Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10232
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBarbosa, Thaís da Silva
dc.date.accessioned2023-12-21T18:59:14Z-
dc.date.available2023-12-21T18:59:14Z-
dc.date.issued2017-03-06
dc.identifier.citationBARBOSA, Thaís da Silva. Estudo em câmaras de reação do comportamento atmosférico de Z-3-hexeno e Z-3-exen-1-ol.. 2017. 161 f. Tese (Doutorado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, 2017.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10232-
dc.description.abstractCompostos orgânicos voláteis de origem biogênica ou antrópica desempenham importante papel na atmosfera. Neste trabalho as reações dos compostos orgânicos voláteis, Z-3-hexeno e Z-3-hexen-1-ol, com radicais hidroxila, ozônio e átomos de cloro foram estudadas. Com o auxílio de câmaras de reação, de pequeno volume (80 e 200 L), a cinética das reações do Z-3-hexeno com átomos de cloro e radicais hidroxila foi estudada, a 298 K, e seus coeficientes de velocidade determinados, apresentando valores iguais a (4,13 ±0,51)×10-10 e (6,27±0,66)×10-11 cm3 molécula-1 s-1, respectivamente. Além dos dados experimentais, coeficientes de velocidade para a reação do Z-3-hexeno com radicais hidroxila foram calculados utilizando a Teoria do Funcional de Densidade, acoplada à Teoria do Estado de Transição Variacional Microcanônica. O perfil cinético observado não apresentou o comportamento previsto pela equação de Arrhenius, mostrando a diminuição dos coeficientes de velocidade com o aumento da temperatura, no intervalo entre 200 – 500 K. O coeficiente de velocidade calculado, a 298 K, mostrou valor igual a 8,10×10-11 cm3 molécula-1 s-1, em bom acordo com o valor obtido experimentalmente. Através de câmaras de reação, de grande volume (10.000 e 274.000 L), a formação de aerossol orgânico secundário a partir da reação do Z-3-hexen-1-ol com radicais hidroxila e ozônio foi estudada. Filtros foram coletados e a caracterização de organosulfatos foi feita utilizando cromatografia líquida de ultra performance acoplada a um espectrômetro de massas. A partir da caracterização do aerossol produzido, observou-se a formação de sete organosulfatos. Os sete organosulfatos identificados nos experimentos em câmaras de reação, também foram identificados em atmosfera aberta, após análise do material particulado coletado com um amostrador PM2.5 de grande volume, no Jardim Botânico do Rio de Janeiro. Com isso, pode-se inferir que o Z-3-hexen-1-ol é um composto orgânico volátil que possui relevância como fonte de organosulfatos.por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectCompostos orgânicos voláteispor
dc.subjectCoeficientes de velocidadepor
dc.subjectAerossol orgânico secundáriopor
dc.subjectVolatile Organic Compounds. .eng
dc.subjectRate coefficientseng
dc.subjectSecondary organic aerosoleng
dc.titleEstudo em câmaras de reação do comportamento atmosférico de Z-3-hexeno e Z-3-exen-1-ol.por
dc.title.alternative...por
dc.typeTesepor
dc.description.abstractOtherVolatile Organic Compounds are emitted from biogenic and anthropogenic sources and develop an important function in the atmosphere. In this work, the reactions of the volatile organic compounds, Z-3-hexene and Z-3-hexen-1-ol with hydroxyl (OH) radicals, ozone and Cl atoms were studied. Using Teflon bags of 80 and 200 L, the reactions of Z-3-hexene with Cl atoms and OH radicals were studied, at 298K, and their rate coefficients were measured by the relative rate method, the mean second-order rate coefficients values found were (4.13 ± 0.51) × 10-10 and (6.27 ± 0.66) × 10-11 cm3 molecule-1 s-1. The kinetics of the Z-3-hexene + OH reaction was also investigated at the Density Functional Theory (DFT) level. Rate constants were evaluated using microcanonical variational transition state method, leading to a global rate coefficient, at 298 K, of 8.10 × 10-11 cm3 molecule-1 s-1, in agreement with the experimental value. A non-Arrhenius profile was observed for the rate coefficients, the calculated rate coefficients decreases as the temperature increases in the range 200-500 K. Using high volume smog chambers (10.000 and 274.000 L), secondary organic aerosol (SOA) formation from the photooxidation and ozonolysis of Z-3-hexen-1-ol was studied. Filters were collected and the characterization of OS (organosulfates) was performed using ultra performance liquid chromatography interfaced with a high-resolution quadrupole time-of-light mass spectrometer equipped with an electrospray ionization source. Chemical characterization of Z-hexen-1-ol derived SOA reveals seven OS produced in chamber experiments and all of them were also identified in samples collected at Rio de Janeiro, Brazil. This study provides direct evidence that the atmospheric oxidation of Z-hexen-1-ol yields biogenic SOA through the formation of polar OS.eng
dc.contributor.advisor1Bauerfeldt, Glauco Favilla
dc.contributor.advisor1ID069.023.487-23por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1876040291299143por
dc.contributor.advisor-co1Klachquin, Graciela Arbilla de
dc.contributor.advisor-co1ID024.957.217-61por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/7712800981237085por
dc.contributor.referee1Bauerfeldt, Glauco Favilla
dc.contributor.referee2Klacquin, Graciela Arbilla de
dc.contributor.referee3Silva, Clarissa Oliveira da
dc.contributor.referee4Pereira, Marcio Soares
dc.contributor.referee5Correa, Sergio Machado
dc.creator.ID121.517.637-65por
dc.creator.Latteshttp://lattes.cnpq.br/4487175022794121por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesAREY, J.; WINER, A. M.; ATKINSON, R.; ASCHMANN, S. M.; LONG, W.D.; LYNN M., C. The emission of (Z)-3-hexen-1-ol, (Z)-3-hexenylacetate and other oxygenated hydrocarbons from agricultural plant species. Atmos. Environ. Part A, General Topics, 25, 1063-1075, 1991. ALERTA RIO (2016). Disponível em: < http://www.alertario.rio.rj.gov.br/>. Accesso em 15 Set. 2016. ALVES, C. Aerossóis atmosféricos: perspectiva histórica, fontes, processos químicos de formação e composição orgânica. Quím. Nova, 28, 859-870, 2005. ASCHMANN, S. M.; ATKINSON, R. Rate constants for the gas-phase reactions of OH radicals with E-7-tetradecene, 2-methyl-1-tridecene and the C(7)-C(14) 1-alkenes at 295 +/- 1 K. Phys. Chem. Chem. Phys., 10, 4159-4164, 2008. ASCHMANN, S. M.; ATKINSON, R. Rate constants for the gas-phase reactions of alkanes with Cl atoms at 296 ± 2 K. Int. J.Chem. Kinet., 27, 613 – 622, 1995. ATKINSON, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ., 34, 2063-2101, 2000. ATKINSON, R.; ASCHMANN, S.M. Kinetics of the gas phase reaction of Cl atoms with a series of organics at 296 ± 2 K and atmospheric pressure. Int. J. Chem. Kinet., 17, 33 – 41,1985. ATKINSON, R.; ASCHMANN, S. M ; CARTER, W. P. L. Effects of ring strain on gas-phase rate constants. 2. OH radical reactions with cycloalkenes. Int. J. Chem. Kinet., 1983, 15, 1161-1177. ATKINSON, R. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions. Chem. Rev., 86, 69-201, 1986. 146 ATKINSON, R. Kinetics of the gas-phase reactions of OH radicals with alkanes and Cycloalkanes. Atmos. Chem. Phys., 3, 2233–2307, 2003. ATKINSON, R.; AREY, J.; ASCHMANN, S. M.; CORCHNOY, S. B.; SHU, Y. Rate constants for the gas phase reactions of cis-3-hexen-1-ol, cis-3-hexenylacetate, trans-2-hexenal, and linalool with OH and NO3 radicals and O3, at 296± 2K, and OH radicals yields from the O3 reactions. Int. J. Chem. Kinet., 27, 941-955, 1995. ATKINSON, R. Gas-Phase Tropospheric Chemistry of Volatile Organic Compounds: 1. Alkanes and Alkenes. J. Phys. Chem., 26, 215, 1997. ATKINSON, R.; ASCHMANN, S. M. Kinetics of the gas phase reaction of Cl atoms with a series of organics at 296 ± 2 K and atmospheric pressure. Int. J. Chem. Kinet., 17, 33 – 41,1985. ATKINSON, R.; ASCHMANN, S. M. Rate constants for the reaction of OH radicals with a series of alkenes and dialkenes at 295 ± 1 K. Int. J. Chem. Kinet., 16, 1175-1186, 1984. ATKINSON, R.; ASCHMANN, S.M.; FITZ, D.R.; WINER, A.M.; PITTS, J.N., Jr. Rate constants for the gas-phase reactions of O3 with selected organics at 296K. Int. J. Chem. Kinet., 14, 13-18, 1982. ATKINSON, R.; ASCHMANN, S.M.; PITTS, J.N., Jr. Rate constants for the gas-phase reactions of the nitrate radical with a series of organic compounds at 296 .+-. 2 K. J. Phys. Chem., 92, 3454-3457, 1988. ATKINSON, R.; BAULCH D, L.; COX, R. A.; HAMPSON, JR., R. F.; KERR, J. A.; TROE, J. Evaluated kinetic and photochemical data for atmospheric chemistry: supplement III. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. J. Phys. Chem. Ref. Data, 18, 881–1097, 1989. ATKINSON, R.; BAULCH, D. L.; COX R. A.; HAMPSON JR., R. F.; KERR, J. A.; ROSSI, M. J.; TROE J. Evaluated Kinetic, Photochemical and Heterogeneous Data for Atmospheric Chemistry: Supplement V. IUPAC Subcommittee on Gas Kinetic Data Evaluation for 147 Atmospheric Chemistry. J. Phys. Chem. Ref. Data, 26, 521–1011, 1997. ATTYGALLE, A.B.; GARCIA-RUBIO, S.; TA, J.; MEINWALD, J. Collisionally-induced dissociation mass spectra of organic sulfate anions. J. Chem. Soc., Perkin Trans., 2, 498-506, 2001. BABOUL, A. G.; SCHLEGEL, H. B. Improved Method for Calculating Projected Frequencies along a Reaction Path. J. Chem. Phys., 107, 9413-9417, 1997. BAER, T.; HASE, W. L. Unimolecular Reaction Dynamics: Theory and Experiments, Oxford University Press, Inc: New York, 1996. BAHREINI, R.; KEYWOOD, M. D.; NG, N. L.; VARUTBANGKUL, V.; GAO, S.; FLAGAN, R. C.; SEINFELD, J. H. Measurements of secondary organic aerosol (SOA) from oxidation of cycloalkenes, terpenes, and m-xylene using an Aerodyne aerosol mass spectrometer. Environ. Sci. Technol., 39, 5674-5688, 2005. BANTHORPE, D.V. .pi. Complexes as reaction intermediates. Chem. Rev., 70, 295-322, 1970. BARBOSA, T. S.; NIETO, J. D.; COMETTO, P. M.; LANE, S. I.; BAUERFELDT, G. F.; ARBILLA, G. Rate coefficients for the reaction of OH radicals with cis-3-hexene: an experimental and theoretical study. Phys. Chem. Chem. Phys., 17, 8714-8722, 2015. BARNES, I; RUDZINKI, K. Environmental Simulation Chambers: Application to Atmospheric Chemical Processes. Publisher: Springer, Editors, 2006. BIDLEMAN, T.F. Atmospheric processes. Environ. Sci. Technol., 22, 361-367, 1988. BRAÑA, P; SORDO, J.A. Theoretical approach to the mechanism of reactions between halogen atoms and unsaturated hydrocarbons: the Cl + propene reaction. J. Comput. Chem., 24, 2044-2062, 2003. CALVERT, J. G.; ATKINSON, R.; KERR, J. A.; MADRONICH, S.; MOORTGAT, G. K.; WALLINGTON, T. J.; YARWOOD, G. The Mechanisms of Atmospheric Oxidation of the 148 Alkenes. Oxford University Press, Inc., New York, 2000. CHAN, M.N.; SURRATT, J.D.; CHAN, A.W.H.; SCHILLING, K.; OFFENBERG, J.H.; LEWANDOWSKI, M.; EDNEY, E.O.; KLEINDIENST, T.E.; JAOUI, M.; EDGERTON, E.S.; TANNER, R.L.; SHAW, S.L.; ZHENG, M.; KNIPPING, E.M.; SEINFELD, J.H. Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene. Atmos. Chem. Phys., 11, 1735-1751, 2011. CHU, G.; CHEN, J.; SHUI, M.; XIN, J.; LIU, F.; SHENG,L.; XU,T.; CAO,L.; GU,Y. Investigation on addition and abstraction channels in Cl reactions with 1-butene and isobutene. Int. J. Mass spectrom., 375, 1-8, 2015. COMETTO, P.M.; DALMASSO, P.R.; TACCONE, R.A.; LANE, S.I.; OUSSAR, F.; DAELE, V.; MELLOUKI, A.; BRAS, G.L. J. Rate Coefficients for the Reaction of OH with a Series of Unsaturated Alcohols between 263 and 371 K. Phys Chem A, 112, 4444-4450, 2008. CRAMER, C. J. Essentials of Computational Chemistry Theories and Models. Hoboken: 2nd ed., John Wiley and Sons, 2004. CROUNSE, J. D.; PAULOT, F.; KJAERGAARD, H. G.; WENNBERG, P. O. Peroxy radical isomerization in the oxidation of isoprene. Phys. Chem. Chem. Phys., 13, 13607–13613, 2011. CVETANOVIC, R.J. Electrophilic character of oxygen atoms. Can. J. Chem., 38, 1678-1687, 1960. DAVIS, M. E.; BURKHOLDER, J. B. Rate coefficients for the gas-phase reaction of OH with (Z)-3-hexen-1-ol, 1-penten-3-ol, (E)-2-penten-1-ol, and (E)-2-hexen-1-ol between 243 and 404 K. Atmos. Chem. Phys., 11, 3447-3358, 2011. DONALD, L. F.; JOSEPH, E. S.; MICHAEL, R. K.; PARKER, C. R.; WILLIAM, E. W. Design and Operating Parameters for a Large Ambient Aerosol Chamber. J. Air Pollut. Control Assoc. 25, 1049-1053, 1975. DUNNING JR, T.H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys., 90, 1007, 1989. 149 ESTILLORE, A.D.; VISGER, L.M.; SUITS, A.G. Imaging the dynamics of chlorine atom reactions with alkenes. J. Chem. Phys., 133, 74306, 2010. EZELL, M. J.; WANG, W.; EZELL, A. A.; SOSKIN G.; FINLAYSON-PITTS, B. J. Kinetics of reactions of chlorine atoms with a series of alkenes at 1 Atm and 298 K: Structure and reactivity. Phys. Chem. Chem. Phys., 4, 5813-5820, 2002. FINIZIO, A.; VIGHI, M.; SANDONI, D. Determination of n-octanol/water partition coefficient (Kow) of pesticide critical review and comparison of methods. Chemosphere, 34, 131-161, 1997. FINLAYSON-PITTS, B. J.; PITTS, Jr., J. N. Chemistry of the Upper and Lower Atmosphere. Academic Press, San Diego, California, 2000. FORST, W. Theory of Unimolecular Reactions. New York: Academic Press, 1973. FRANCISCO-MÁRQUEZ, M.; ALVAREZ-IDABOY, J. R.; GALANO, A.; VIVIER-BUNGE, A. Theoretical study of the initial reaction between OH and isoprene in tropospheric conditions. Phys.Chem.Chem.Phys., 5, 1392-1399, 2003. FREITAS, S. R.; NEVES, C. L.; CHERNICHARO, P. Tijuca National Park: two Pioneering restorationist initiatives in Atlantic Forest in Southeastern Brazil. Braz. J. Biol., 66, 975-982, 2006. FRISCH, M. J.; TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E.; ROBB, M. A.; CHEESEMAN, J. R.; SCALMANI, G.; BARONE, V.; MENNUCCI, B.; PETERSSON, G. A.; NAKATSUJI, H.; CARICATO, M.; LI, X.; HRATCHIAN, H. P.; IZMAYLOV, A. F.; BLOINO, J.; ZHENG, G.; SONNENBERG, J. L.; HADA, M.; EHARA, M.; TOYOTA, K.; FUKUDA, R.; HASEGAWA, J.; ISHIDA, M.; NAKAJIMA, T.; HONDA, Y.; KITAO, O.; NAKAI, H.; VREVEN, T.; MONTGOMERY JR, J. A.; PERALTA, J.E.; OGLIARO, F.; BEARPARK, M.; HEYD, J. J.; BROTHERS, E.; KUDIN, K. N.; STAROVEROV, V. N.; KOBAYASHI, R.; NORMAND, J.; RAGHAVACHARI, K.; RENDELL, A.; BURANT, J. C.; IYENGAR, S. S.; TOMASI, J.; COSSI, M.; REGA, N.; MILLAM, J. M.; KLENE, M.; KNOX, J. E.; CROSS, J. B.; BAKKEN, V.; ADAMO, C.; JARAMILLO, J.; GOMPERTS, R.; STRATMANN, R.E.; YAZYEV, O.; AUSTIN, A. J.; CAMMI, R.; POMELLI, C.; 150 OCHTERSKI, J. W.; MARTIN, R. L.; MOROKUMA, K.; ZAKRZEWSKI, V. G.; VOTH, G. A.; SALVADOR, P.; DANNENBERG, J. J.; DAPPRICH, S.; DANIELS, A.D.; FARKAS, Ö.; FORESMAN, J. B.; ORTIZ, J. V.; CIOSLOWSKI, J.; FOX, D. J. GAUSSIAN, INC,, WALLINGFORD CT, Gaussian 09, Revision A,02, 2009. FUKUI, K. A. Formulation of the reaction coordinate. J. Phys. Chem., 74, 4161-4163, 1970. GIBILISCO, R.G.; SANTIAGO, A.N.; TERUEL, M.A. OH-initiated degradation of a series of hexenols in the troposphere. Rate coefficients at 298 K and 1 atm. Atmos. Environ, 77, 358-364, 2013. GILBERT, R. G.; SMITH, S.C. Theory of Unimolecular and Recombination Reactions. Oxford: Blackwell Scientific Publications, 1990. GÓMEZ-GONZÁLEZ, Y.; SURRATT, J. D.; CUYCKENS, F.; SZMIGIELSKI, R.; VERMEYLEN, R.; JAOUI, M.; LEWANDOWSKI, M.; OFFENBERG J. H.; KLEINDIENST, T. E.; EDNEY, E. O.; BLOCKHUYS, F.; VAN ALSENOY, C.; MAENHAUT, W.; CLAEYS, M. Characterization of organosulfates from the photooxidation of isoprene and unsaturated fatty acids in ambient aerosol using liquid chromatography/(−) electrospray ionization mass spectrometry. J. Mass Spectrom., 43, 371- 382, 2008. GONZALEZ, C.; SCHLEGEL, H. B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem., 94, 5523-5527, 1990. GROSJEAN, D. ; WILLIAMS, E.L; GROSJEAN, E.; A Biogenic precursor of peroxypropionyl nitrate: Atmospheric Oxidation of cis-3-hexen-1-ol. Environ. Sci. Technol., 27, 979-981, 1993a. GROSJEAN, D.; GROSJEAN, E.; WILLIAMS, E.L. Rate constants for the gas-phase reactions of ozone with unsaturated alcools, esters, and carbonyls. Int. J. Chem. Kinet., 25, 783-794, 1993b. GROSJEAN, D.; WILLIAMS, E.L., II. Environmental persistence of organic compounds estimated from structure-reactivity and linear free-energy relationships. Unsaturated aliphatics. Atmos. Environ. Part A, 26, 1395-1405, 1992. 151 GUENTHER, A.; GERON, C.; PIERCE, T.; LAMB, B.; HARLEY, P.; FALL, R. Natural emissions of non-metane volatile organic compounds, carbón monoxide, and oxides of nitrogen from North America. Atmos. Environ, 34, 2205-2230, 2000. GUENTHER, A.; HEWITT, C. N.; ERICKSON, D.; FALL, R.; GERON, C.; GRAEDEL, T.; HARLEY, P.; KLINGER, L.; LERDAU, M.; MCKAY, W. A.; PIERCE, T.; SCHOLES, B.; STEINBRECHER, R.; TALLAMRAJU, R.; TAYLOR, J.; ZIMMERMAN, P. A global model of natural volatile organic compound emissions. J. Geophys. Res., 100, 8873-8892, 1995. HAMILTON, J. F.; LEWIS, A. C.; CAREY, T. J.; WENGER, J. C.; BORRÁS I GARCIA, E.; MUÑOZ, A. Reactive oxidation products promote secondary organic aerosol formation from green leaf volatiles. Atmos. Chem. Phys., 9, 3815-3823, 2009. HANSEN, A. M. K.; KRISTENSEN, K.; NGUYEN, Q. T., ZARE, A.; COZZI, F.; NØJGAARD, J. K.; SKOV, H.; BRANDT, J.; CHRISTENSEN, J. H.; STRÖM, J.; TUNVED, P.; KREJCI, R.; GLASIUS, M. Organosulfates and organic acids in Arctic aerosols: speciation, annual variation and concentration levels. Atmos. Chem. Phys., 14, 7807-7823, 2014. HARVEY, R. M.; ZAHARDIS, J.; PETRUCCI, G. A. Establishing the contribution of lawn mowing to atmospheric aerosol levels in American suburbs. Atmos. Chem. Phys., 14, 797–812, 2014. HEATH, J. S.; KOBLIS, K. ; SAGER, S. L. Review of chemical, physical, and toxicological properties of components of TPH. J. Soil Contam., 2, 1-25, 1993. HESTER, R. E.; HARRISON, R. Volatile organic compounds in the atmosphere. The Royal Society of Chemistry: London, 1995. HOHENBERG, P.; KOHN, W. Inhomogeneous Electron Gas. Phys. Rev. B, 136, 864, 1964. HOOSHIYAR, P. A.; NIKI, H. Rate constants for the gas-phase reactions of Cl-atoms with C2[BOND]C8 alkanes at T = 296 ± 2 K. Int. J. Chem. Kinet., 27, 1197 – 1206, 1995. IBGE (2016). Disponível em: http://cidades.ibge.gov.br/xtras/perfil.php?codmun=330455. 152 Accesso em: 21 Set. 2016. IINUMA, Y.; BÖGE, O.; KAHNT, A.; HERRMANN, H. Laboratory chamber studies on the formation of organosulfates from reactive uptake of monoterpene oxides. Phys. Chem. Chem. Phys., 11, 7985–7997, 2009. IINUMA, Y.; MÜLLER, C.; BERNDT, T.; BÖGE, O.; CLAEYS, M.; HERRMANN, H. Evidence for the existence of organosulfates from β-pinene ozonolysis in ambient secondary organic aerosol. Environ. Sci. Technol., 41, 6678−6683, 2007. JAIN, S.; ZAHARDIS, J.; PETRUCCI, G. A. Soft ionization chemical analysis of secondary organic aerosol from green leaf volatiles emitted by turf grass. Environ. Sci. Technol., 48, 4835-4843, 2014. JIMENEZ, E.; LANZA, B.; ANTIÑOLO, M.; ALBALADEJO, J. Photooxidation of leaf-wound oxygenated compounds, 1-penten-3-ol, (Z)-3-hexen-1-ol, and 1-penten-3-one, initiated by OH radicals and sunlight. Environ. Sci. Technol., 43, 1831-1837, 2009. KAISER, E.W.; DONAHUE, C.J.; PALA, I.R.; WALLINGTON, T.J.; HURLEY, M.D. Kinetics, products, and stereochemistry of the reaction of chlorine atoms with cis- and trans-2-butene in 10-700 Torr of N2 or N2/O2 diluent at 297 K.J. Phys. Chem. A, 111, 1286-1299, 2007. KOHN, W.; SHAM, L. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev., 140, A1133, 1965. Ku, H. H. Notes on the use of propagation of error formulas. J. Res. Nat. Stand., 70C, 263-273, 1996. KUANG, B.Y.; LIN, P.; HUB, M.; YU, J. Z. Aerosol size distribution characteristics of organosulfates in the Pearl River Delta region, China. Atmos. Environ., 130, 23-35, 2016. KWOK, E. S. C.; ATKINSON, R. Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: an update. Atmos. Environ., 29, 1685–1695, 1995. 153 LEE, S.; JANG, M.; KAMENS R. SOA Formation from the Photooxidation of α-Pinene in the Presence of Freshly Emitted Diesel Soot Exhaust. Atmos. Environ., 38, 2579-2605, 2004. LELIEVELD, J.; BUTLER, T. M.; CROWLEY, J. N.; DILLON, T. J.; FISCHER, H.; GANZEVELD, L.; HARDER, H.; LAWRENCE, M. G.; MARTINEZ, M.; TARABORRELLI, D.; WILLIAMS, J. Atmospheric oxidation capacity sustained by a tropical forest. Nature, 452, 737-740, 2008. LIGGIO, J.; LI, S.-M. Organosulfate formation during the uptake of pinonaldehyde on acidic sulfate aerosols. Geophys. Res. Lett., 33, L13808, 2006. LOGAN, J. A. Tropospheric ozone: seasonal behavior, trends and anthropogenic influence. J. Geophys. Res., 90, 10463-10482, 1985. MAEL, L.E.; JACOBS, M.I.; ELROD, M.J. Organosulfate and nitrate formation and reactivity from epoxides derived from 2-methyl-3-buten-2-ol. J. Phys. Chem. A., 119, 4464-4472, 2015. NG, N. L.; KWAN, A. J.; SURRATT, J. D.; CHAN, A. W. H.; CHHABRA, P. S.; SOROOSHIAN, A.; PYE, H. O. T.; CROUNSE, J. D.; WENNBERG, P. O.; FLAGAN, R. C.; SEINFELD, J. H. Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO3). Atmos. Chem. Phys., 8, 4117–4140, 2008. NIELSEN, O. J.; JØRGENSEN, O.; DONLON, M.; SIDEBOTTOM, H. W.; O’FARRELL, D. J.; TREACY, J. Rate constants for the gas-phase reactions of OH radicals with nitroethene, 3-nitropropene and 1-nitrocyclohexene at 298 K and 1 atm. Chem. Phys. Lett., 168, 319-323, 1990. NOZIÈRE, B.; KALBERER, M.; CLAEYS, M.; ALLAN, J.; D’ANNA, B.; DECESARI, S.; FINESSI, E.; GLASIUS, M.; GRGIC, I.; HAMILTON, J. F.; HOFFMANN, T.; IINUMA, Y.; JAOUI, M.; KAHNT, A.; KAMPF, C. J.; KOURTCHEV, I.; MAENHAUT, W.; MARSDEN, N.; SAARIKOSKI, S.; SCHNELLE-KREIS, J.; SURRATT, J. D.; SZIDAT, S.; SZMIGIELSKI, R.; WISTHALER, A. The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges. Chem. Rev., 115, 3919–3983, 2015. OLIVEIRA, R. C. M.; BAUERFELDT, G. F. Implementation of a variational code for the calculation of rate constants and application to barrierless dissociation and radical 154 recombination reactions: CH3OH = CH3 + OH. Int. J. Quantum Chem., 112, 3132-3140, 2012. ORLANDO, J. J.; TYNDALL, G. S. Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance. Chem. Soc. Rev., 41, 15 6294–6317, 2012. ORLANDO, J.J.; TYNDALL, G.S.; APEL, E.C.; RIEMER, D.D.; PAULSON, S.E. Rate Coefficients and Mechanisms of the Reaction of Cl-Atoms with a Series of Unsaturated Hydrocarbons Under Atmospheric Conditions. Int. J. Chem. Kinet., 35, 334-353, 2003. PAULOT, F.; CROUNSE, J.D.; KJAERGAARD, H.G.; KROLL, J.H.; SEINFELD, J.H.; WENNBERG, P.O. Isoprene photooxidation: New insights into the production of acids and organic nitrates. Atmos. Chem. Phys, 9, 1479-1501, 2009. PEIRONE, S. A.; ABRATE, J. P. A.; TACCONE, R. A.; COMETTO, P. M.; LANE, S. I. Atmos. Environ., 45, 5325-5331, 2011. PFRANG, C.; MARTIN, R. S.; CANOSA-MAS, C. E.; WAYNE, R.P. Gas-phase reactions of NO3 and N2O5 with (Z)-hex-4-en-1-ol, (Z)-hex-3-en-1-ol ('leaf alcohol'), (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol. Phys. Chem. Chem. Phys., 8, 354-363, 2006. PFRANG, C.; MARTIN, R. S.; NALTY, A.; WARING, R.; CANOSA-MAS, C. E.; WAYNE, R. P. Gas-phase rate coefficients for the reactions of nitrate radicals with (Z)-pent-2-ene, (E)-pent-2-ene, (Z)-hex-2-ene, (E)-hex-2-ene, (Z)-hex-3-ene, (E)-hex-3-ene and (E)-3-methylpent-2-ene at room temperature. Phys. Chem. Chem. Phys., 7, 2506-2512, 2005. PRATT, K.A.; FIDDLER, M.N.; SHEPSON, P.B.; CARLTON, A.G.; SURRATT, J.D. Organosulfates in cloud water above the Ozarks isoprene source region. Atmos. Environ., 77, 231-238, 2013. PRINN, R. G.; HUANG, J.; WEISS, R. F.; CUNNOLD, D. M.; FRASER, P. J.; SIMMONDS, P. G.; MCCULLOCH, A.; HARTH, C.; SALAMEH, P.; O’DOHERTY, S.; WANG, R. H. J.; PORTER, L.; MILLER, B. R. Evidence for significant variations of atmospheric hydroxyl radicals in the last two decades. Science, 292, 1882-1888, 2001. RAMNÄS, O.; ÖSTERMARK, U.; PETERSSON, G. Characterization of sixty alkenes in a 155 cat-cracked gasoline naphtha by gas chromatography. Chromatogr. 38, 222-226, 1994. RIVA, M.; BUDISULISTIORINI, S. H.; ZHANG, Z.; GOLD, A.; SURRATT, J. D. Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol. Atmos. Environ., 130, 5-13, 2016b. RIVA, M.; DA SILVA BARBOSA, T.; LIN, Y.-H.; STONE, E. A.; GOLD, A.; SURRATT, J. D. Chemical characterization of organosulfates in secondary organic aerosol derived from the photooxidation of alkanes. Atmos. Chem. Phys., 16, 11001-11018, 2016a. RIVA, M.; TOMAZ, S.; CUI, T.; LIN, Y.-H.; PERRAUDIN, E.; GOLD, A.; STONE, E. A.; VILLENAVE, E.; SURRATT, J. D. Evidence for an Unrecognized Secondary Anthropogenic Source of Organosulfates and Sulfonates: Gas-Phase Oxidation of Polycyclic Aromatic Hydrocarbons in the Presence of Sulfate Aerosol. Environ. Sci. Technol., 49, 6654-6664, 2015. ROBINSON, P. J.; HOLBROOK, K. A. Unimolecular Reactions. Wiley: New York, 1972. ROMERO, F.; OEHME, M. Organosulfates – a new component of humic-like substances in atmospheric aerosols?. J. Atmos. Chem., 52, 283-294, 2005. SCHINDELKA, J.; IINUMA, Y.; HOFFMANN, D.; HERRMANN, H. Sulfate radical-initiated formation of isoprene-derived organosulfates in atmospheric aerosols. Farad. Discuss., 165, 237-259, 2013. SCHMAUSS, A. Kolloidchemie and Meteorologie. Meteorol. Z., 31, 266-269, 1922. SCHULTING, F. L.; MEYER, G. M.; VANALST R. M. Emissions of hydrocarbons by vegetation and its contribution to air pollution in The Netherlands. TNO Report no. CMP 80/16, November 1980. SEINFELD, J. H. Atmospheric Chemistry and Physics of Air Pollution. John Wiley, New York, 1986. SHALAMZARI, M. S.; KAHNT, A.; VERMEYLEN, R.; KLEINDIENST, T. E.; LEWANDOWSKI, M.; CUYCKENS, F.; MAENHAUT, W.; CLAEYS, M. Characterization 156 of polar organosulfates in secondary organic aerosol from the green leaf volatile 3-Z-hexenal. Environ. Sci. Technol., 48, 12671–12678, 2014. SHALAMZARI, M. S.; RYABTSOVA, O.; KAHNT, A.; VERMEYLEN, R.; HERENT, M. F.; QUETIN-LECLERCQ, J.; VAN DER VEKEN, P.; MAENHAUT, W.; CLAEYS, M. Mass spectrometric characterization of organosulfates related to secondary organic aerosol from isoprene. Rapid Commun. Mass Spectrom, 27, 784−794, 2013. SHALAMZARI, M. S.; VERMEYLEN, R.; BLOCKHUYS, F.; KLEINDIENST, T. E.; LEWANDOWSKI, M.; SZMIGIELSKI, R.; RUDZINSKI, K. J.; SPÓLNIK, G.; DANIKIEWICZ, W.; MAENHAUT, W.; CLAEYS, M. Characterization of polar organosulfates in secondary organic aerosol from the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal. Atmos. Chem. Phys., 16, 7135-7148, 2016. SHU, Y.; ATKINSON, R. Atmospheric lifetimes and fates of a series of sesquiterpen. J. Geophys. Res.,100, 7275-7281, 1995. SINGLETON, D.L.; CVETANOVIC, R.J. Temperature dependence of the reaction of oxygen atoms with olefins. J. Am. Chem. Soc., 98, 6812-6819, 1976. SIVARAMAKRISHNAN, R.; MICHAEL, J. V. Rate Constants for OH with Selected Large Alkanes: Shock-Tube Measurements and an Improved Group Scheme. J. Phys.Chem. A, 113, 5047–5060, 2009. SPICER, C.W.; CHAPMAN, E.G.; FINLAYSON-PITTS, B.J.; PLASTRIDGE, R.A.; HUBBE, J.M.; FAST, J.D.; BERKOWITZ, C.M. Unexpectedly high concentrations of molecular chlorine in coastal air. Nature, 394, 353-356, 1998. STEINFELD, J.I.; FRANCISCO, J.S.; HASE, W.L. Chemical Kinetics and Dynamics. 2nd ed, New Jersey: Prentice Hall, 1999. STUTZ, J.; EZELL, M. J.; EZELL, A. A.; FINLAYSON-PITTS, B. J. Rate Constants and Kinetic Isotope Effects in the Reactions of Atomic Chlorine with n-Butane and Simple Alkenes at Room Temperature. J. Phys. Chem. A, 102, 8510-8519, 1998. 157 SURRATT, J. D.; GÓMEZ-GONZÁLEZ, Y.; CHAN. A. W. H.; VERMEYLEN, R.; SHAHGHOLI, M.; KLEINDIENST, T. E.; EDNEY, E. O.; OFFENBERG, J. H.; LEWANDOWSKI, M.; JAOUI, M.; MAENHAUT, W.; CLAEYS, M.; FLAGAN, R. C.; SEINFELD, J. H. Organosulfate formation in biogenic secondary organic aerosol. J. Phys. Chem. A, 112, 8345-8378, 2008. SURRATT, J. D.; KROLL, J. H.; KLEINDIENST, T. E.; EDNEY, E. O.; CLAEYS, M.; SOROOSHIAN, A.; NG, N. L.; OFFENBERG, J. H.; LEWANDOWSKI, M.; JAOUI, M.; FLAGAN, R. C.; SEINFELD, J. H. Evidence for Organosulfates in Secondary Organic Aerosol. Environ. Sci. Technol., 41, 517-527, 2007a. TAATJES, C.A. Time-resolved infrared absorption measurements of product formation in Cl atom reactions with alkenes and alkynes. Int. Rev. Phys. Chem., 18, 419-458, 1999. TAO, S.; LU, X.; LEVAC, N.; BATEMAN, A.P.; NGUYEN, T.B.; BONES, D.L.; NIZKORODOV, S.A.; LASKIN, J.; LASKIN, A.; YANG, X. Molecular characterization of organosulfates in organic aerosols from Shanghai and Los Angeles urban areas by nanospray-desorption electrospray ionization high-resolution mass spectrometry. Environ. Sci. Technol., 48, 10993-11001, 2014. TOLOCKA, M. P.; TURPIN, B. Contribution of Organosulfur Compounds to Organic Aerosol Mass, Environ. Sci. Technol., 46, 7978-7983, 2012. TYNDALL, G. S.; ORLANDO, J. J.; WALLINGTON, T. J.; DILL, M.; KAISER, E. W. Kinetics and mechanisms of the reactions of chlorine atoms with ethane, propane, and n-butane. Int. J. Chem. Kinet., 29, 43–55, 1997. VEREECKEN, L.; FRANCISCO, J. S. Theoretical studies of atmospheric reaction mechanisms in the troposphere. Chem. Soc. Rev., 41, 6259-6293, 2012. WALAVALKAR M. S. A.; ALWE, H.D.; PUSHPA, K.K.; DHANYA, S.; NAIK, P.D.; BAJAJ, P.N. Cl atom initiated oxidation of 1-alkenes under atmospheric conditions. Atmos. Environ., 67, 93-100, 2013. 158 WANG, X. K.; ROSSIGNOL, S.; MA, Y.; YAO, L.; WANG, M. Y.; CHEN, J. M.; GEORGE, C.; WANG, L. Molecular characterization of atmospheric particulate organosulfates in three megacities at the middle and lower reaches of the Yangtze River. Atmos. Chem. Phys., 16, 2285-2298, 2016. WINGENTER, O.W.; KUBO, M. K.; BLAKE, N. J.; SMITH, T.W.; BLAKE, D. R.; ROWLAND, F. S. Hydrocarbon and halocarbon measurements as photochemical and dynamical indicators of atmospheric hydroxyl, atomic chlorine, and vertical mixing obtained during Lagrangian flights. J. Geophys. Res. 101, 4331–4340, 1996. YUAN, B.; HU, W. W.; SHAO, M.; WANG, M.; CHEN, W. T.; LU, S. H.; ZENG, L. M.; HU, M. VOC emissions, evolutions and contributions to SOA formation at a receptor site in eastern China. Atmos. Chem. Phys.,13, 8815-8832, 2013. ZHANG, H.; SURRATT, J. D.; LIN, Y.-H.; BAPAT, J.; KAMENS, R. M. Effect of relative humidity on SOA formation from isoprene/NO photooxidation: enhancement of 2-mehtylglyceric acid and its corresponding oligoesters under dry conditions. Atmos. Chem. Phys., 11, 6411-6424, 2011. ZHANG, H.; WORTON, D. R.; LEWANDOWSKI, M.; ORTEGA, J.; RUBITSCHUN, C.L.; PARK, J-H.; KRISTENSEN, K.; CAMPUZANO-JOST, P.; DAY, D. A.; JIMENEZ, J. L.; JAOULI, M.; OFFENBERG, J. H.;KLEINDIENST, T. E.; GILMAN, J.; KUSTER, W. C.; DE GOUW, J.; PARK, C; SCHADE, G.W.; FROSSARD, A. A.;RUSSELL, L.; KASER, L.; JUD, W.; HANSEL, A.; CAPPELLIN, L.; KARL, T.; GLASIUS, M.; GUENTER, A.; GOLDSTEIN, A. H.; SEINFELD, J. H.; GOLD, A.; KAMENS, R. M.; SURRATT, J. D. Organosulfates as tracer for secondary organic aerosol (SOA) formation from 2-methyl-3-buten-2-ol (MBO) in the atmosphere. Environ. Sci. Technol., 46, 9437-9446, 2012. ZHANG, W.; DU, B.; FENG, C. Theoretical investigation on mechanism for OH-initiated oxidation of CH2=C(CH3)CH2OH. Theor. Chem. Acc., 125, 45-55, 2010. ZHU, L.; HASE, W. L. A General RRKM Program (QCPE 644). Quantum Chemistry Exchange. Chemistry Department, University of Indiana: Bloomington, 1993por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/64288/2017%20-%20Tha%c3%ads%20da%20Silva%20Barbosa.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4454
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2021-03-17T16:35:50Z No. of bitstreams: 1 2017 - Thaís da Silva Barbosa.pdf: 4607094 bytes, checksum: 9a182ff3a54b8d35aa40fd6d421877de (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-03-17T16:35:50Z (GMT). No. of bitstreams: 1 2017 - Thaís da Silva Barbosa.pdf: 4607094 bytes, checksum: 9a182ff3a54b8d35aa40fd6d421877de (MD5) Previous issue date: 2017-03-06eng
Appears in Collections:Doutorado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2017 - Thaís da Silva Barbosa.pdfThaís da Silva Barbosa4.5 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.