Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10233
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCunha, Carolina Passos da
dc.date.accessioned2023-12-21T18:59:15Z-
dc.date.available2023-12-21T18:59:15Z-
dc.date.issued2018-12-17
dc.identifier.citationCunha, Carolina Passos da. Estudo fitoquímico de Myrcia multiflora (Lam.) DC. e Psychotria leiocarpa Cham. & Schltdl. 2018. [183 f.]. Tese( Programa de Pós-Graduação em Ciências Sociais) - Universidade Federal Rural do Rio de Janeiro, [Seropédica - RJ] .por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10233-
dc.description.abstractO Brasil possui a maior biodiversidade do mundo, porém necessita valorizar e promover o conhecimento desta biodiversidade. A espécie Myrcia multiflora (Lam) DC., conhecida como “pedra-ume-caá” (fruto roxo), é uma espécie nativa que pertence à família Myrtaceae. A espécie Psychotria leiocarpa Cham. & Schltdl., conhecida como cafeeiro do mato (fruto azul), é uma espécie nativa que pertence à família Rubiaceae. A coloração característica dos frutos (roxo e azul, respectivamente) de ambas as espécies chama a atenção pelo seu potencial de uso como corante natural. A sazonalidade em que ocorre a frutificação tem gerado dificuldade na caracterização fitoquímica dos frutos de espécies vegetais. Diante deste contexto, as duas espécies permanecem sem investigação dos metabólitos especiais (secundários) produzidos nos frutos. Assim, estabeleceu-se como objetivo deste trabalho realizar o primeiro estudo fitoquímico dos frutos de M. multiflora e P. leiocarpa. A quantificação de antocianinas, carotenoides e ácidos fenólicos presentes nos frutos de M. multiflora foi realizada por CLAE-DAD e a capacidade antioxidante foi avaliada por métodos de captura de radicais livres (DPPH e ABTS). Flavonóis presentes nos frutos desta espécie foram isolados por cromatografia flash, utilizando um sistema de isolamento cromatográfico acelerado em cartucho de fase reversa. As substâncias do extrato de P. leiocarpa foram isoladas por CLAE em coluna analítica de fase reversa, acoplada à válvula seletora de canais e cromatografia clássica em coluna de fase normal. As substâncias isoladas de ambas as espécies tiveram suas estruturas determinadas através da interpretação dos dados espectrais fornecidos por UV-Vis, RMN 1D e 2D e EM envolvendo comparação com dados existentes na literatura. Foi realizada a comparação do perfil cromatográfico de outras espécies do gênero Psychotria (P. suterella e P. nuda) com o extrato de P. leiocarpa, objetivando a identificação de antocianinas. Foram identificadas vinte e três substâncias nos frutos de M. multiflora, dentre elas, carotenoides, flavonoides e ácidos fenólicos, sendo que dezenove destas substâncias foram quantificadas. O perfil e concentração das substâncias foi similar ao de outras espécies da família Myrtaceae. Os frutos de M. multiflora apresentaram a terceira maior atividade antioxidante quando comparado com dezoito frutos nativos. O conhecimento fitoquímico e a alta capacidade antioxidante observada para os frutos somados sua coloração roxa intensa tornam esta espécie um candidato para uso como corante alimentício natural com potencial de melhorar a funcionalidade do alimento. Oito substâncias foram isoladas dos frutos de P. leiocarpa, caracterizando-se antocianinas, ácido fenólico e esteroides. As antocianinas aciladas foram caracterizadas estruturalmente como Delfinidina-3-O-(6-O-(E)-feruloil-β-gentiobiosil)-7-O-(6-O-(E)-feruloil-β-glicopiranosil), Petunidina-3-O-(6-O-(E)-feruloil-β-gentiobiosil)-7-O-(6-O-(E)-feruloil-β-glicopiranosil) e Malvidina-3-O-(6-O-(E)-feruloil-β-gentiobiosil)-7-O-(6-O-(E)-feruloil-β-glicopiranosil), sendo elas inéditas na literatura. Identificou-se antocianinas aciladas em frutos com coloração azulada de P. suterella e P. nuda, indicando a possibilidade de existência destas substâncias em outras espécies do gênero. Os resultados obtidos com este trabalho contribuem para o conhecimento fitoquímico de dois frutos de espécies nativas, envolvendo a caracterização de substâncias inéditas e identificação de substâncias bioativas, promovendo a valorização dos frutos da biodiversidade brasileira.por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectPsychotria leiocarpapor
dc.subjectMyrcia multiflorapor
dc.subjectAntocianinas aciladaspor
dc.subjectPsychotria leiocarpaeng
dc.subjectMyrcia multifloraeng
dc.subjectAcylated anthocyaninseng
dc.titleEstudo fitoquímico de Myrcia multiflora (Lam.) DC. e Psychotria leiocarpa Cham. & Schltdlpor
dc.title.alternativePhytochemical study of Myrcia multiflora (Lam.) DC. and Psychotria leiocarpa Cham. & Schltdl.eng
dc.typeTesepor
dc.description.abstractOtherBrazil has the greatest biodiversity in the world, but it needs to value and promote knowledge of local biodiversity. The species M. multiflora (Lam) DC., known as "pedra-ume-caá" (purple fruit), is a native species that belongs to the Myrtaceae family. The species Psychotria leiocarpa Cham. & Schltdl., known as “cafeeiro do mato” (blue fruit), is a native species that belongs to the Rubiaceae family. The characteristic coloration of the fruits (purple and blue, respectively) of both species draws attention to their potential for use as a natural colorant. The seasonality in which fruiting occurs has generated difficulty in the phytochemical characterization of fruits of plant species. In this context, the two species remain without investigation of the special (secondary) metabolites produced in the fruits. Thus, the aim of this work to carry out the first phytochemical study of the fruits of M. multiflora and P. leiocarpa. The quantification of anthocyanins, carotenoids and phenolic acids present in the fruits of M. multiflora was performed by HPLC-DAD and the antioxidant capacity was evaluated by free radical capture methods (DPPH and ABTS). The flavonols present in fruits of this species were isolated by accelerated liquid chromatography in reversed-phase cartridge. The substances of the P. leiocarpa extract were isolated by HPLC on reverse phase analytical column, coupled to the channel selector valve and classic chromatography on a normal phase column. The isolated substances of both species had their structures determined through the interpretation of the spectral data furnished by UV, 1D and 2D NMR and high-resolution MS (HRMS) involving comparison with data in the literature. The chromatographic profile of other species of the genus Psychotria (P. suterella and P. nuda) was compared with the extract of P. leiocarpa, aiming at the identification of anthocyanins. Twenty-three substances were identified in the fruits of M. multiflora, incluing carotenoids, flavonoids and phenolic acids characterization. Nineteen of these substances were quantified. The profile and concentration of the substances was similar to that of other species of the Myrtaceae family. The fruits of M. multiflora presented the third largest antioxidant capacity when compared to eighteen native fruits. The phytochemical knowledge and the high antioxidant capacity observed for the fruits added to their intense purple coloration make this species a candidate for use of natural food coloring with potential to improve the functionality of the food. Eight substances were isolated from the fruits of P. leiocarpa, characterized as anthocyanins, phenolic acid and steroids. Acylated anthocyanins were structurally characterized as Delphinidin-3-O-(6-O-(E)-feruloyl-β-gentiobiosyl)-7-O-(6-O-(E)-feruloyl-β-glucopyranosyl), Petunidin-3-O-(6-O-(E)-feruloyl-β-gentiobiosyl)-7-O-(6-O-(E)-feruloyl-β-glucopyranosyl) and Malvidin-3-O-(6-O-(E)-feruloyl-β-gentiobiosyl)-7-O-(6-O-(E)-feruloyl-β-glucopyranosyl), being unpublished in the literature. Acylated anthocyanins were identified in fruits with bluish coloring of P. suterella and P. nuda, indicating the possibility of existence of these substances in other species of the genus. The results obtained with this work contribute to the phytochemical knowledge of two fruits of native species, involving the characterization of novel substances and identification of bioactive substances, promoting the valorization of Brazilian biodiversity fruits.eng
dc.contributor.advisor1Braz Filho, Raimundo
dc.contributor.advisor1ID070100018-04por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6747215104363265por
dc.contributor.advisor-co1Godoy, Ronoel Luiz de Oliveira
dc.contributor.referee1Godoy, Ronoel Luiz de Oliveira
dc.contributor.referee2Santiago, Manuela Cristina Pessanha de Araújo
dc.contributor.referee3Bizzo, Humberto Ribeiro
dc.contributor.referee4Oliveira, Márcia Cristina Campos de
dc.contributor.referee5Suzart, Luciano Ramos
dc.creator.ID121432077-51por
dc.creator.Latteshttp://lattes.cnpq.br/2506941726425025por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesACHENBACH, H.; LOTTES, M.; WAIBEL, R.; KARIKAS, G. A.; CARREA, M. D.; GUPTA, A. M. P. Alkaloids and other compounds from Psychotria correae. Phytochemistry, v. 38, p. 1537, 1995. ACOSTA-ESTRADA, B.A.; GUTIERREZ-URIBE, J.A.; SERNA-SALDIVAR, S.O. BOUND phenolics in foods, a review. Food Chemistry, v. 152, p. 46–55, 2014. ALMEIDA, E. R. Plantas medicinais brasileiras: conhecimentos populares e científicos. São Paulo: Hemus Editora Ltda., 341p. 1993. ALVES, M. F.; NIZIO, D. A. C.; SAMPAIO, T. S.; JUNIOR, A. F. N.; BRITO, F. A.; MELO, J. O.; ARRIGONI-BLANK, M. F.; GAGLIARDI, P. R.; MACHADO, S. M. F.; BLANK, A. F. Myrcia lundiana Kiaersk native populations have different essential oilcomposition and antifungal activity against Lasiodiplodia theobromae. Industrial Crops and Products, v. 85, p. 266-273, 2016. AMORIM-CARRILHO, K. T.; CEPEDA, A.; FENTE, C.; REGAL, P. Review of methods for analysis of carotenoids. Trends in Analytical Chemistry, v. 56, p. 49-73, 2014. ANDRADE, J.M.M.; BIEGELMEYER, R.; XAVIER, C.A.G.; BORDIGNON, S.A.L.; MORENO, P.R.H.; ZUANAZZI, J.A.S.; HENRIQUES, A.T.; APEL, M.A. Essential Oil Constituents of Psychotria leiocarpa. Chemistry of Natural Compounds, v. 46, n. 4, p. 649-650, 2010. AOAC. Official methods of analysis of the Association of Official Analytical Chemists; 18th ed. AOAC: Gaithersburg, Maryland, 2005. BAEK, D.-R.; LEE, M.-J.; BAEK, N.-I.; SEO, K.-H.; LEE, Y.-H. Phenolic compounds from the leaves of eggplant (Solanum melongena L.). Journal of Applied Biological Chemistry, v. 59, n. 2, p. 103-106, 2016. BENEVIDES, P. J. C.; YOUNG, M. C. M.; BOLZANI, V. S. Biological Activities of Constituents from Psychotria spectabilis. Pharmaceutical Biology, v. 42, p. 565, 2005. 149 BRAGA, E.C.O. Caracterização química de substâncias bioativas dos frutos de duas espécies do gênero Eugenia. 2016. 113 f. Dissertação (Mestrado em Alimentos e Nutrição) – - Programa de Pós-Graduação em Alimentos e Nutrição, Universidade Federal do Estado do Rio de Janeiro. BRAZ-FILHO, R. Química de produtos naturais: importânica, interdisciplinaridade, dificuldades e perspectivas. A peregrinação de um pacatubano. Química Nova, v.1, n.5, p.405-445, 1994. BOMBO, R.P.A; AFONSO, M.S.; MACHADO, R.M.; LAVRADOR, M.S.F.; NUNES, V.S.; QUINTÃO, E.R.; KOIKE, M.; CATANOZI, S.; LIN, C.J.; NAKANDAKARE, E.R.; LOTTENBERG, A.M. Dietary phytosterol does not accumulate in the arterial wall and prevents atherosclerosis of LDLr-KO mice. Atherosclerosis, v. 231, p. 442-447, 2013. BOTH, F.L.; KERBER, V.A.; HENRIQUES, A.T.; ELISABETSKY, E. Analgesic Properties of Umbellatine from Psychotria umbellata. Pharmaceutical Biology, v. 40, n. 5, p. 336–341, 2002. BONTA, R. K. Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs). Journal of Pharmaceutical Analysis, v. 7, p. 349-364, 2017. CHANDRASEKARA, A. Phenolic Acids. Reference Module in Food Science, 2018. CHOI, J-S.; BAE, J-Y.; KIM, D.S.; LI, J.; KIM, J-L.; LEE, Y-J.; KANG, Y-H. Dietary Compound Quercitrin Dampens VEGF Induction and PPARγ Activation in Oxidized LDL-Exposed Murine Macrophages: Association with Scavenger Receptor CD36. Journal of Agricultural and Food Chemistry, v. 58, p.1333-1341, 2010. CHOI, E.M. Protective effect of quercitrin against hydrogen peroxide-induced dysfunction in osteoblastic MC3T3-E1 cells. Experimental and Toxicologic Pathology, v. 64, p. 211– 216, 2012. COLLINS, C. H.; BRAGA, G. L.; BONATO, P. S. Fundamentos de cromatografia. Campinas, SP: Editora da UNICAMP. 2006. 453 p. CORRÊA, L.R.; SOARES, G.L.G.; FETT-NETO, A.G. Allelopathic potential of Psychotria leiocarpa, a dominant understorey species of subtropical forests. South African Journal of Botany, v. 74, p. 583–590, 2008. COUTINHO, H.D.M.; SILVA, I.; FREITAS, M.A.; GONDIM, C.N.F.L.; ANDRADE, J.C. Análise Físico-química e Avaliação Antimicrobiana do Fruto Cambuí (Myrcia multiflora). Revista de Biologia Farmácia, v. 9, n. 1, p. 96-103, 2013. 150 CRUZ, G.L. Dicionário das plantas úteis do Brasil. 5.ed. Rio de Janeiro: Ed. Bertrand do Brasil, 1995. 599p. DAVID, J.M.; CRUZ, F.G.; GUEDES, M.L.S.; CHÁVEZ, J.P. Flavonol glycosides from Davilla flexuosa. Journal Brazilian Chemical Society, v. 7, n. 2, p. 115-118, 1996. DUARTE, L.J.;, CHAVES, V.C.; NASCIMENTO, M.V.P.S.; CALVETE, E.; LI, M.; CIRAOLO, E.; GHIGO, A.; HIRSCH, E.; SIMÕES, C.M.O.; REGINATTO, F.H.; DALMARCO, E.M. Molecular mechanism of action of Pelargonidin-3-O-glucoside, the main anthocyanin responsible for the anti-inflammatory effect of strawberry fruits. Food Chemistry, v. 247, p. 56-65, 2018. DUONG, S.; STROBEL, N.; BUDDHADASA, S.; AULDIST, M.J.; WALES, W.J.; ORBELL, J.D.; CRAN, M.J. Quantitative Instrumental Analysis of Phytosterols in Fortified Foods. Reference Module in Food Science, 2017. DYRBY, M.; WESTERGAARD, N.; STAPELFELD, H. Light and heat sensitivity of red cabbage extract in soft drink model systems. Food Chemistry, v. 72, p. 431-437, 2001. DEWICK. P.M. Medicinal Natural Products: A Biosynthetic Approach, 2nd ed. Chichester: John Wiley & Sons, LTD, 2002. EDENHARDER, R.; GRÜNHAGE, D. Free radical scavenging abilities of flavonoids as mechanism of protection against mutagenicity induced by tert-butyl hydroperoxide or cumene hydroperoxide in Salmonella typhimurium TA102. Mutation Research, v. 540, p. 1–18, 2003. ELISABETSKY, E.; AMADOR, T.A.; ALBUQUERQUE, R.R.; NUNES, D.S.; CARVALHO, A.C.T. Analgesic activity of Psychotria colorata (Willd. ex R. & S.) Muell. Arg. Alkaloids. Journal of Ethnopharmacology, v. 48, p. 77-83, 1995. ENGELHARDT, H. One century of liquidi chromatography from Tswett's columns to modern high speed and high performance separations. Journal of chromatography B, v.800, p.3-6. 2004. FEKETE, S.; OLÁH, E.; FEKETE, J. Fast liquidi chromatography: The domination of core-shell and very fine particles. Journal of chromatography A, v.1228, p.57-71. 2012. FERNANDES, A.; BRÁS, N.F.; MATEUS, N.; FREITAS, V. A study of anthocyanin self-association by NMR spectroscopy. New Journal of Chemistry, v. 39, p. 2602-2611, 2015. FERREIRA, E.A. Efeitos hipolipemiante e hepatoprotetor da trihidroxiacetofenona isolada de Myrcia multiflora. 2010. 100 f. Tese (Doutorado em Farmácia) – Instituto de Farmácia, Universidade Federal de Santa Catarina. 151 FERREIRA, E.A.; GRIS, E.F.; REBELLO, J.M. CORREIA, J.F.G.; OLIVEIRA, L.F.S.; FILHO, D.W.; PEDROSA, R.C. The 2′,4′,6′-Trihydroxyacetophenone Isolated from Myrcia multiflora Has Antiobesity and Mixed Hypolipidemic Effects with the Reduction of Lipid Intestinal Absorption. Planta Medica, v. 77, p. 77: 1569–1574, 2011. FRAGOSO, V.; NASCIMENTO, N.C.; MOURA, D.J.; SILVA, A.C.R.; RICHTER, M.F.; SAFFI, J.; FETT-NETO, A.G. Antioxidant and antimutagenic properties of the monoterpene indole alkaloid psychollatine and the crude foliar extract of Psychotria umbellata Vell. Toxicology in Vitro, v. 22 p. 559–566, 2008. GANGWAL, A.; PARMAR, S. K.; SHETH, N. R. Triterpenoid, flavonoids and sterols from Lagenaria siceraria fruits. Der Pharmacia Lettre, v. 2, n. 1, p. 307-317, 2010. GENG, D.; CHI, X.; DONG, Q.; HU, F. Antioxidants screening in Limonium aureum by optimized on-line HPLC–DPPH assay. Industrial Crops and Products, v. 67, p. 492–497, 2015. GIUFFRIDA, D.; ZOCCALI, M.; ARIGÒ, A.; CACCIOLA, F.; ROA, C. O.; DUGO, P.; MONDELLO, L. Comparison of different analytical techniques for the analysis of carotenoids in tamarillo (Solanum betaceum Cav.). Archives of Biochemistry and Biophysics, v. 646, p. 161-167, 2018. GIUSTI, M.M.; RODRÍGUEZ-SAONA, L.E.; WROLSTAD, R.E. Molar Absorptivity and Color Characteristics of Acylated and Non-Acylated Pelargonidin-Based Anthocyanins, Journal of Agricultural and Food Chemistry, v. 47, p. 4631-4637, 1999. GIUSTI, M.M.; WROLSTAD, R.E. Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering Journal, v.14, p. 217-225, 2003. GOUVÊA, A.C.M.S.; SANTIAGO, M.C.P.A.; SCHULZ, D.F.; PACHECO, S.; GODOY, R.L.O.; CABRAL, L.M.C. Isolamento de padrões de antocianinas (Cianidina-3-O-glucosídeo e Cianidina-3-O-rutinosídeio) de açaí liofilizado (Euterpe oleraceae Mart.) por CLAE. Ciência e Tecnologia de Alimentos, n. 32, v. 1, p. 43-46, 2012. GOUVÊA, A.C. M.S.; SANTIAGO, M.C.P.A.; OLIVEIRA, L.M.; GODOY, R.L.O.; PEIXOTO, F.M.; PACHECO, S.; NASCIMENTO, L.S.M., BORGUINI, R.G. Isolamento das antocianinas do epicarpo de uvas pretas (Vitis spp.) por CLAE/DAD e sua identificação através do sistema CLUE-QTOF-ESI/EM/EM. Perspectivas da Ciência e Tecnologia, v. 6, n. 1/2, p. 37-45, 2014. GOUVÊA, A.C.; MELO, A.; SANTIAGO, M.C.; PEIXOTO, F.M.; FREITAS, V.; GODOY, R.L.;FERREIRA, I.M. Identification and quantification of anthocyanins in fruits from Neomitranthes obscura (DC.) N. Silveira na endemic specie from Brazil by comparison of chromatographic methodologies. Food Chemistry, v.185, p. 277-283, 2015. 152 GOWD, V.; JIA, Z.; CHEN, W. Anthocyanins as promising molecules and dietary bioactive components against diabetes e A review of recent advances. Trends in Food Science & Technology, v. 68, p. 1-13, 2017. GRAJEDA-IGLESIAS, C.; FIGUEROA-ESPINOZA, M.C.; BAROUH, N.; BARÉA, B.; FERNANDES, A.; FREITAS, V.; SALAS, E. Isolation and Characterization of Anthocyanins from Hibiscus sabdariffa Flowers. Journal of Natural Products, v. 79, p. 1709−1718, 2016. HARBORNE, J.B.; WILLIAMS, C.A. Advances in flavonoid research since 1992. Phytochemistry v. 55, p. 481-504, 2000. HASAN, S.; SINGH, K.; DANISUDDIN, M.; VERMA, P.K.; KHAN, A.U. Inhibition of Major Virulence Pathways of Streptococcus mutans by Quercitrin and Deoxynojirimycin: A Synergistic Approach of Infection Control. Plos One, v. 9, 2014. HAYASHI, T.; SMITH, F. T.; LEE, K. H. Antitumor Agents. 89.1 Psychorubrin, a New Cytotoxic Naphthoquinone from Psychotria rubra and Its Structure-Activity Relationships. Journal of Medical Chemistry, v. 30, p, 2005, 1987. HE, J.; GIUST, M.M. High-purity isolation of anthocyanins mixtures from fruits and vegetables – A novel solid-phase extraction method using mixed mode cation-exchange chromatography. Journal of Chromatography A, v. 1218, p. 7914– 7922, 2011. HENDRIKS, H.F.J.; WESTSTRATE, J.A.; VLIET, T.; MEIJER, G.W. Spreads enriched with three different levels of vegetable oil sterols and the degree of cholesterol lowering in normocholesterolaemic and mildly hypercholesterolaemic subjects. European Journal of Clinical Nutrition, v. 53, p. 319-397, 1999. HÉRON, S.; CHARBONNEAU, D.; ALBISSON, P.; ESTIEVENART, G.; GRONI, S.; TCHAPLA, A. A new methodology to determine the isoeluotropic conditions on ultra-performance flash purification stationary phases from analytical reversed liquid chromatography stationary phase. Journal of Chromatography A, v. 1397, p. 59-72, 2015. HERTOG, M. G. L.; FESKENS, E. J. M.; KROMHOUT, D. Antioxidant flavonols and coronary heart disease risk. Lancet, v.349, p.699-699, 1997. HOBBS, A. N.; YOUNG, R. J. Practical purification of hydrophilic fragments and lead/drug-like molecules by reverse phase flash chromatography: tips, tricks and contemporary developments. Drug Discovery Today, v. 18, p. 148-154, 2013. HUANG, Y-Y.; LIU, X-F.; LIU, J-Z.; LI, L.; CUI, Q.; WANG, L-T.; FU, Y-J.; LUO, M. Separation and purification of indigotin and indirubin from Folium isatidis extracts using a fast and eficiente macroporous resin column followed reversed phase flash chromatography. Journal of the Taiwan Institute of Chemical Engineers, v. 67, p. 61-68, 2016. 153 IMATOMI, M.; NOVAES, P.; MATOS, A. P.; GUALTIERI, S. C. J.; MOLINILLO, J. M. G.; LACRET, R.; VARELA, R. M.; MACÍAS, F. A. Phytotoxic effect of bioactive compounds isolated from Myrcia tomentosa (Myrtaceae) leaves. Biochemical Systematics and Ecology, v. 46, p. 29-35, 2013. JESUS, I. C.; FRAZÃO, G. G. S.; BLANK, A. F.; SANTANA, L. C. L. A. Myrcia ovata Cambessedes essential oils: A proposal for a novel natural antimicrobial against foodborne bactéria. Microbial Pathogenesis, v. 99, p. 142-147, 2016. JUNIOR, A.R.C.; CARVALHO, BRAZ-FILHO, R.; M.G.; VIEIRA, I.J.C. Psychotria Genus: Chemical Constituents, Biological Activities, and Synthetic Studies. Studies in Natural Products Chemistry, v. 48, p. 231-261, 2016. JUNIOR, A.R.C.; VIEIRA, I.J.C.; CARVALHO, M.G.; BRAZ-FILHO, R.; LIMA, M.A.; FERREIRA, R.O.; MARIA, E.J.; OLIVEIRA, D.B. 13C-NMR Spectral Data of Alkaloids Isolated from Psychotria Species (Rubiaceae). Molecules, v. 22, n. 103, p. 1-22, 2017. KO, C-H.; SHEN, S-C.; LEE, T.J.F.; CHEN, Y-C. Myricetin inhibits matrix metalloproteinase 2 protein expression and enzyme activity in colorectal carcinoma cells. Molecular Cancer Therapeutics, v. 4, p. 281-290, 2005. KÜHLER, T.C.; LINDSEN, G.R. Preparative reversed-phase flash chromatography, a convenient method for the workup of reaction mixtures. Journal of Organic Chemistry, v. 48, p. 3589-3591, 1983. KULCZYNSKI, B.; GRAMZA-MICHAŁOWSKA, A.; KOBUS-CISOWSKA, J.; KMIECIK, D. The role of carotenoids in the prevention and treatment of cardiovascular disease – Current state of knowledge. Journal of Functional Foods, v. 38, p. 45-65, 2017. LANÇAS, F. M. Cromatografia Líquida Moderna. Campinas, SP: Editora Átomo, 382 f. 2009. LEE, D. G.; LEE, J.; KIM, K-T.; LEE, S-W.; KIM, Y-O.; CHO, I-H.; KIM, H-J.; PARK, C-G.; LEE, S. High-performance liquid chromatography analysis of phytosterols in Panax ginseng root grown under different conditions. Journal of Ginseng Research, n. 42, p 16-20, 2018. LI, X.-N.; ZHANG, Y.; CAI, X.-H.; FENG, T.; LIU, Y.-P.; LI, Y.; REN, J.; ZHU, H.-J.; LUO, X.-D. Psychotripine: A New Trimeric Pyrroloindoline Derivative from Psychotria pilífera. Organic Letters, v. 13, p. 5896, 2011. LIMA, R. C. L.; KATO, L.; KONGSTAD, K. T.; STAERK, D. Brazilian insulin plant as a bifunctional food: Dual high-resolution PTP1B and α-glucosidase inhibition profiling combined with HPLC-HRMS-SPENMR for identification of antidiabetic compounds in Myrcia rubella Cambess. Journal of Functional Foods, v. 45, p.444-451, 2018. 154 LIMBERGER, R. P.; SOBRAL, M.; S, A. T. Óleos voláteis de espécies de Myrcia nativas do Rio Grande do Sul. Químca Nova, v. 27, n. 6, p. 916-919, 2004. LINNEWIEL-HERMONI, K.; KHANIN, M.; DANILENKO, M.; ZANGO, G.; AMOSI, Y.; LEVY, J.; SHARONI, Y. The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity. Archives of Biochemistry and Biophysics, v. 572, p. 28-35, 2015. LIOBIKAS, J.; SKEMIENE, K.; TRUMBECKAITE, S.; BORUTAITE, V. Anthocyanins in cardioprotection: A path through mitochondria. Pharmacological Research, v. 113, p.808-815, 2016. LIVENGOOD, J. Why was M. S. Tswett's chromatographic adsorption analysis rejected? Studies in history and philosophy of science, v.40, p.57-69. 2009. LOPES, S. O. ; MORENO, P. R. H.; HENRIQUES, A. T. Growth characteristics and chemical analysis of Psychotria carthagenensis cell suspension cultures. Enzyme and Microbial Technology, v. 26, p. 259–264, 2000. LOPES, S.; VON POSER, G.L.; KERBER, V.A.; FARIAS, F.M.; KONRATH, E.L.; MORENO, P.; SOBRAL, M.E.; ZUANAZZI, J.A.S.; HENRIQUES, A.T. Taxonomic significance of alkaloids and iridoid glucosides in the tribe Psychotrieae (Rubiaceae). Biochemical Systematics and Ecology, v. 32 p. 1187–1195, 2004. LOPES, A. C. S. Estudo químico e isolamento de flavonoides de Myrcia spp. ocorrentes em Amazônia de terra firme. 2015. 126 f. Dissertação (Mestrado em Química) – Programa de Pós-Graduação em Química, Universidade Federal do Amazonas. LU, Q.; WANG, J.; KONG, L. Chemical constituents from Psychotria yunnanensis and its chemotaxonomic study. Biochemical Systematic and Ecology, v. 52, p. 20, 2014. LU, H.-X.; LIU, L.-Y.; LI, D.-P.; LI, J.-Z.; XU, L.-C. A new iridoid glycoside from the root of Psychotria rubra. Biochemical Systematics and Ecology, v. 57, p. 133-136, 2014. MALDANER, L. & JARDIM, I. C. S. F. O Estado da arte da cromatografia líquida de ultra eficiência. Química nova, v.32, n.1, p.214-222. 2009. MARTIN, A. J. P.; SYNGE, R. L. M. A new form of chromatogram employing two liquid phases. 1 A theory of chromatography, 2 Application to the micro-determination of the higher monoamino-acids in proteins. Biochemical Journal, v. 35, p. 1358-1368, 1941. MARIUTTI, L.R.B.; MERCADANTE, A.Z. Carotenoid esters analysis and occurrence: What do we know so far? Archives of Biochemistry and Biophysics, v. 648, p. 36-43, 2018. 155 MARTINS, M.D.M. Efeito da esterilização sobre os teores de licopeno em molhos de tomates adicionados à conservas de sardinhas (Sardinellas brasiliensis). 2015. 108 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos, Ciência dos Alimentos) – Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro. MARTINS, M.A.R.; SILVA, L.P.; FERREIRA, O.; SCHRÖDER, B.; COUTINHO, J.A.P.; PINHO, S.P. Terpenes solubility in water and their environmental distribution. Journal of Molecular Liquids, v. 241, p. 996–1002, 2017. MATSUDA, H.; NISHIDA, N.; YOSHIKAWA, M. Antidiabetic Principles of Natural Medicines. V. Aldose Reductase Inhibitors from Myrcia multiflora DC. (2): Structures of Myrciacitrins III, IV, and V. Chemical & Pharmaceutical Bulletin, v. 50, p. 429-31, 2002a. MATSUDA, H.; MORIKAWA, T.; TOGUCHIDA, I.; YOSHIKAWA, M. Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chemical Pharmaceutical Bulletin. v. 50, n. 6, p. 788—795, 2002b. MATSUURA, H.N.; FRAGOSO, V.; PARANHOS, J.T.; RAU, M.R.; FETT-NETO, A.G. The bioactive monoterpene indole alkaloid N,-d-glucopyranosyl vincosamide is regulated by irradiance quality and development in Psychotria leiocarpa. Industrial Crops and Products, v. 86, p. 210–218, 2016. MATTILA, P.; KUMPULAINEN, J. Determination of Free and Total Phenolic Acids in Plant-Derived Foods by HPLC with Diode-Array Detection. Journal of Agricultural and Food Chemistry, v. 50, n. 13, p. 3660-3667, 2002. MCINNES, A.G.; WALTER, J.A.; WRIGHT, J.L.C. 13C NMR Spectra of Δ24(28) Phytosterols. Organic Magnetic Resonance, v. 13, n. 4, p. 302-303, 1980. MC MASTER, M. C. HPLC a pratical user’s guide. Hoboken, NJ, USA: John Wiley & Sons. 2007. 202 p. MEOTTI, F.C. Análise dos Mecanismos de Ação Antinociceptiva e Antiinflamatória do Flavonoide Miricitrina: Estudos in vivo e in vitro. 2006. 132. Tese (Doutorado em Bioquímica Toxicológica) - Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria. MEYER, V. R. Practical High Performance Liquid Chromatography. New York, NY, USA: John Wiley & Sons. 1997. 376 p. MOGHADASIAN, M.H.; ALSAIF, M.; LE, K.; GANGADARAN, S.; MASISI, K.; BETA, T.; SHEN, G.X. Combination effects of wild rice and phytosterols on prevention of atherosclerosis in LDL receptor knockout mice. Journal of Nutritional Biochemistry, v. 33 p. 128–135, 2016. 156 MOLNÁR-PERL, I.; FÜZFAI, Zs. Chromatographic, capillary eletrophoretic and capillary eletrochromatographic techniques in the analysis of flavonoids. Journal of Chromatography A, v.1073, p. 201-227, 2005. MOORE, S; STEIN, W. H. Chromatographic determination of amino acids by the use of automatic recording equipment. Methods in Enzymology, v. 6, p. 819-831, 1963. MORAES, T.M.S.; ARAÚJO, M.H.; BERNARDES, N.R.; OLIVEIRA, D.B.; LASUNSKAIA, E.B.; MUZITANO, M.F.; CUNHA, M. Antimycobacterial Activity and Alkaloid Prospection of Psychotria Species (Rubiaceae) from the Brazilian Atlantic Rainforest. Planta Medica, v. 77, p. 964–970, 2011. MORAIS, C.A.; ROSSO, V.V.; ESTADELLA, D.; PISANI, L.P. Anthocyanins as inflammatory modulators and the role of the gut microbiota. Journal of Nutritional Biochemistry, v. 33, p. 1-7, 2016. MOREAU, R.A.; NYSTRÖMB, L.; WHITAKER, B.D.; WINKLER-MOSER, J.K.; BAER, D.J.; GEBAUER, S.K.; HICKS, K.B. Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Progress in Lipid Research, v. 70, p. 35-61, 2018. MOREAU, R.A.; WHITAKER, B.D.; HICKS, K.B. Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Progress in Lipid Research, v. 41, p. 457–500,2002. MORENO, B. P.; FIORUCCI, L. L. R.; CARMO, M. R. B.; SARRAGIOTTO, M. H.; BALDOQUI, D. C. Terpenoids and a coumarin from aerial parts of Psychotria vellosiana Benth. (Rubiaceae). Biochemical Systematics and Ecology. V. 56, p. 80, 2014. MORHY, L. Cromatografia (I): evolução histórica: a fase antiga. Ciência e Cultura, v. 28, n. 10, p. 1185-1189, 1976. MORIYA, C.; HOSOYA, T.; AGAWA, S.; SUGIYAMA, Y.; KOZONE, I.; SHIN-YA, K.; TERAHARA, N.; KUMAZAWA, S. New acylated anthocyanins from purple yam and their antioxidant activity. Bioscience, Biotechnology, and Biochemistry, v. 79, p. 1484–1492, 2015. NASCIMENTO, L. S. M., SANTIAGO, M. C. P. A.; OLIVEIRA, E. M. M.; BORGUINI, R. G.; BRAGA, E. C. O.; MARTINS, V. C.; PACHECO S.; SOUZA, M. C.; GOGOY, R. L. O. Characterization of Bioactive Compounds in Eugenia brasiliensis, Lam. (Grumixama). Nutrition and Food Technology: Open Access, v. 3, p. 2-7, 2017. NUNES, I.L.; MERCADANTE, A.Z. Vantagens e desvantagens das colunas C18 e C30 para a separação de carotenóides por CLAE. Brazilian Journal of Pharmaceutical Sciences, v. 42, n. 4, p. 539-546, 2006. 157 PACHECO, S. Preparo de padrões analíticos, estudo de estabilidade e parâmetros de validação para ensaio de carotenoides por cromatografia líquida. 2009. 106 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos, Ciência dos Alimentos) – Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro. PACHECO, S.; GODOY, R.L.O.; PEIXOTO, F.M.; GOUVÊA, A.C.M.S.; SANTIAGO, M.C.P.A.; FELBERG, I.; BORGUINI, R.G. Preparation of high purity analytical standards using high performance liquid chromatography in analytical scale. Analytical Chemistry An Indian Journal, v. 12, n. 5, p. 194-197, 2013. PHENOMENEX HOME PAGE. Core Shell Technology. Disponível em <http://www.phenomenex.com/Kinetex/CoreShellTechnology> Acesso em 20 de fevereiro de 2013. PIC-TAYLOR, A.; MOTTA, L. G.; MORAIS, J. A.; JUNIOR, W. M.; SANTOS, A. F. A.; CAMPOS, L. A.; MORTARI, M. R.; ZUBEND, M. V.; CALDAS, E. D. Behavioural and neurotoxic effects of ayahuasca infusion (Banisteriopsis caapi and Psychotria viridis) in female Wistar rat. Behavioural Processes, v. 118, p. 102-110, 2015. PIIRONEN, V.; LINDSAY, D.G.; MIETTINEN, T.A.; TOIVO, J.; LAMPI, A-M. Plant sterols: biosynthesis, biological function and their importance to human nutrition. Journal of the Science of Food and Agriculture, v. 80, p. 939-966, 2000. PIMENTA, A. T. A.; BRAZ-FILHO, R.; DELPRETE, P. G.; SOUZA, E. B.; SILVEIRA, E. R.; LIMA, M. A. S. Structure elucidation and NMR assignments of two unusual monoterpene indole alkaloids from Psychotria stachyoides. Magnetic Resonance Chemistry, v. 48, p. 734, 2010. PINA, F.; MELO, M.J.; LAIA, C.A.T.; PAROLA, A.J.; LIMA, J.C. Chemistry and applications of flavylium compounds: a handful of colours. Chemical Society Reviews, v. 41, p. 869–908, 2012. PIRES, F.B.; DOLWITSCH, C.B.; PRÁ, V.D.; FACCIN, H.; MONEGO, D.L.; CARVALHO, L.M., VIANA, C.; LAMEIRA, O.; LIMA, F.O.; BRESSAN, L.; ROSA, M.B. Qualitative and quantitative analysis of the phenolic content of Connarus var. angustifolius, Cecropia obtusa, Cecropia palmata and Mansoa alliacea based on HPLC-DAD and UHPLC-ESI-MS/MS. Revista Brasileira de Farmacognosia,v. 27, p. 426–433, 2017. PRIOR, R. L.; CAO, G. Antioxidant phytochemicals in fruits and vegetables. Diet and health implication. Horticultural Science., v.35, p.588-592, 2000. REFLORA, Rubiaceae in Flora do Brasil 2020 em construção. Jardim Botânico do Rio de Janeiro. Disponível em: <http://reflora.jbrj.gov.br/reflora/floradobrasil/FB14188>. Acesso em: 28 Abr. 2018 158 RIJKE, E.; OUT, P.; NIESSEN, W.M.A.; ARIESE, F.; GOOIJER, C.; BRINKMAN, U. A. Analytical separation and detection methods for flavonoids. Journal of Chromatography A, v.1112, p. 31-63, 2006. RODRIGUEZ-AMAYA, D. B. A Guide to Carotenoid Analysis in Foods, 64p, 2001. RODRIGUEZ-AMAYA, D.B. Update on natural food pigments - A mini-review on carotenoids, anthocyanins, and betalains. Food Research International, 2018. RODRIGUEZ-CONCEPCION, M.; AVALOS, J.; BONET, M.L.; BORONAT, A.; GOMEZ-GOMEZ, L.; HORNERO-MENDEZ, D.; LIMON, M.C.; MELÉNDEZ-MARTÍNEZ, A.J.; OLMEDILLA-ALONSO, B.; PALOU, A.; RIBOT, J.; RODRIGO, M.J.; ZACARIAS, L.; ZHU, CHANGFU. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, v. 70, p. 62-93, 2018. ROMERO, J. R. Fundamentos de estereoquímica. Ribeirão Preto, SP: USP. 1998, 108p. RONCHI, H.S. Potencial Alimentício e Medicinal das Espécies Nativas da Área de Proteção Ambiental – APA Corumbataí, Botucatu e Tejupá – Perímetro Botucatu. 2017. 111 f. Dissertação (Mestrado em Agronomia) – Faculdade de Ciências Agronômicas, Universidade Estadual Paulista. ROSA, J. S.; GODOY, R. L. O.; OIANO NETO, J.; CAMPOS, R. S.; MATTA, V. M.; FREIRE, C. A.; SILVA, A. S.; SOUZA, R. S. Desenvolvimento de um método de análise de vitamina C em alimentos por cromatografia líquida de alta eficiência e exclusão iônica. Ciência e Tecnologia de Alimentos. v.27, n.4, p.837-846, 2007. ROZENBERG, R.; RUIBAL-MENDIETA, N. L.; PETITJEAN, G.; CANID, P.; DELACROIXE, D. L.; DELZENNE, N. M.; MEURENS, M.; QUETIN-LECLERCQ; HABIB-JIWANA, J-L. Phytosterol analysis and characterization in spelt (Triticum aestivum ssp. spelta L.) and wheat (T. aestivum L.) lipids by LC/APCI-MS. Journal of Cereal Science, n. 38, p. 189-197, 2003. RUFINO, M.S.M.; ALVES, R.E.; BRITO, E.S.; MORAIS, S.M.; SAMPAIO, C.G.; PÉREZ-JIMÉNES, J.; SURA-CALIXTO, F. Comunicado Técnico Embrapa, n. 128, 2007. RUFINO, M.S.M.; ALVES, R.E.; BRITO, E.S.; MORAIS, S.M.; SAMPAIO, C.G.; PÉREZ-JIMÉNES, J.; SURA-CALIXTO, F. Comunicado Técnico Embrapa, n. 127, 2007. RUFINO, M.S.M.; ALVES, R.E.; BRITO, E.S.; PÉREZ-JIMÉNES, J.; SURA-CALIXTO, F.; MANCINI-FILHO, J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry. v. 121, p. 996-1002, 2010. SACCOL, E. M. H.; JEREZ-CEPA, I.; OURIQUE, G. M.; PÊS, T. S.; GRESSLER, L. T.; MOURÃO, R. H. V.; MARTÍNEZ-RODRÍGUEZ, G.; MANCERA, J. M.; 159 BALDISSEROTTO, B.; PAVANATO, M. A.; MARTOS-SITCHA, J. A. Myrcia sylvatica essential oil mitigates molecular, biochemical and physiological alterations in Rhamdia quelen under different stress events associated to transport. Research in Veterinary Science, v. 117, p. 150-160, 2018. SAMPAIO, T. S.; NIZIO, D. A. C.; WHITE, L. A. S.; MELO, J. O.; ALMEIDA, C. S.; ALVES, M. F.; GAGLIARDI, P. R.; ARRIGONI-BLANK, M. F.; JUNIOR, A. W.; SOBRAL, M. E. G.; BLANK, A. F. Chemical diversity of a wild population of Myrcia ovata Cambessedes and antifungal activity against Fusarium solani. Industrial Crops and Products, v. 86, p. 196-209, 2016. SANTIAGO, M.C.P.A.; GOUVÊA, A.C.M.S.; GODOY, R.L.O.; OIANO-NETO, J.; PACHECO, S; ROSA, J.S. Adaptação de um método por cromatografia líquida de alta eficiência para análise de antocianinas em suco de açaí (Euterpe oleraceae Mart.). Comunicado Técnico Embrapa, n. 162, 2010. SANTOS, A.R.; BARROS, M.P.; SANTIN, S.M.O.; SARRAGIOTTO, M.H.; SOUZA, M.C.; EBERLIN, M.N.; MEURER, E.C. Constituintes Polares das Folhas de Machaonia brasiliensis (Rubiaceae). Quimica Nova, v. 27, n. 4, p. 525-527, 2004 SANTOS-BUELGA, C.; GONZÁLEZ-PARAMÁS, A.M. Anthocyanins. Reference Module in Food Science, 2018. SHAHZAD, N.; KHAN, W.; MD, S.; ALI, A.; SALUJA, S.S.; SHARMA, S.; AL-ALLAF, F.A. ABDULJALEEL, Z.; IBRAHIM, I.A.A.; ABDEL-WAHAB, A.F.; AFIFY, M.A.; AL-GHAMDI, S.S. Phytosterols as a natural anticancer agent: Current status and future perspective. Biomedicine & Pharmacotherapy, v. 88, p. 786-794, 2017. SHAO-QIAN, C.; SI-YI, P.; XIAO-LIN, Y.; HONG-FEI, F. Isolation and Purification of Anthocyanins from Blood Oranges by Column Chromatography. Agricultural Sciences in China, v. 9, n. 2, p. 207-215, 2010. SIGURDSON, G.T., ROBBINS, R.J., COLLINS, T.M., GIUSTI, M.M. Molar Absorptivities (ε) and Spectral and Colorimetric Characteristics of Purple Sweet Potato Anthocyanins. Food Chemistry, v. 271, n. 15, p. 497-504, 2019. SILVERSTEIN, R. M.; WEBSTER, F. X.; Identificação Espectrométrica de Compostos Orgânicos, 6ª edição, Editora LTC: Rio de Janeiro, 2000. SOLIS, P. N.; LANG’AT, C.; GUPTA, M. P.; KIRBY, G. C.; WARHURST, D. C.; PHILLIPSON, J. D. Compostos Bioativos de Psychotria camponutans. Planta Medica, v. 61, p. 62, 1995. SONAWANE, P.D., POLLIER, J.; PANDA, S.; SZYMANSKI, J.; MASSALHA, H.; YONA, M.; UNGER, T.; MALITSKY, S.; ARENDT, P.; PAUWELS, L.; ALMEKIAS-SIEGL, E.; ROGACHEV, I.; MEIR, S.; CÁRDENAS, P.D.; MASRI, A.; PETRIKOV, M.; SCHALLER, 160 H.; SCHAFFER, A.A.; KAMBLE, A.; GIRI, A.P.; GOOSSENS, A.; AHARONI, A. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolismo. Nature Plants, v. 3, n. 16205, p. 1-13, 2016. SOUZA, M.C. Myrtaceae Juss. da Restinga da Marambaia, RJ – Brasil. 2005. 152 f. Dissertação (Mestrado em Botânica) - Instituto de Pesquisas Jardim Botânico do Rio de Janeiro/Escola Nacional de Botânica Tropical SOUZA, M. C.; AMORIM, M. P. Subtribos Eugeniinae O. Berg e Myrtinae O. Berg (Myrtaceae) na Restinga da Marambaia, RJ, Brasil. Acta bot. bras. v.22, n.3, p.652-683, 2008. STILL, W.C.; KAHN, M.; MITRA, A. Rapid chromatographic technique for preparative separations with moderate resolution, Journal of Organic Chemistry, v. 43, p. 2923-2925, 1978. STRINGHAM, J.M.; STRINGHAM, N.T. Serum and retinal responses to three different doses of macular carotenoids over 12 weeks of supplementation. Experimental Eye Research, v. 151, p.1-8, 2016. SUN, Z.; ZHAO, L., ZUO, L.; QI, C.; ZHAO, P., HOU, X. UHPLC–MS/MS method for simultaneous determination of six flavonoids, gallic acid and 5,8-dihydroxy-1,4-naphthoquinone in rat plasma and its application to a pharmacokinetic study of Cortex Juglandis Mandshuricae extract. Journal of Chromatography B, v. 958 p. 55–62, 2014. SWERA, T.L.; MUKHIM, C.; BASHIR, K.; CHAUHAN, K. Optimization of enzyme aided extraction of anthocyanins from Prunus nepalensis L. LWT - Food Science and Technology, v. 91, p. 382-390, 2018. TANG, G.; HUANG, Y.; ZHANG, T.; WANG, Q.; CROMMEN, J.; FILLET, M.; JIANG, Z. Determination of phenolic acids in extra virgin olive oil using supercritical fluid chromatography coupled with single quadrupole mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, v. 157, p. 217-255, 2018. TERAO, J.; PISKULA, M. K. Flavonoids and membrane lipid peroxidation inhibition. Nutrition, v.15, p.790- 791, 1999. TROUILLAS, P.; SANCHO-GARCÍA, J.C.; FREITAS, V.; GIERSCHNER, J.; OTYEPKA, M.; DANGLES, O. Stabilizing and Modulating Color by Copigmentation: Insights from Theory and Experiment. Chemical Reviews, v. 116, p. 4937−4982, 2016. TUCAKOVICA, L.; COLSON, N.; SANTHAKUMAR, A.B.; KUNDUR, A.R.; SHUTTLEWORTHA, M.; SINGH, I. The effects of anthocyanins on body weight and expression of adipocyte’s hormones: Leptin and adiponectin. Journal of Functional Foods, v. 45, p 173–180, 2018. 161 UCKOO, R. M.; JAYAPRAKASHA, G. K.; PATIL, B. S. Rapid separation method of polymethoxyflavones from citrus using flash chromatography. Separation and Purification Technology, v. 81, p. 151-158, 2011. VALENTE, A. L. P.; COLLINS, C. H.; MANFREDI, J. E. Conceitos básicos de cromatografia líquida de alta eficiência. Química Nova. p. 103-109, junho, 1983. VAN DEEMTER, J. J.; ZUIDERWEG, F. J.; KLINKENBERG, A. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chemical Egineering Science, v. 5, p. 271-289, 1956. VEROTTA, L.; PILATI, T.; TATO, M.; ELISABETSKY, E.; AMADOR, T. A.; NUNE, D. S. Pyrrolidinoindoline Alkaloids from Psychotria colorata. Journal of Natural Products, v. 61, p. 392-396, 1998. VIEGAS, C.; BOLZANI, V. S.; BARREIRO, E. J. Os produtos naturais e a química medicinal moderna. Química Nova, v. 29, n. 2, p. 326-337, 2006. WALD, J.P.; NOHR, D.; BIESALSKI, H.K. Rapid and easy carotenoid quantification in Ghanaian starchy staples using RP-HPLC-PDA. Journal of Food Composition and Analysis, v. 67, p. 119–127, 2018. WANG, E.; YIN, Y.; XU, C.; LIU, J. Isolation of high-purity anthocyanin mixtures and monomers from blueberries using combined chromatographic techniques. Journal of Chromatography A, v. 1327, p. 39-48, 2014. WANGA, Y.; LUANA, G.; ZHOUA, W.; MENGA, J.; WANGA, H.; HUA, N.; SUO, Y. Subcritical water extraction, UPLC-Triple-TOF/MS analysis and antioxidante activity of anthocyanins from Lycium ruthenicum Murr. Food Chemistry, v. 249, p. 119-126, 2018. WATERS. Waters Synapt Mass Spectrometry System Operator’s Guide. 2008. WILSON, P.G.; O’BRIEN, M.M.; GADEK, P.A. & QUINN, C.J. Myrtaceae revisited: a reassessmente of infrafamilial groups. American Journal of Botany. v.88, p.2013-2025, 2001. WOLLENWEBER, E.; DIETZ, V. H. Occurrence and distribution of free flavonoid aglycones in plants. Phytochemistty, v. 20, n. 5, p. 869-9321, 1981. WU, S-B.; DASTMALCHI, K.; LONG, C.; KENNELLY, E.J. Metabolite Profiling of Jaboticaba (Myrciaria cauliflora) and Other Dark-Colored Fruit Juices. Journal of Agricultural and Food Chemistry, v. 60, p. 7513−7525, 2012. WUBSHET, S. G.; MORESCO, H. H.; TAHTAH, Y.; BRIGHENTE, I. M. C.; STAERK, D. High-resolution bioactivity profiling combined with HPLC–HRMS–SPE–NMR: a- 162 Glucosidase inhibitors and acetylated ellagic acid rhamnosides from Myrcia palustris DC. (Myrtaceae). Phytochemistry, v. 116, p. 246-252, 2015. XIE, Q.; WEI, Y.; ZHANG, G. Separation of flavonol glycosides from Flaveria bidentis (L.) Kuntze by high-speed counter-current chromatography. Separation and Purification Technology, v. 72, p. 229-233, 2010. XIE, L.; SU, H.; SUN, C.; ZHENG, X.; CHEN, W. Recent advances in understanding the anti-obesity activity of anthocyanins and their biosynthesis in microorganisms. Trends in Food Science & Technology, v. 72, p. 13-24, 2018. XING, L-Z.; NI, H-J. WANG, Y-L. Quercitrin attenuates osteoporosis in ovariectomized rats by regulating mitogen-activated protein kinase (MAPK) signaling pathways. Biomedicine & Pharmacotherapy, v. 89, p. 1136–1141, 2017. YÁÑEZ, J. A.; REMSBERG, C. M.; TAKEMOTO, J. K.; VEGA-VILLA, K. R.; ANDREWS, P. K.; SAYRE, C. L.; MARTINEZ, S. E.; DAVIES, N. M. Polyphenols and flavonoids: an overview. In: I. John Wiley & Sons (Ed.). Flavonoid Pharmacokinetics: Methods of Analysis, Preclinical and Clinical Pharmacokinetics, Safety, and Toxicology, 2013. YE, H.-C.; ZHENG, X.-H.; WANG, Y.-M.; PENG, G.-T.; SU, X.-J.; LEI, L.-F.; ZHANG, C.-X. Acta Sci. Nat. Univ. Sunyatseni, v. 53, p. 93, 2014 apud. YIN, Y.; LI, W.; SON, Y-O.; SUN, L.; LU, J.; KIM, D.; WANG, X.; YAO, H.; WANG, L.; PRATHEESHKUMAR, P.; HITRON, A.J.; LUO, J.; GAO, N.; SHI, X.; ZHANG, Z. Quercitrin protects skin from UVB-induced oxidative damage. Toxicology and Applied Pharmacology, v. 269, p. 89–99, 2013. YING, L.; JIA-YING, L.; JING, L.; MI-LU, L.; ZHONG-HUA, L. Preparative Separation of Anthocyanins from Purple Sweet Potatoes by High-Speed Counter-Current Chromatography. Chinese Journal of Analytical Chemistry, v. 39, n. 6, p. 851–856, 2011. YOCHUM, L.; KUSHI, L. H.; MEYER, K.; FOLSOM, A. R. Dietary flavonoid intake and risk of cardiovascular disease in postmenopausal women. American Journal Epidemiology, v.149, p.943-949, 1999. YOSHIDA, K.; KONDO, T.; KAMEDA, K.; KAWAKISHI, S.; LUBAG, A.J.; MENDOZA, E.M.T.; GOTO, T. Strutures of alatanin A, B and C isolated fro edible pruple yam Dioscorea alata. Tetrahedron Lettters, v. 32, n. 40, p. 5575-5578, 1991. YOSHIKAWA, M. et al. Antidiabetic principles of natural medicines. II. Aldose reductase and alpha-glucosidase inhibitors from Brazilian natural medicine, the leaves of Myrcia multiflora DC. (Myrtaceae): structures of myrciacitrins I and II and myrciaphenones A and B. Chemical & Pharmaceutical Bulletin, v. 46, n. 1, p. 113-119, 1998. 163 YOKOMIZO, A. & MORIWAKI, M. Myricitrin degraded by simulated digestion inhibits oxidation of human low-density lipoprotein. Biosci Biotechnol. Biochem. 69: 693-699, 2005. ZAPPI, D.C.; FILARDI, F.L.R.; LEITMAN, P.; SOUZA, V.C.; WALTER, B.M.T.; PIRANI, J.R.; MORIM, M.P.; QUEIROZ, L.P., CAVALCANTI, T.B.; MANSANO, V.F.; FORZZA, R.C. Growing knowledge: an overview of Seed Plant diversity in Brazil. Rodriguésia, v. 66, n. 4, p. 1085-1113, 2015. ZENEBON, O.; PASCUET, N. S.; TIGLEA, P. Métodos físico-químicos para análise de alimentos; São Paulo: Instituto Adolfo Lutz, 2008. Cap. 12. 1º edição digital, p. 489- 501. ZHANG, G.; CHEN, S.; ZHOU, W.; MENG, J.; DENG, K.; ZHOU, H.; HU, N.; SUO, Y. Rapid qualitative and quantitative analyses of eighteen phenolic compounds from Lycium ruthenicum Murray by UPLC-Q-Orbitrap MS and their antioxidant activity. Food Chemistry, v. 269, p. 150-156, 2018. ZHANG, C.-X.; PENG, G.-T.; HE, X.-X.; LIN, C.-Z.; XIONG, T.-Q.; DENG, J.-W.; ZHAO, Z.-X.; ZHU, C.-C. Acta Sci. Nat. Univ. Sunyatseni, v. 49, p. 147, 2010. ZHAO, C-L.; YU, Y-Q.; CHEN, Z-J.; WEN, G-S.; WEI, F-G.; ZHENG, Q.; WANG, C-D.; XIAO, X-L. Stability-increasing effects of anthocyanin glycosyl acylation. Food Chemistry, v. 214, p. 119-128, 2017. ZHOUA, L.; WANGA, H.; YIB, J.; YANGD, B.; LIA, M.; HEA, D.; YANGD, W.; ZHANGA, Y.; NI, H. Anti-tumor properties of anthocyanins from Lonicera caerulea ‘Beilei’ fruit on human hepatocellular carcinoma: In vitro and in vivo study. Biomedicine & Pharmacotherapy, v. 104, p. 520–529, 2018. ZOUA, H.; MAC, Y.; XU, Z.; LIAO, X.; CHEN, A.; YANG, S. Isolation of strawberry anthocyanins using high-speed counter-current chromatography and the copigmentation with catechin or epicatechin by high pressure processing. Food Chemistry, v. 247, p. 81–88, 2018.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/65116/2018%20-%20Carolina%20Passos%20Cunha.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4651
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2021-05-18T02:35:12Z No. of bitstreams: 1 2018 - Carolina Passos Cunha.pdf: 5653887 bytes, checksum: 29785e155882c8679d2a750d4fc66985 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-05-18T02:35:12Z (GMT). No. of bitstreams: 1 2018 - Carolina Passos Cunha.pdf: 5653887 bytes, checksum: 29785e155882c8679d2a750d4fc66985 (MD5) Previous issue date: 2018-12-17eng
Appears in Collections:Doutorado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2018 - Carolina Passos Cunha.pdf2018 - Carolina Passos Cunha5.52 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.