture on traumatic spinal cord injury in rats. Evidence-based complementary and alternative medicine : eCAM 2014:431580. 80. Kagitani F, Uchida S, Hotta H (2010) Afferent nerve fibers and acupuncture. Autonomic neuroscience : basic & clinical 157:2-8. 80 81. Kaku Y, Imaoka H, Morimatsu Y, Komohara Y, Ohnishi K, Oda H, Takenaka S, Matsuoka M, Kawayama T, Takeya M, Hoshino T (2014) Overexpression of CD163, CD204 and CD206 on Alveolar Macrophages in the Lungs of Patients with Severe Chronic Obstructive Pulmonary Disease. PLOS ONE 9:e87400. 82. Kang J M, Park H J, Choi Y G, Choe I H, Park J H, Kim Y S, Lim S (2007) Acupuncture inhibits microglial activation and inflammatory events in the MPTP-induced mouse model. Brain research 1131:211-219. 83. Kang S Y, Roh D H, Choi J W, Ryu Y, Lee J H (2015) Repetitive Treatment with Diluted Bee Venom Attenuates the Induction of Below-Level Neuropathic Pain Behaviors in a Rat Spinal Cord Injury Model. Toxins 7:2571-2585. 84. Kavoussi B, Ross B E (2007) The neuroimmune basis of anti-inflammatory acupuncture. Integrative cancer therapies 6:251-257. 85. Kempuraj D, Thangavel R, Natteru P A, Selvakumar G P, Saeed D, Zahoor H, Zaheer S, Iyer S S, Zaheer A (2016) Neuroinflammation Induces Neurodegeneration. Journal of neurology, neurosurgery and spine 1:1003. 86. Kennedy P G (2015) Viruses, apoptosis, and neuroinflammation--a double-edged sword. Journal of neurovirology 21:1-7. 87. Khalil W K, Assaf N, Elshebiney S A, Salem N A (2015) Neuroprotective effects of bee venom acupuncture therapy against rotenone-induced oxidative stress and apoptosis. Neurochemistry international 80:79-86. 88. Kiehn O (2016) Decoding the organization of spinal circuits that control locomotion. Nature reviews Neuroscience 17:224-238. 89. Kigerl K A, Gensel J C, Ankeny D P, Alexander J K, Donnelly D J, Popovich P G (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. The Journal of neuroscience : the official journal of the Society for Neuroscience 29:13435-13444. 90. Kim H W, Kwon Y B, Han H J, Yang I S, Beitz A J, Lee J H (2005) Antinociceptive mechanisms associated with diluted bee venom acupuncture (apipuncture) in the rat formalin test: involvement of descending adrenergic and serotonergic pathways. Pharmacological research 51:183-188. 91. Kim J I, Yang E J, Lee M S, Kim Y S, Huh Y, Cho I H, Kang S, Koh H K (2011) Bee venom reduces neuroinflammation in the MPTP-induced model of Parkinson's disease. The International journal of neuroscience 121:209-217. 92. Kjell J, Olson L (2016) Rat models of spinal cord injury: from pathology to potential therapies. Disease models & mechanisms 9:1125-1137. 93. Koopmans G C, Deumens R, Honig W M, Hamers F P, Steinbusch H W, Joosten E A (2005) The assessment of locomotor function in spinal cord injured rats: the importance of objective analysis of coordination. Journal of neurotrauma 22:214-225. 81 94. Kumar A, Alvarez-Croda D M, Stoica B A, Faden A I, Loane D J (2016) Microglial/Macrophage Polarization Dynamics following Traumatic Brain Injury. Journal of neurotrauma 33:1732-1750. 95. Kumar A, Stoica B A, Sabirzhanov B, Burns M P, Faden A I, Loane D J (2013) Traumatic brain injury in aged animals increases lesion size and chronically alters microglial/macrophage classical and alternative activation states. Neurobiology of aging 34:1397-1411. 96. Kwon B K, Tetzlaff W, Grauer J N, Beiner J, Vaccaro A R (2004) Pathophysiology and pharmacologic treatment of acute spinal cord injury. The spine journal : official journal of the North American Spine Society 4:451-464. 97. La Rosa G, Cardali S, Genovese T, Conti A, Di Paola R, La Torre D, Cacciola F, Cuzzocrea S (2004) Inhibition of the nuclear factor—κB activation with pyrrolidine dithiocarbamate attenuating inflammation and oxidative stress after experimental spinal cord trauma in rats. Journal of Neurosurgery: Spine 1:311-321. 98. Lee B B, Cripps R A, Fitzharris M, Wing P C (2014) The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate. Spinal cord 52:110-116. 99. Lee M H, Lin S R, Chang J Y, Schultz L, Heath J, Hsu L J, Kuo Y M, Hong Q, Chiang M F, Gong C X, Sze C I, Chang N S (2010) TGF-beta induces TIAF1 self-aggregation via type II receptor-independent signaling that leads to generation of amyloid beta plaques in Alzheimer's disease. Cell death & disease 1:e110. 100. Lee M J, Jang M, Choi J, Lee G, Min H J, Chung W-S, Kim J-I, Jee Y, Chae Y, Kim S-H, Lee S J, Cho I-H (2016) Bee Venom Acupuncture Alleviates Experimental Autoimmune Encephalomyelitis by Upregulating Regulatory T Cells and Suppressing Th1 and Th17 Responses. Molecular Neurobiology 53:1419-1445. 101. Leung S B, Zhang H, Lau C W, Lin Z-X (2016) Attenuation of blood pressure in spontaneously hypertensive rats by acupuncture was associated with reduction oxidative stress and improvement from endothelial dysfunction. Chinese Medicine 11:38. 102. Li L (2002) Oxidative Stress and Cyclooxygenase-2 Induction Mediate Cyanide-Induced Apoptosis of Cortical Cells. Toxicology and Applied Pharmacology 185:55-63. 103. Li W C, Jiang R, Jiang D M, Zhu F C, Su B, Qiao B, Qi X T (2014) Lipopolysaccharide preconditioning attenuates apoptotic processes and improves neuropathologic changes after spinal cord injury in rats. The International journal of neuroscience 124:585-592. 104. Li W J, Pan S Q, Zeng Y S, Su B G, Li S M, Ding Y, Li Y, Ruan J W (2010) Identification of acupuncture-specific proteins in the process of electro-acupuncture after spinal cord injury. Neuroscience research 67:307-316. 105. Lioi A B, Ferrari B M, Dubyak G R, Weinberg A, Sieg S F (2015) Human beta Defensin-3 Increases CD86 Expression on Monocytes by Activating the ATP-Gated Channel P2X7. Journal of immunology 195:4438-4445. 82 106. Lipinski M M, Wu J, Faden A I, Sarkar C (2015) Function and Mechanisms of Autophagy in Brain and Spinal Cord Trauma. Antioxidants & redox signaling 23:565-577. 107. Little J P, Simtchouk S, Schindler S M, Villanueva E B, Gill N E, Walker D G, Wolthers K R, Klegeris A (2014) Mitochondrial transcription factor A (Tfam) is a pro-inflammatory extracellular signaling molecule recognized by brain microglia. Molecular and cellular neurosciences 60:88-96. 108. Liu H, Yang K, Xin T, Wu W, Chen Y (2012) Implanted electro-acupuncture electric stimulation improves outcome of stem cells' transplantation in spinal cord injury. Artificial cells, blood substitutes, and immobilization biotechnology 40:331-337. 109. Loane D J, Byrnes K R (2010) Role of microglia in neurotrauma. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 7:366-377. 110. Loane D J, Kumar A (2016) Microglia in the TBI Brain: The Good, The Bad, And The Dysregulated. Experimental neurology 275:316-327. 111. Longworth W, Mccarthy P W (1997) A review of research on acupuncture for the treatment of lumbar disk protrusions and associated neurological symptomatology. Journal of alternative and complementary medicine (New York, NY) 3:55-76. 112. Lonjon N, Kouyoumdjian P, Prieto M, Bauchet L, Haton H, Gaviria M, Privat A, Perrin F E (2010) Early functional outcomes and histological analysis after spinal cord compression injury in rats. Journal of neurosurgery Spine 12:106-113. 113. Lu J, Shao R H, Jin S Y, Hu L, Tu Y, Guo J Y (2017) Acupuncture ameliorates inflammatory response in a chronic unpredictable stress rat model of depression. Brain research bulletin 128:106-112. 114. Lukovic D, Stojkovic M, Moreno-Manzano V, Jendelova P, Sykova E, Bhattacharya S S, Erceg S (2015) Concise review: reactive astrocytes and stem cells in spinal cord injury: good guys or bad guys? Stem cells 33:1036-1041. 115. Ma R, Liu X, Clark J, Williams G M, Doi S A (2015) The Impact of Acupuncture on Neurological Recovery in Spinal Cord Injury: A Systematic Review and Meta-Analysis. Journal of neurotrauma 32:1943-1957. 116. Ma S F, Chen Y J, Zhang J X, Shen L, Wang R, Zhou J S, Hu J G, Lu H Z (2015) Adoptive transfer of M2 macrophages promotes locomotor recovery in adult rats after spinal cord injury. Brain, behavior, and immunity 45:157-170. 117. Madsen D H, Leonard D, Masedunskas A, Moyer A, Jürgensen H J, Peters D E, Amornphimoltham P, Selvaraj A, Yamada S S, Brenner D A, Burgdorf S, Engelholm L H, Behrendt N, Holmbeck K, Weigert R, Bugge T H (2013) M2-like macrophages are responsible for collagen degradation through a mannose receptor–mediated pathway. The Journal of cell biology 202:951. 83 118. Maes M E, Schlamp C L, Nickells R W (2017) BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Progress in retinal and eye research 57:1-25. 119. Maggio D M, Chatzipanteli K, Masters N, Patel S P, Dietrich W D, Pearse D D (2012) Acute Molecular Perturbation of Inducible Nitric Oxide Synthase with an Antisense Approach Enhances Neuronal Preservation and Functional Recovery after Contusive Spinal Cord Injury. Journal of neurotrauma 29:2244-2249. 120. Maggio M D, Singh A, Iorgulescu B J, Bleicher H D, Ghosh M, Lopez M M, Tuesta M L, Flora G, Dietrich D W, Pearse D D (2017) Identifying the Long-Term Role of Inducible Nitric Oxide Synthase after Contusive Spinal Cord Injury Using a Transgenic Mouse Model. International journal of molecular sciences 18. 121. Maldonado-Bouchard S, Peters K, Woller S A, Madahian B, Faghihi U, Patel S, Bake S, Hook M A (2016) Inflammation is increased with anxiety- and depression-like signs in a rat model of spinal cord injury. Brain, behavior, and immunity 51:176-195. 122. Maldonado Bouchard S, Hook M A (2014) Psychological stress as a modulator of functional recovery following spinal cord injury. Frontiers in neurology 5:44. 123. Markatos K, Laios K, Korres D, Tzivra A, Tsoutsos S, Androutsos G (2017) Gerard Blaes (Blasius) (1627-1682): The Dutch Physician and Chemist, his Work and his Description of the Spinal Cord. World neurosurgery. 124. Martirosyan N L, Patel A A, Carotenuto A, Kalani M Y, Bohl M A, Preul M C, Theodore N (2017) The role of therapeutic hypothermia in the management of acute spinal cord injury. Clinical neurology and neurosurgery 154:79-88. 125. .Mcdonough A, Weinstein J R (2016) Neuroimmune Response in Ischemic Preconditioning. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 13:748-761. 126. Medeiros MA. (2001) Mapeamento através da expressão de c-Fos das estruturas encefálicas envolvidas na acupuntura analgésica (ponto Zusanli) em animais imobilizados. p 129. Tese (Departamento de Psicobiologia). São Paulo: Universidade Federal de São Paulo. 127. Metz G a S, Merkler D, Dietz V, Schwab M E, Fouad K (2000) Efficient testing of motor function in spinal cord injured rats. Brain research 883:165-177. 128. Michael-Titus A T (2007) Omega-3 fatty acids and neurological injury. Prostaglandins, Leukotrienes and Essential Fatty Acids 77:295-300. 129. Miele V J, Panjabi M M, Benzel E C (2012) Anatomy and biomechanics of the spinal column and cord. Handbook of clinical neurology 109:31-43. 130. Mignogna C, Signorelli F, Vismara M F, Zeppa P, Camastra C, Barni T, Donato G, Di Vito A (2016) A reappraisal of macrophage polarization in glioblastoma: Histopathological and immunohistochemical findings and review of the literature. Pathology, research and practice 212:491-499. 84 131. Moller T, Bard F, Bhattacharya A, Biber K, Campbell B, Dale E, Eder C, Gan L, Garden G A, Hughes Z A, Pearse D D, Staal R G, Sayed F A, Wes P D, Boddeke H W (2016) Critical data-based re-evaluation of minocycline as a putative specific microglia inhibitor. Glia 64:1788-1794. 132. Morais D F, Spotti A R, Cohen M I, Mussi S E, Melo Neto J S D, Tognola W A (2013) Perfil epidemiológico de pacientes com traumatismo raquimedular atendidos em hospital terciário. Coluna/Columna 12:149-152. 133. Mortazavi M M, Harmon O A, Adeeb N, Deep A, Tubbs R S (2015) Treatment of spinal cord injury: a review of engineering using neural and mesenchymal stem cells. Clinical anatomy 28:37-44. 134. Mosser D M, Edwards J P (2008) Exploring the full spectrum of macrophage activation. Nature reviews Immunology 8:958-969. 135. Mottahedin A, Ardalan M, Chumak T, Riebe I, Ek J, Mallard C (2017) Effect of Neuroinflammation on Synaptic Organization and Function in the Developing Brain: Implications for Neurodevelopmental and Neurodegenerative Disorders. Frontiers in Cellular Neuroscience 11:190. 136. Munce S E, Perrier L, Tricco A C, Straus S E, Fehlings M G, Kastner M, Jang E, Webster F, Jaglal S B (2013) Impact of quality improvement strategies on the quality of life and well-being of individuals with spinal cord injury: a systematic review protocol. Systematic reviews 2:14. 137. Murray P J, Allen J E, Biswas S K, Fisher E A, Gilroy D W, Goerdt S, Gordon S, Hamilton J A, Ivashkiv L B, Lawrence T, Locati M, Mantovani A, Martinez F O, Mege J L, Mosser D M, Natoli G, Saeij J P, Schultze J L, Shirey K A, Sica A, Suttles J, Udalova I, Van Ginderachter J A, Vogel S N, Wynn T A (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14-20. 138. Nakajima K, Yamamoto S, Kohsaka S, Kurihara T (2008) Neuronal stimulation leading to upregulation of glutamate transporter-1 (GLT-1) in rat microglia in vitro. Neuroscience letters 436:331-334. 139. Nardone R, Holler Y, Brigo F, Orioli A, Tezzon F, Schwenker K, Christova M, Golaszewski S, Trinka E (2015) Descending motor pathways and cortical physiology after spinal cord injury assessed by transcranial magnetic stimulation: a systematic review. Brain research 1619:139-154. 140. New P W, Cripps R A, Bonne Lee B (2014) Global maps of non-traumatic spinal cord injury epidemiology: towards a living data repository. Spinal cord 52:97-109. 141. Norden D M, Trojanowski P J, Villanueva E, Navarro E, Godbout J P (2016) Sequential activation of microglia and astrocyte cytokine expression precedes increased iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia 64:300-316. 142. Nova-Lamperti E, Fanelli G, Becker P D, Chana P, Elgueta R, Dodd P C, Lord G M, Lombardi G, Hernandez-Fuentes M P (2016) IL-10-produced by human 85 transitional B-cells down-regulates CD86 expression on B-cells leading to inhibition of CD4+T-cell responses. Scientific reports 6:20044. 143. Ortiz G G, Pacheco-Moises F P, Bitzer-Quintero O K, Ramirez-Anguiano A C, Flores-Alvarado L J, Ramirez-Ramirez V, Macias-Islas M A, Torres-Sanchez E D (2013) Immunology and oxidative stress in multiple sclerosis: clinical and basic approach. Clinical & developmental immunology 2013:708659. 144. Oudega M, Bradbury E J, Ramer M S (2012) Chapter 38 - Combination therapies. In: Handbook of Clinical Neurology, vol. Volume 109 (Joost V and John WM, eds), pp 617-636: Elsevier. 145. Oudega M, Bradbury E J, Ramer M S (2012) Combination therapies. Handbook of clinical neurology 109:617-636. 146. Oyinbo C A (2011) Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta neurobiologiae experimentalis 71:281-299. 147. Paola F A, Arnold M (2003) Acupuncture and spinal cord medicine. The journal of spinal cord medicine 26:12-20. 148. Pearce J M S (2008) The Development of Spinal Cord Anatomy. European Neurology 59:286-291. 149. Pekny M, Wilhelmsson U, Pekna M (2014) The dual role of astrocyte activation and reactive gliosis. Neuroscience letters 565:30-38. 150. Pineau I, Sun L, Bastien D, Lacroix S (2010) Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain, behavior, and immunity 24:540-553. 151. Pruss H, Kopp M A, Brommer B, Gatzemeier N, Laginha I, Dirnagl U, Schwab J M (2011) Non-resolving aspects of acute inflammation after spinal cord injury (SCI): indices and resolution plateau. Brain pathology 21:652-660. 152. Puntambekar S S, Davis D S, Hawel L, 3rd, Crane J, Byus C V, Carson M J (2011) LPS-induced CCL2 expression and macrophage influx into the murine central nervous system is polyamine-dependent. Brain, behavior, and immunity 25:629-639. 153. Ransom B, Behar T, Nedergaard M (2003) New roles for astrocytes (stars at last). Trends in neurosciences 26:520-522. 154. Renfu Q, Rongliang C, Mengxuan D, Liang Z, Jinwei X, Zongbao Y, Disheng Y (2014) Anti-apoptotic signal transduction mechanism of electroacupuncture in acute spinal cord injury. Acupuncture in Medicine 32:463. 155. Ritzel R M, Patel A R, Grenier J M, Crapser J, Verma R, Jellison E R, Mccullough L D (2015) Functional differences between microglia and monocytes after ischemic stroke. Journal of neuroinflammation 12:106. 86 156. Roe C (2017) Unwrapping Neurotrophic Cytokines and Histone Modification. Cellular and molecular neurobiology 37:1-4. 157. Rouanet C, Reges D, Rocha E, Gagliardi V, Silva G S (2017) Traumatic spinal cord injury: current concepts and treatment update. Arquivos de neuro-psiquiatria 75:387-393. 158. Rubio-Perez J M, Morillas-Ruiz J M (2012) A review: inflammatory process in Alzheimer's disease, role of cytokines. TheScientificWorldJournal 2012:756357. 159. Saganová K, Orendáčová J, Čížková D, Vanický I (2008) Limited minocycline neuroprotection after balloon-compression spinal cord injury in the rat. Neuroscience letters 433:246-249. 160. Saijo K, Crotti A, Glass C K (2013) Regulation of microglia activation and deactivation by nuclear receptors. Glia 61:104-111. 161. Saijo K, Glass C K (2011) Microglial cell origin and phenotypes in health and disease. Nature reviews Immunology 11:775-787. 162. Saúde M D (2013) Diretrizes de Atenção à Pessoa com Lesão Medular. vol. 1ª edição (SAÚDE MD, ed), pp 1-37 Brasil: Biblioteca virtual em Ministério da Saúde. 163. Schaefer L (2014) Complexity of danger: the diverse nature of damage-associated molecular patterns. The Journal of biological chemistry 289:35237-35245. 164. Schafer D P, Lehrman E K, Stevens B (2013) The "quad-partite" synapse: microglia-synapse interactions in the developing and mature CNS. Glia 61:24-36. 165. Schwab J M, Zhang Y, Kopp M A, Brommer B, Popovich P G (2014) The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Experimental neurology 258:121-129. 166. Schwab M E (2002) Repairing the injured spinal cord. Science 295:1029-1031. 167. Scognamillo-Szabó M V R, Bechara G H (2001) Acupuntura: bases científicas e aplicações. Ciência Rural 31:1091-1099. 168. Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell death and differentiation 22:526-539. 169. Shechter R, Schwartz M (2013) Harnessing monocyte-derived macrophages to control central nervous system pathologies: no longer 'if' but 'how'. The Journal of pathology 229:332-346. 170. Sheng J, Chen W, Zhu H-J (2015) The immune suppressive function of transforming growth factor-β (TGF-β) in human diseases. Growth Factors 33:92-101. 171. Shi L-B, Tang P-F, Zhang W, Zhao Y-P, Zhang L-C, Zhang H (2016) Naringenin inhibits spinal cord injury-induced activation of neutrophils through miR-223. Gene 592:128-133. 87 172. Shi Y, Quan R, Li C, Zhang L, Du M, Xu J, Yang Z, Yang D (2016) The study of traditional Chinese medical elongated-needle therapy promoting neurological recovery mechanism after spinal cord injury in rats. Journal of ethnopharmacology 187:28-41. 173. Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro M G, Rimoldi M, Biswas S K, Allavena P, Mantovani A (2008) Macrophage polarization in tumour progression. Seminars in cancer biology 18:349-355. 174. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. The Journal of clinical investigation 122:787-795. 175. Silver J, Miller J H (2004) Regeneration beyond the glial scar. Nature reviews Neuroscience 5:146-156. 176. Sjölund B H (2002) Pain and rehabilitation after spinal cord injury: the case of sensory spasticity? Brain Research Reviews 40:250-256. 177. Sofroniew M V (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends in neurosciences 32:638-647. 178. Son D J, Lee J W, Lee Y H, Song H S, Lee C K, Hong J T (2007) Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacology & therapeutics 115:246-270. 179. Soulet D, Rivest S (2003) Polyamines play a critical role in the control of the innate immune response in the mouse central nervous system. The Journal of cell biology 162:257-268. 180. Souza, Raquel. (2012) Efeito anti-inflamatório da acupuntura no modelo de lesão medular por compressão em ratos. p 72. Dissertação (Departamento de Ciências Fisiológicas). Rio de Janeiro: Universidade Federal Rural do Rio de Janeiro. 181. Souza R D N, Silva F K, Alves De Medeiros M (2017) Bee venom acupuncture reduces IL-6, increases IL-10 and induces locomotor recovery in a model of spinal cord compression. Journal of Acupuncture and Meridian Studies 1:1. 182. Spychalowicz A, Wilk G, Sliwa T, Ludew D, Guzik T J (2012) Novel therapeutic approaches in limiting oxidative stress and inflammation. Current pharmaceutical biotechnology 13:2456-2466. 183. Stankov A, Belakaposka-Srpanova V, Bitoljanu N, Cakar L, Cakar Z, Rosoklija G (2015) Visualisation of Microglia with the use of Immunohistochemical Double Staining Method for CD-68 and Iba-1 of Cerebral Tissue Samples in Cases of Brain Contusions. In: PRILOZI, vol. 36, p 141. 184. Stenken J A, Poschenrieder A J (2015) Bioanalytical chemistry of cytokines – A review. Analytica chimica acta 853:95-115. 185. Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481:278-286. 88 186. Su Y F, Lin C L, Lee K S, Tsai T H, Wu S C, Hwang S L, Chen S C, Kwan A L (2015) A modified compression model of spinal cord injury in rats: functional assessment and the expression of nitric oxide synthases. Spinal cord 53:432-435. 187. Tang S H, Yu J G, Li J J, Sun J Y (2015) Neuroprotective effect of ketamine on acute spinal cord injury in rats. Genetics and molecular research : GMR 14:3551-3556. 188. Tang W-C, Hsu Y-C, Wang C-C, Hu C-Y, Chio C-C, Kuo J-R (2016) Early electroacupuncture treatment ameliorates neuroinflammation in rats with traumatic brain injury. BMC Complementary and Alternative Medicine 16:470. 189. Tang Y, Le W (2016) Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Molecular neurobiology 53:1181-1194. 190. Tang Y, Le W (2016) Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Molecular neurobiology 53:1181-1194. 191. Tang Y, Yin H Y, Rubini P, Illes P (2016) Acupuncture-Induced Analgesia: A Neurobiological Basis in Purinergic Signaling. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry 22:563-578. 192. Taylor P R, Gordon S, Martinez-Pomares L (2005) The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends in immunology 26:104-110. 193. Taylor P R, Gordon S, Martinez-Pomares L (2005) The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends in immunology 26:104-110. 194. Teoh A C, Ryu K H, Lee E G (2016) One-Step Purification of Melittin Derived from Apis mellifera Bee Venom. Journal of microbiology and biotechnology. 195. Thomaty S, Pezard L, Xerri C, Brezun J M (2017) Acute granulocyte macrophage-colony stimulating factor treatment modulates neuroinflammatory processes and promotes tactile recovery after spinal cord injury. Neuroscience 349:144-164. 196. Tripathi R B, Rivers L E, Young K M, Jamen F, Richardson W D (2010) NG2 glia generate new oligodendrocytes but few astrocytes in a murine experimental autoimmune encephalomyelitis model of demyelinating disease. The Journal of neuroscience : the official journal of the Society for Neuroscience 30:16383-16390. 197. Tu W Z, Jiang S H, Zhang L, Li S S, Gu P P, He R, Hu J, Gao L P, Sun Q S (2017) Electro-acupuncture at Governor Vessel improves neurological function in rats with spinal cord injury. Chin J Integr Med. 198. Tufan K, Oztanir N, Ofluoglu E, Ozogul C, Uzum N, Dursun A, Pasaoglu H, Pasaoglu A (2008) Ultrastructure protection and attenuation of lipid peroxidation after blockade of presynaptic release of glutamate by lamotrigine in experimental spinal cord injury. Neurosurgical focus 25:E6. 89 199. Ulndreaj A, Chio J C, Ahuja C S, Fehlings M G (2016) Modulating the immune response in spinal cord injury. Expert review of neurotherapeutics 16:1127-1129. 200. Vanegas H, Schaible H-G (2001) Prostaglandins and cycloxygenases in the spinal cord. Progress in neurobiology 64:327-363. 201. Vanický I, Urdzíková L, Saganová K, Čízková D, Gálik J (2001) A Simple and Reproducible Model of Spinal Cord Injury Induced by Epidural Balloon Inflation in the Rat. Journal of neurotrauma 18:1399-1407. 202. Visavadiya N P, Patel S P, Vanrooyen J L, Sullivan P G, Rabchevsky A G (2016) Cellular and subcellular oxidative stress parameters following severe spinal cord injury. Redox Biology 8:59-67. 203. Volarevic V, Erceg S, Bhattacharya S S, Stojkovic P, Horner P, Stojkovic M (2013) Stem cell-based therapy for spinal cord injury. Cell transplantation 22:1309-1323. 204. Wang J, Gao Y, Chen S, Duanmu C, Zhang J, Feng X, Yan Y, Liu J, Litscher G (2016) The Effect of Repeated Electroacupuncture Analgesia on Neurotrophic and Cytokine Factors in Neuropathic Pain Rats. Evidence-based complementary and alternative medicine : eCAM 2016:8403064. 205. Wang N, Liang H, Zen K (2014) Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Frontiers in immunology 5:614. 206. Wang Z, Chen T, Long M, Chen L, Wang L, Yin N, Chen Z (2017) Electro-acupuncture at Acupoint ST36 Ameliorates Inflammation and Regulates Th1/Th2 Balance in Delayed-Type Hypersensitivity. Inflammation 40:422-434. 207. Wang Z H, Xie Y X, Zhang J W, Qiu X H, Cheng A B, Tian L, Ma B Y, Hou Y B (2016) Carnosol protects against spinal cord injury through Nrf-2 upregulation. Journal of receptor and signal transduction research 36:72-78. 208. Wasser B, Pramanik G, Hess M, Klein M, Luessi F, Dornmair K, Bopp T, Zipp F, Witsch E (2016) Increase of Alternatively Activated Antigen Presenting Cells in Active Experimental Autoimmune Encephalomyelitis. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology 11:721-732. 209. Welch J S, Escoubet-Lozach L, Sykes D B, Liddiard K, Greaves D R, Glass C K (2002) TH2 cytokines and allergic challenge induce Ym1 expression in macrophages by a STAT6-dependent mechanism. The Journal of biological chemistry 277:42821-42829. 210. Wilson J, Buchowski J M (2012) Post-traumatic deformity: prevention and management. Handbook of clinical neurology 109:369-384. 211. Wiltse L L (2000) Anatomy of the extradural compartments of the lumbar spinal canal. Peridural membrane and circumneural sheath. Radiologic clinics of North America 38:1177-1206. 90 212. Wu Y, Dissing-Olesen L, Macvicar B A, Stevens B (2015) Microglia: Dynamic Mediators of Synapse Development and Plasticity. Trends in immunology 36:605-613. 213. Yang E J, Jiang J H, Lee S M, Yang S C, Hwang H S, Lee M S, Choi S M (2010) Bee venom attenuates neuroinflammatory events and extends survival in amyotrophic lateral sclerosis models. Journal of neuroinflammation 7:69. 214. Ye M, Chung H S, Lee C, Hyun Song J, Shim I, Kim Y S, Bae H (2016) Bee venom phospholipase A2 ameliorates motor dysfunction and modulates microglia activation in Parkinson's disease alpha-synuclein transgenic mice. Experimental & molecular medicine 48:e244. 215. Yin C S, Jeong H S, Park H J, Baik Y, Yoon M H, Choi C B, Koh H G (2008) A proposed transpositional acupoint system in a mouse and rat model. Research in veterinary science 84:159-165. 216. Yoon H, Kim M J, Yoon I, Li D X, Bae H, Kim S K (2015) Nicotinic Acetylcholine Receptors Mediate the Suppressive Effect of an Injection of Diluted Bee Venom into the GV3 Acupoint on Oxaliplatin-Induced Neuropathic Cold Allodynia in Rats. Biological and Pharmaceutical Bulletin 38:710-714. 217. Yu Y P, Ju W P, Li Z G, Wang D Z, Wang Y C, Xie A M (2010) Acupuncture inhibits oxidative stress and rotational behavior in 6-hydroxydopamine lesioned rat. Brain research 1336:58-65. 218. Zhan J, Qin W, Zhang Y, Jiang J, Ma H, Li Q, Luo Y (2016) Upregulation of neuronal zinc finger protein A20 expression is required for electroacupuncture to attenuate the cerebral inflammatory injury mediated by the nuclear factor-kB signaling pathway in cerebral ischemia/reperfusion rats. Journal of neuroinflammation 13:258. 219. Zhang A, Sun H, Yan G, Cheng W, Wang X (2013) Systems biology approach opens door to essence of acupuncture. Complementary therapies in medicine 21:253-259. 220. Zhang A, Yan G, Sun H, Cheng W, Meng X, Liu L, Xie N, Wang X (2016) Deciphering the biological effects of acupuncture treatment modulating multiple metabolism pathways. Scientific reports 6:19942. 221. Zhang J, Huang K, Zhong G, Huang Y, Li S, Qu S, Zhang J (2016) Acupuncture Decreases NF-κB p65, miR-155, and miR-21 and Increases miR-146a Expression in Chronic Atrophic Gastritis Rats. Evidence-based complementary and alternative medicine : eCAM 2016:9404629. 222. Zhao H, Chen S, Gao K, Zhou Z, Wang C, Shen Z, Guo Y, Li Z, Wan Z, Liu C, Mei X (2017) Resveratrol protects against spinal cord injury by activating autophagy and inhibiting apoptosis mediated by the SIRT1/AMPK signaling pathway. Neuroscience 348:241-251. 223. Zhao H, Wang J Q, Shimohata T, Sun G, Yenari M A, Sapolsky R M, Steinberg G K (2007) Conditions of protection by hypothermia and effects on 91 apoptotic pathways in a rat model of permanent middle cerebral artery occlusion. Journal of neurosurgery 107:636-641. 224. Zhao J, Lv Z, Wang F, Wei J, Zhang Q, Li S, Yang F, Zeng X, Wu X, Wu Z (2013) Ym1, an eosinophilic chemotactic factor, participates in the brain inflammation induced by Angiostrongylus cantonensis in mice. Parasitology Research 112:2689-2695. 225. Zhao J, Wang L, Li Y (2017) Electroacupuncture alleviates the inflammatory response via effects on M1 and M2 macrophages after spinal cord injury. Acupuncture in Medicine. 226. Zhao Y, Xiao Z, Chen B, Dai J (2017) The neuronal differentiation microenvironment is essential for spinal cord injury repair. Organogenesis 0. 227. Zhao Z-Q (2008) Neural mechanism underlying acupuncture analgesia. Progress in Neurobiology 85:355-375. 228. Zhao Z Q (2008) Neural mechanism underlying acupuncture analgesia. Progress in neurobiology 85:355-375. 229. Zheng C, Zhou X-W, Wang J-Z (2016) The dual roles of cytokines in Alzheimer’s disease: update on interleukins, TNF-α, TGF-β and IFN-γ. Translational Neurodegeneration 5:7.por
dc.subject.cnpqFisiologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/65204/2017%20-%20Raquel%20do%20Nascimento%20de%20Souza.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4675
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2021-05-21T14:43:03Z No. of bitstreams: 1 2017 - Raquel do Nascimento de Souza.pdf: 3278183 bytes, checksum: 6a7686883b9353e1554436c0d371a3e8 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-05-21T14:43:03Z (GMT). No. of bitstreams: 1 2017 - Raquel do Nascimento de Souza.pdf: 3278183 bytes, checksum: 6a7686883b9353e1554436c0d371a3e8 (MD5) Previous issue date: 2017-05-17eng
Appears in Collections:Doutorado Multicêntrico em Ciências Fisiológicas

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2017 - Raquel do Nascimento de Souza.pdfRaquel do Nascimento de Souza3.2 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.