Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10225
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrito, Diego de Mello Conde de
dc.date.accessioned2023-12-21T18:59:10Z-
dc.date.available2023-12-21T18:59:10Z-
dc.date.issued2012-07-23
dc.identifier.citationBRITO, Diego de Mello Conde de. Metabolismo e expressão gênica em Crambe abyssinica Hochst. ex. R.E. Fries sob diferentes condições de cultivo visando aplicação industrial. 2012. 142 f. Tese (Doutorado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2012.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10225-
dc.description.abstractO crambe (Crambe abyssinica Hochst. ex. R.E. Fries) é uma oleaginosa, pertencente à família das crucíferas, que é tóxica para a alimentação humana e apresenta um grande potencial para emprego na agroenergia ou como fonte de ácido erúcico. Atualmente, existe apenas uma variedade de crambe desenvolvida no Brasil e adaptada às suas condições, denominada FMS Brilhante. As principais características que colocam essa variedade como uma opção de mercado promissora são a precocidade, a alta produtividade de grãos, o baixo custo de produção e o elevado teor de óleo nas sementes. Entretanto, ainda existem poucas informações sobre o metabolismo dessa cultura. No contexto da nutrição vegetal, o nitrogênio se destaca, pois, além de ser geralmente o elemento requerido em maiores concentrações, está intimamente relacionado aos custos da produção e pode acarretar sérios impactos ambientais. Assim, o objetivo principal desse trabalho foi avaliar a influência da variação nas doses de N, na forma de nitrato, sobre diversos aspectos do metabolismo de plantas de crambe (FMS Brilhante), incluindo a expressão de genes, visando principalmente sua relação com os parâmetros de produtividade. Foi avaliada também a influência do pH do meio de cultivo sobre alguns aspectos metabólicos da cultura. Foram realizados três experimentos, com três repetições em delineamento inteiramente casualizado. Nos experimentos I e II as plantas foram cultivadas em hidroponia a diferentes doses de N-nitrato (0,2; 2 e 4 mM) e a variação do pH (5,0; 5,5; 6,0 e 6,5), respectivamente, e coletadas ao fim da fase vegetativa. No experimento III as plantas foram cultivadas, em terra proveniente de um solo do tipo argissolo, com doses crescentes de N-nitrato (0,8; 1,6; 2,4 e 3,2 mM) e foram realizadas três coletas: uma no início e outra no fim do florescimento e a última ao término da maturação de sementes. Os resultados obtidos no experimento I reiteram o papel do caule no armazenamento do nitrato nessa espécie. Entretanto, no experimento II observou-se que a variação do pH do meio de cultivo não exerceu influência significativa sobre a produção de massa e que, além disso, as plantas cultivadas sob pH 6,0 desenvolveram os processos relacionados a redução e assimilação do nitrogênio, com maior intensidade. Dentre os principais resultados obtidos com o experimento III, é possível destacar que na dose de 1,6 mM de N-nitrato houve uma elevada produção de sementes, óleo e, também, um perfil de ácidos graxos adequado, tendo-se em vista o emprego do crambe na indústria do biodiesel. Além disso, observou-se aumento na concentração de ácido erúcico no óleo de crambe, com a redução do suprimento de N-nitrato. Outro ponto importante é que o gene da 3-cetoacil-CoA sintase (KCS) pode não ser um dos principais fatores envolvidos na síntese de ácido erúcico. Entretanto, a expressão do gene da lisofosfatidil aciltransferase (LPAT) parece ter uma forte relação com a síntese de ácido erúcico nessa espécie. Assim, seja visando seu uso na agroenergia ou para extração de ácido erúcico (Utilizado na indústria de plásticos, lubrificantes etc.) é possível o cultivo de crambe com baixos suprimentos de N-nitrato, o que além de reduzir os custos envolvidos na produção e impactos ao ambiente favorece os parâmetros de produtividade.por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectBiocombustíveispor
dc.subjectMetabolismo do nitrogêniopor
dc.subjectProdução de óleopor
dc.subjectBiofuelseng
dc.subjectNitrogen metabolismeng
dc.subjectOil yieldeng
dc.titleMetabolismo e expressão gênica em Crambe abyssinica Hochst. ex. R.E. Fries sob diferentes condições de cultivo visando aplicação industrialpor
dc.title.alternativeMetabolism and gene expression in Crambe abyssinica Hochst. ex. R.E. Fries under different growth conditions aiming industrial useeng
dc.typeTesepor
dc.description.abstractOtherCrambe (Crambe abyssinica Hochst. ex. R.E. Fries) is an oleaginous culture that belongs to the cruciferae family, and is toxic for human feed, which presents a great potential for use in biofuel industry as well as a source of erucic acid. Nowadays, there is only one variety of crambe developed in Brazil and adapted to its conditions, designated FMS Brilhante. The main characteristics that highlight this variety as a promising option of market are precocity, high grain yield, low production cost and high oil percentage in seeds. However, few information about the metabolic aspects of this culture are available. In the context of vegetal nutrition, nitrogen must be mentioned because is generally the element required in major concentrations and is strongly related to the production costs and can cause serious environmental problems. Thus, the major objective of this work was evaluate the influence of variation in N levels, in nitrate form, under different aspects of crambe metabolism (FMS Brilhante variety), including gene expression, aiming primarily its relation with yield parameters. Also was evaluated the pH influence of cultivation medium under some metabolic aspects of this culture. Three experiments were done, with three replicates arranged in a completely randomized experimental design. In the experiments I and II plants were submitted in hydroponic system to different nitrate-N doses (0,2; 2 and 4 mM) and pH variation (5,0; 5,5; 6,0 and 6,5), respectively, and harvested at the end of vegetative period. In the experiment III plants were cultivated in a argisol soil under crescent nitrate-N supply (0,8; 1,6; 2,4 and 3,2 mM) and three harvests were done: One at initiation and the other one at end of flowering and the last at final of seed maturation. The results obtained with experiment I highlight the role of stem in nitrate storage in this specie. On the other hand, in experiment II was observed that variation in pH of nutrient solution do not influence significantly the mass production and that plants cultivated under pH 6,0 showed an increase in the processes related to nitrogen reduction and assimilation. Among the main results obtained with the experiment III is possible to highlight that with 1,6 mM of nitrate-N was obtained a high seed and oil yield and also a satisfactory fatty acid composition of oil, aiming the use of crambe in biodiesel industry. Furthermore, was observed an increase in erucic acid concentration of crambe oil with the reduction of nitrate-N supply. Important information is that the 3-cetoacil-CoA sintase (KCS) gene cannot be one of the main factors involved in erucic acid synthesis. However, the expression of lysophosphatidyl aciltransferase (LPAT) gene seems to be strongly related with the synthesis of erucic acid in this specie. Thereby, crambe cultivation is possible with low nitrate-N supply, for use of culture in biodiesel industry or for erucic acid extraction (Used in plastic, lubricants and other industries), and that contribute for a reduction in production costs and environmental impacts and for an increase in yield parameters.eng
dc.contributor.advisor1Souza, Sonia Regina de
dc.contributor.advisor1ID003.927.487-03por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3312117357555510por
dc.contributor.advisor-co1Castro, Rosane Nora
dc.contributor.advisor-co2Cordeiro, Flávio Couto
dc.contributor.referee1Ferreira, Aurélio Baird Buarque
dc.contributor.referee2Assis, André Von Randow de
dc.contributor.referee3Araújo, Ednaldo da Silva
dc.contributor.referee4Cabral, Luiz Mors
dc.creator.ID100.380.957-00por
dc.creator.Latteshttp://lattes.cnpq.br/0692112420159444por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesABROL, Y.P.; RAGHURAM, N.; SACHDEV, M.S. Agricultural nitrogen use & its environmental implications. New Delhi: I.K International publishing house Pvt. Ltd, 2007. AGARWAL, A.K. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science, v. 33, p. 233-271, 2007. AGROPRECISA. Crambe: Opção lucrativa para o crescente mercado de biodiesel, 2008. Disponível em: <http://www.agroprecisa.com.br/site/noticias/?iIdNoticia=152>. Acesso em: 23 mar. 2008. AHMAD, A.; ABDIN, M.Z. Interactive Effect of Sulphur and Nitrogen on the Oil and Protein Contents and on the Fatty Acid Profiles of Oil in the Seeds of Rapeseed (Brassica campestris L.) and Mustard (Brassica juncea L. Czern. and Coss.). Journal of Agronomy and Crop science, v. 185, n. 14, p. 49-54, 2000. AHMAD, G.; JAN, A.; ARIF, M.; JAN, M.T.; SHAH, H. Effect of nitrogen and sulfur fertilization on yield components, seed and oil yields of canola. Journal of plant nutrition, v. 34, n. 14, p. 2069-2082, 2011. ALBORESI, A.; GESTIN, C.; LEYDECKER, M.; BEDU, M.; MEYER, C. TRUONG, H. Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, Cell and Environment, v. 28, p. 500-512, 2005. ALLEN, C.A.W. WATTS, K.C. ACKMAN, R.G. PEGG, M.J. Predicting the viscosity of biodiesel fuels from their fatty acid ester composition. Fuel, v. 78, p. 1319–1326, 1999. ANP. Produção Nacional de Biodiesel Puro - B100 (barris equivalentes de petróleo). Superintendência de Planejamento e Pesquisa: Ministério das Minas e Energias. 2012. ARAÚJO, A.P.; MACHADO, C.T.T. Fósforo. In: Manlio Silvestre Fernandes. (Org.). Nutrição Mineral de Plantas. 1 ed. Viçosa: Sociedade Brasileira de Ciência do Solo, v. 1, p. 215-252, 2006. BALIGAR, V.C. Interrelationships between growth and nutrient uptake in alfafa and corn. Journal of Plant Nutrition, 9:1391-1404, New York, 1986. BARTOLOMÉ, R.; GONZÁLEZ, C.A.; KENIS, J.D. Nitrate reductase dephosphorylation is induced by sugars and sugar-phosphates in corn leaf segments. Physiologia Plantarum, v. 122, n. 1, p. 62-67, 2004. BAUD, S.; LEPINIEC, L. Physiological and developmental regulation of seed oil production. Progress in Lipid Research, v. 49, p. 235–249, 2010. 69 BEAUDOIN, F.; WU, X.; LI, F.; HASLAM, R.P.; MARKHAM, J.E.; ZHENG, H.; NAPIER, J.A.; KUNST, L. Functional characterization of the arabidopsis β-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase. Plant Physiology, v. 150, p. 1174–1191, 2009. BILICH, F.; DA SILVA, R. Análise do potencial Brasileiro na produção de biodiesel. Biodiesel: O novo combustível do Brasil. 1 Congresso da Rede Brasileira de Tecnologia de Biodiesel. v. 1, p. 24-29, 2006. BRISCOE, B.J.; LUCKHAM, P.F.; REN, S.R. An assessment of a rolling-ball viscometer for studying non-Newtonian fluids. Colloids and Surfaces, v. 62, p. 153–162, 1992. BRITO, D.M.C. Aspectos do Metabolismo de Plantas de Crambe (Crambe abyssinica) Submetidas a Diferentes Doses de Nitrogênio Visando a Produção de Óleo para Biodiesel. 2009. 58p Dissertação (Mestrado em Química, Química Agrária). Instituto de Ciências Exatas, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2009. BRITTO, D.T.; KRONZUCKER, H.J. NH4+ toxicity in higher plants: a critical review. J. Plant Physiol, v. 159, p. 567–584, 2002. CAMARGO, J.A.; ALONSO, A. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International. v. 32, ed. 6, p. 831-849, 2006. CASTRO, C. B.; ANTAL, C. RODRIGUES, V.B. SFREDO, G.J. Levels and methods of nitrogen supply for sunflower. Sci. agric. v. 56, n. 4, p. 827-833. 1998. disponível em: (http://www.scielo.br/scielo.php?script=sci_arttext&pid=S010390161999000400009&lng=en&nrm=iso). Acesso em 16/02/2006 CATALDO, D.; HARRON, M.; SCHARADER, L.E. e YOUNGS, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communication in Soil Science and Plant Analysis, New York, US, v.6, p.853-855, 1975. CHEN, B.M.; WANG, Z.H.; LI, S.X.; WANG, G.X.; SONG, H.X.; WANG, X.N. Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Science, v.167, p. 635-643, 2004. CHOUDHURY, A.T.M.A.; KENNEDY, I.R.; AHMED, M.F.; KECSKÉS, M.L. Phosphorus fertilization for rice and control of environmental pollution problems. Pakistan Journal of Biological Sciences, v. 10, n. 13, p. 2098–2105, 2007. CRAWFORD, N.M. Nitrate: nutrient and signal for plant growth. The plant cell, v. 7, p. 859-868, 1995. CRUSCIOL, C.A.C.; LIMA, E.D.; ANDREOTTI, M.; NAKAGAWA, J.; LEMOS, L.B.; MARUBAYASHI, O.M. Efeito do nitrogênio sobre a qualidade fisiológica, produtividade e características de sementes de feijão. Revista Brasileira de Sementes,, v.25, n.1, p.108-115, 2003. 70 DEBONTE, L.R.; MIAO, G.; FAN, Z. Plants having mutant delta 12 desaturase sequences that confer altered fatty acid profiles. United States patent, n. US 7,262,343 B1, 2007. DECHORGNAT, J.; NGUYEN, C.T.; ARMENGAUD, P.; JOSSIER, M.; DIATLOFF, E.; FILLEUR, S.; VEDELEL, F. From the soil to the seeds: the long journey of nitrate in plants. Journal of Experimental Botany, v. 62, n. 4, p. 1349-1359, 2011. EMBRAPA. Manual de métodos de análise do solo. 2 ed. Rio de Janeiro; CNPS, 212p, 1997. FALENTIN, C.; BREGEON, M.; LUCAS, M.O.; RENARD, M. Genetic markers for high oleic acid content in plants. European patent application, n. 06290855.3, 2007. FELKER, P. Micro determination of nitrogen in seed protein extracts. Analytical Chemistry, v.49, 1980, 1977. FONTANA, F.; LAZZERI, L.; MALAGUTI, L.; GALLETTI, S. Agronomic characterisation of some Crambe abyssinica genotypes in a locality of the Po Valley. Europ. J. of Agr, v. 9, p 117–126, 1998. FRANCOIS, L.E.; KLEIMAN, R. Salinity effects on vegetation growth, seed yield and fatty acid composition of crambe. Agron J. v. 82, p. 1110–1114, 1990. FUNDAÇÃO MS. Crambe: Uma nova opção para produção de biodiesel, 2007. Disponível em: <http://www.fundacaoms.com.br/news.php?item.2.1>. Acesso em: 12 fev. 2012. FUNDAÇÃO MS. Tecnologia e produção: Crambe. 1 ed. Maracajú. 60 p. 2010. GAMMELVIND, L.H.; SCHJOERRING, J.K.; MOGENSEN, V.O.; JENSEN, C.R.; BOCK, J.G.H. Photosynthesis in leaves and siliques of winter oilseed rape (Brassica napus L.). Plant Soil, v.186, p. 227–236, 1996. GAO, J.; LIU, J.; LI, B.; LI, Z. Isolation and purification of functional total RNA from blue-grained wheat endosperm tissues containing high levels of starches and flavonoids. Plant Mol. Biol. Rep. v. 19, p. 185–1185, 2001. GODLEWSKI, M.; ADAMCZYK, B. The ability of plants to secrete proteases by roots. Plant Physiology and Biochemistry, v. 45, p. 657-664, 2007. GÓMEZ, A. M.; LÓPEZ, C. P.; LA OSSA, E. M.; Recovery of grape seed oil by liquid and supercritical carbon dioxide extraction: a comparison with conventional solvent extraction. The Chemical Engineering Journal, v. 61, p. 227–231, 1996. GONZALES, P.B.; CIHACEK, L.J. Crambe Fertilization: A literature review. North Dakota farm research - North Dakota, Agricultural Experiment Station, v. 49, n. 3, p. 17-19, 1991. 71 GUAN, L.; WANG, Y.; SHEN, H.; HOU, K.; XU, Y.; WU, W. Molecular cloning and expression analysis of genes encoding two microsomal oleate desaturases (FAD2) from Safflower (Carthamus tinctorius L.). Plant Mol Biol Rep, v. 30, p. 139-148, 2012. GUO, S.; SHEN, Q.; BRUECK, H. Effects of local nitrogen supply on water uptake of bean plants in a split root system. Journal of Integrative Plant Biology, v. 49, n. 4, p. 472-480, 2007. GUO, Y.; MIETKIEWSKA, E.; FRANCIS, T.; KATAVIC, V.; BROST, J.M.; GIBLIN, M.; BARTON, D.L.; TAYLOR, D.C. Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase (KCS) gene. Plant Mol Biol, n. 69, p. 565-575, 2009. HAGEMANN, J.W. MICOLAJKZAC, K.L. WOLFF, I.A. Purification of erucic-acid by low-temperature crystallization. Journal of the American Oil Chemists Society, v. 39, n. 4, p. 196-197, 1962. HAHN-HÄGERDAL, B.; GALBE, M.; GORWA-GRAUSLUND, M. F.; LIDÉN, G.; ZACCHI, G. Bio-ethanol – the fuel of tomorrow from the residues of today. Trends in Biotechnology , v. 24, n. 12, 2006. HALIM, R.; DANQUAH, M. K.; WEBLEY, P. A. Extraction of oil from microalgae for biodiesel production: A review. Biotechnology Advances, v. 30, p. 709–732, 2012. HOAGLAND, D. R.; ARNON, D. I. The water-culture method for growing plants without soil. California Agricultural of Experimental Stn. Bull, v.347, p.1-32, 1950. HUPPE, H. C.; TURPIN, D. H. Integration of carbon and nitrogen in plant and algal cells. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. v. 45, p. 577-607, 1994. IGLESIAS, L.; LACA, A.; HERRERO, M.; DÍAZ, M. A life cycle assessment comparison between centralized and decentralized biodiesel production from raw sunflower oil and waste cooking oils. Journal of Cleaner Production, v. 10, n. 1, 2012. JAVORSKY, E. G. Nitrate reductase assay in intact plant tissues. Biochemical Biophysical Research. Communication, v.43, n.6, p.1274-1279, 1971. JUNG, J.H.; KIM, H.; GO, Y.S.; LEE, S.B.; HUR, C.; KIM, H.U.; SUH, M.C. Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents. Plant Cell Rep, v. 30, p. 1881-1892, 2011. KANRAR S.; VENKATESWARI J.; DUREJA P.; KIRTI P.B.; CHOPRA V.L. Modification of erucic acid content in Indian mustard (Brassica juncea) by up regulation and down regulation of the Brassica juncea Fatty Acid Elongation1 (BjFAE1) Gene. Plant Cell, v. 2, n. 25, p. 148-155, 2006. 72 KLEIN, D.; MORCUENDE, R.; STITT, M.; KRAPP, A. Regulation of nitrate reductase expression in leaves by nitrate and nitrogen metabolism is completely overridden when sugars fall below a critical level. Plant, Cell and Environment, v. 23, p. 863-871, 2000. KNOTHE, G. “Designer” Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties. Energy & Fuels, v. 22, p. 1358-1364, 2008. KNOTHE, G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, v. 86, p. 1059-1070, 2005. KNOTHE, G. Structure indices in FA chemistry. How relevant is the iodine value?. JAOCS, v. 79, n. 9, p. 847-854, 2002. KUMAR, S.R.S.; RAO, K.V.B. Biological Nitrogen Fixation : A Review. International Journal of Advanced Life Sciences, v. 1, p. 1-9, 2012. LAPUERTA, M. ARMAS, O. RODRÍGUEZ-FERNÁNDEZ, J. Effect of biodiesel fuels on diesel engine emissions. Progress in Energy and Combustion Science, v. 34, p. 198-223, 2008. LEHNINGER, A.L.; NELSON, D.L.; COX, M.M. Princípios de bioquímica. 2.ed. São Paulo: Sarvier, 1995. LEONARD, E. C. High-erucic vegetable oils. Industrial Crops & Prod. v. 1, p. 119-123, 1993. LILLO, C. MEYER, C. LEA, U.S, PROVAN, F. OLTEDAL, S. Mechanism and importance of post-translational regulation of nitrate reductase. Journal of Experimental Botany, v.55, n. 401, p. 1275-1282, 2004. LIVAK, K.J. e SCHMITTGEN, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-Δ ΔcT method. Methods, v. 25, p.402–408, 2001. LOULAKAKIS, K.A.; ROUBELAKIS-ANGELAKIS, K.A.; KANELLIS, A.K. Isolation of Functional RNA From Grapevine Tissues Poor in Nucleic Acid Content. Am. J. Enol. Vitic, v. 47, n. 2, p. 181-185, 1996. MALAVOLTA, E. Elementos de nutrição mineral de plantas. ed. Agronômica Ceres. São Paulo, SP. 1980. 251p. METCALFE, L.D. SCHMITZ, A.A. PELKA, J.R. Rapid preparation of fatty acid methyl esters for gas chromatographic analysis. Analytical Chemistry, v. 38, n. 3, p. 514-515, 1966. MEURER, E.J. Potássio. In: Manlio Silvestre Fernandes. (Org.). Nutrição Mineral de Plantas. 1 ed. Viçosa: Sociedade Brasileira de Ciência do Solo, v. 1, p. 215-252, 2006. 73 MIETKIEWSKA, E.; BROST, J.M.; GIBLIN, E.M.; BARTON, D.L.; TAYLOR, D.C. Cloning and functional characterization of the fatty acid elongase 1 (FAE1) gene from high erucic Crambe abyssinica cv. Prophet. Plant Biotechnology Journal, v. 5, p. 636–645, 2007. MILLAR, A.A.; KUNST, L. Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. The Plant Journal, v. 1, n. 12, p. 121-131, 1997. MINISTÉRIO DE MINAS E ENERGIA, 2004. Disponível em (http://www.mme.gov.br/site/news/detail.do;jsessionid=DB0DB3E849E8111342FBFDE36BECA5F9?newsId=542¤tArea=). Acesso em 13/02/2012. MOERI, E. Brasil - País dos Sheiks do Óleo Verde – É Pioneiro na Produção de Biodiesel em Larga Escala: Tecnologia de Proporções Continentais. Swisscam, Brasil, n. 42, p.08-12, 01 ago. 2005. Disponível em: <www.swisscam.com.br>. Acesso em: 13 jun. 2012. MOKHELE, B.; ZHAN, X.; YANG, G.; ZHANG, X. Review: Nitrogen assimilation in crop plants and its affecting factors. J. Plant Sci, v. 92, p. 399-405, 2012. MURUGESAN, A. UMARANI, C. SUBRAMANIAN, R. NEDUNCHEZHIAN, N. Bio-diesel as an alternative fuel for diesel engines - A review. Renewable and Sustainable Energy Reviews, v. 13, p. 653-662, 2009. NATH, U.K.; GOSWAMI, G.; CLEMENS, R.; BECKER, H.C.; MÖLLERS, C. Inheritance and variation of erucic acid content in a transgenic rapeseed (Brassica napus L.) doubled haploid population. Mol Breeding, v. 23, p. 125–138, 2009. OAKS, A. HIREL, B. Nitrogen metabolism in roots. Annual Reviews of Plant Physiology. v. 36. p. 345±365, 1985. OSAKI, M.; BATALHA, M.O. Produção de biodiesel e óleo vegetal no Brasil: Realidade e desafio. Organizações Rurais & Agroindustriais, v. 13, n. 2, p. 227–242, 2011. PANWAR, N. L.; KAUSHIK, S. C.; KOTHARI, S. Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, v. 15, p. 1513–1524, 2011. PINZI, S. GARCIA, I.L. LOPEZ-GIMENEZ, F.J. LUQUE DE CASTRO, M.D. DORADO, G. DORADO, M.P. The Ideal Vegetable Oil-based Biodiesel Composition: A Review of Social, Economical and Technical Implications. Energy & Fuels, v.23, p. 2325–2341, 2009. PITOL, C. Cultura do crambe. Tecnologia e produção: Milho safrinha e culturas de inverno 2008. Fundação MS, 2008. PORTAL DO BIODIESEL, 2004. Disponível em (http://www.biodiesel.gov.br/). Acesso em 13/02/2012. 74 POUSA, G.P.A.G.; SANTOS, A.L.F.; SUAREZ, P.A.Z. History and Policy of Biodiesel in Brazil. Energy Policy, v. 35, p. 5393-5398, 2007. PRADO, J. M.; DALMOLIN, I.; CARARETO, N. D.; BASSO, R. C.; MEIRELLES, A. J. A.; OLIVEIRA, J. V.; BATISTA, E. A. C.; MEIRELES, M. A. A. Supercritical fluid extraction of grape seed: Process scale-up, extract chemical composition and economic evaluation. Journal of Food Engineering, v. 109, p. 249–257, 2012. RAJAEI, A.; BARZEGAR, M.; YAMINI, Y. Supercritical fluid extraction of tea seed oil and its comparison with solvent extraction. Eur Food Res Technol, v. 220, p. 401–405, 2005. RAMOS, L. P.; SILVA, F. R.; MANGRICH, A. S.; CORDEIRO, C. S. Tecnologias de Produção de Biodiesel. Rev. Virtual Quim, v. 3, n. 5, p. 385-405, 2011. RAMOS, M.J. FERNÁNDEZ, C.M. CASAS, A. RODRÍGUEZ, L. PÉREZ, A. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, v.100, p. 261–268, 2009. RATHKE, G.W. BEHRENS, T. DIEPENBROCK, W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.). Agriculture, Ecosystems and Environment, v. 117, p. 80–108, 2006. RATHMANN, R.; BENEDETTI, O.; PLA, J. A.; PADULA, A. D. SANTOS. Biodiesel: Uma Alternativa Estratégica na Matriz Energética Brasileira?. In: II Seminário de Gestão de Negócios, Curitiba, 2005. Biodiesel: Uma Alternativa Estratégica na Matriz Energética Brasileira?. Curitiba : UNIFAE, 2005. v. 1. RAUN, W.R.; JOHNSON, G.V. Improving Nitrogen Use Efficiency for Cereal Production. Agron.J,v.91,p.357-363,1999. RAY, T.K.; HOLLY, S.P.; KNAUFT, D.A.; ABBOTT, A.G.; POWELL, G.L. The primary defect in developing seed from the high oleate variety of peanut (Arachis hypogaea L.) is the absence of delta 12-desaturase activity. Plant Science, v. 91, p. 15-21, 1993. REIJNDERS, L. Conditions for the sustainability of biomass based fuel use. Energy Policy, v. 34, issue 7, p. 863-876, 2006. ROLLIER, M. Rapeseed and nitrogen. Oleagineux, v. 25, n. 2, p. 91-96, 1970. ROSEGRANT, M.W. Biofuels and grain prices: Impacts and policy responses. International Food Policy Research Institute, Washington, 2008. Disponível em: <http://www.ifpri.org/publication/biofuels-and-grain-prices>. Acesso em: 18 jun. 2012. 75 SAHULKA, J.; LISÁ, L. The influence of exogenously supplied sucrose on glutamine synthetase and glutamate dehydrogenase levels in excised Pisum sativum roots. Biologia Plantarum, v. 20, n. 6, p. 446-452, 1978. SALLET, C.L.; ALVIM, A.M. Biocombustíveis: Uma análise da evolução do biodiesel no Brasil. Economia & Tecnologia, v. 25, p. 01-13, 2011. SANTOS, L.A. Efeito da superexpressão dos fatores de transcrição ZmDof1 e OsDof25 sobre a eficiência de uso de nitrogênio em Arabidopsis. 2009. 81f. Tese (Doutorado em Agronomia, Ciência do Solo). Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2009. SCHUCHARDT, U.; SERCHELI, R.; VARGAS, R.M. Transesterification of Vegetable Oils: a Review. J. Braz. Chem. Soc., v. 9, n. 1, p. 199-210, 1998. SCHULTZ, D.J.; CRAIG, R.; COX-FOSTER, D.L.; MUMMA, R.O.; MEDFORD, J. I. RNA isolation from recalcitrant plant tissue. Plant Molecular Biology Reporter, v. 12, n. 4, 1994. SHEEHAN, V.; CAMOBRECO, J.; DUFFIELD, V.; GRABOSKI, M.; SHAPOURI, H. Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus, final report for U.S. Dept. of Energy’s Office of Fuel Development and the U.S. Dept. of Agriculture’s Office of Energy . National Renewable Energy Laboratory, NREL/SR-580-24089, 1998b. SHEIKH, B.A. Hydroponics: key to sustain agriculture in water stressed and urban environment. Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences, v. 22, n. 2, p. 53–57, 2006. SIELING, K. CHRISTEN, O. Effect of preceding crop combination and N fertilization on yield of six oilseed rape cultivars (Brassica napus L.). Eur. J. Agron, v. 7, p. 301–306, 1997. SIMIONI, C.A. Energia Alternativa Renovável e Planejamento Energético Sustentável. Paraná, 2006. 285 p. Tese (Doutorado em Meio Ambiente e Desenvolvimento) - Programa de Pós-Graduação em Meio ambiente e Desenvolvimento – PPGMD - Universidade Federal do Paraná, 2006. SOUZA, S. R.; STARK, E. M. L. M.; FERNANDES, M.S. Enzimas de assimilação de nitrogênio em plantas. Artware projetos culturais. 2002. SOUZA, S.R.; FERNANDES, M.S. Nitrogênio. In: FERNANDES, M.S. Nutrição Mineral de Plantas. 1 ed. Viçosa: Sociedade Brasileira de Ciência do Solo, v. 1, p. 215-252, 2006. SPRINGDALE GROUP. Crambe (Abyssinian mustard). Disponível em (www.ienica.net/crops/crambe.pdf). Acesso em 14/02/2012. 2005. SRIVASTAVA, H.S. Regulation of nitrate reductase activity in higher plants. Phytochemistry, v. 19, p. 725-733, 1980. 76 STAVARACHE, C. VINATORU, M. MAEDA, Y. Aspects of ultrasonically assisted transesterification of various vegetable oils with methanol. Ultrason. Sonochem, v.14, p. 380–386, 2007. STEER, B. T.; SEILER, G. J. Changes in fatty acid composition of sunflower (Helianthus annuus) seeds in response to time of nitrogen application, supply rates and defoliation. J. Sci. Food Agric., v. 51, p. 11–26, 2006. STOUTJESDIJK, P.A.; HURLESTONE, C.; SINGH, S.P.; GREEN, A.G. High-oleic acid Australian Brassica napus and B. juncea varieties produced by co-suppression of endogenous Delta 12-desaturases. Biochemical Society Transactions, v. 28, 2000. TAYLOR, A.J SMITH, C.J. WILSON, I.B. Effect of irrigation and nitrogen fertilizer on yield, oil content, nitrogen accumulation and water use of canola (Brassica napus L.). Fertilizer Research, v. 29, p. 249-260, 1991. TAYLOR, D.C.; FALK, K.C.; PALMER, C.D.; HAMMERLINDL, J.; BABIC, V.; MIETKIEWSKA, E.; JADHAV, A.; MARILLIA, E.; FRANCIS, T.; HOFFMAN, T.; GIBLIN, E. M.; VESNA, K.; KELLER, W.A. Brassica carinata – a new molecular farming platform for delivering bio-industrial oil feedstocks: case studies of genetic modifications to improve very long-chain fatty acid and oil content in seeds. Biofuels, bioproducts & biorefining, v. 4, p. 538-561, 2010. TEDESCO, M. J. Extração simultânea de N, P, K, Ca e Mg em tecido de plantas por digestão com H2O2-H2SO4.UFRGS. 1982. 23p. TESTERINK, C. MUNNIK, T. Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. Journal of Experimental Botany, v. 62, n. 7, p. 2349–2361, 2011. TIAN, B.; WEI, F.; SHU, H.; ZHANG, Q.; ZANG, X.; LIAN, Y. Decreasing erucic acid level by RNAi-mediated silencing of fatty acid elongase 1 (BnFAE1.1) in rapeseeds (Brassica napus L.). African Journal of Biotechnology, v. 10, n. 61, p. 13194-13201, 2011. USDA. Synthetic diesel may play a significant role as renewable fuel in Germany. Production Estimates and Crop Assessment Division Foreign Agricultural Service, 2005. VALERIO, C. R..; ANDRADE, M. J. B.; FERREIRA, D. F. REZENDE, P.M. Resposta do feijoeiro comum a doses de nitrogênio no plantio e em cobertura. Ciênc. agrotec., Lavras. Edição Especial, p.1560-1568, 2003. VAN GERPEN, J. Cetane Number Testing of Biodiesel. Liquid Fuel and Industrial Products from Renewable Resources: Proceedings of the 3rd Liquid Fuel Conference, p. 197–206, 1996. VAN GERPEN, J. Biodiesel processing and production. Fuel Processing Technology, n. 86, p. 1097-1107, 2005. 77 VERMA, S. Review of sustainable energy resources. 2011. 120p Dissertation (Mechanical engineering). California State University, Sacramento, 2011. WANG, Y.D. AL-SHEMMERI, T. EAMES, P. MCMULLAN, J. HEWITT, N. HUANG, Y. REZVANI, S. An experimental investigation of the performance and gaseous exhaust emissions of a diesel engine using blends of a vegetable oil. Applied Thermal Engineering, v. 26, p. 1684–1691, 2006. WARABI, Y. KUSDIANA, D. SAKA, S. Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresour. Technol, v. 91, p. 283–287, 2004. WESELAKE, R.J.; TAYLOR, D.C.; RAHMAN, M.H.; SHAH, S.; LAROCHE, A.; McVETTY, P.B.E. e HARWOOD, J.L. Increasing the flow of carbon into seed oil. Biotechnology Advances, v.27, p.866–878, 2009. WINFREY, M.R.; ROTT, M.A. e WORTMAN, A.T. Unraveling DNA: Molecular biology for the laboratory. Prentice-Hall, 369p, 1997. World Wide Fund for Nature (WWF). Sustainability Standards for Bioenergy. Germany, 2006. YANIV, Z. SHABELSKY, E. SCHAFFERMAN, D. GRANOT, I. KIPNIS, T. Oil and fatty acid changes in Sinapis and Crambe seeds during germination and early development. Industrial Crops and Products, v.9, p. 1-8, 1998. YEMM, E. W. e COCKING, E. C. The determination of amino-acids with ninhydrin. Analytical Biochemistry, v.80, p.209-213, 1955. YEMM, E. W. e WILLIS, A. J. The estimation of carbohydrate in plants extracts by anthrone. Biochemistry, v.57, p.508-514, 1954. XU, K.; YANG, Y.; LI, X. Ectopic expression of Crambe abyssinica lysophosphatidic acid acyltransferase in transgenic rapeseed increases its oil content. African Journal of Biotechnology v. 9, n. 25, p. 3904-3910, 2010. ZEBARJADI, A.; JAVARAN, M.J.; KARIMZADEH, G.; MOEINI, A.; MOUSAVI, A.; SALMANIAN, A.H. Transformation of rapeseed (Brassica napus L.) plants with sense and antisense constructs of the fatty acid elongase gene. Iranian Journal of Biotechnology, v. 4, n. 2, 2006. ZEBARTH, B.J.; BOWEN, P.A.; TOIVONEN, P.M.A. Influence of nitrogen fertilization on broccoli yield, nitrogen accumulation and apparent fertilizer-nitrogen recovery. J. Plant Sci, n. 521, p. 717-725, 1995. ZOU, J.; KATAVIC, V.; GIBLIN, E.M.; BARTON, D.L.; MACKENZIE, S.L.; KELLER, W.A.; HU, X.; TAYLOR, D.C. Modification of seed oil content and acyl composition in the 78 brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell Rep, v. 9, p. 909-923, 1997.por
dc.subject.cnpqBioquímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/28544/2012%20-%20Diego%20de%20Mello%20Conde%20de%20Brito.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/34950/2012%20-%20Diego%20de%20Mello%20Conde%20de%20Brito.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/41404/2012%20-%20Diego%20de%20Mello%20Conde%20de%20Brito.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/47806/2012%20-%20Diego%20de%20Mello%20Conde%20de%20Brito.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/54238/2012%20-%20Diego%20de%20Mello%20Conde%20de%20Brito.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/3521
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-05-14T19:13:54Z No. of bitstreams: 1 2012 - Diego de Mello Conde de Brito.pdf: 3907319 bytes, checksum: 6bbecc358685fc4b9af8bcbb30c37255 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-05-14T19:13:54Z (GMT). No. of bitstreams: 1 2012 - Diego de Mello Conde de Brito.pdf: 3907319 bytes, checksum: 6bbecc358685fc4b9af8bcbb30c37255 (MD5) Previous issue date: 2012-07-23eng
Appears in Collections:Doutorado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2012 - Diego de Mello Conde de Brito.pdf2012 - Diego de Mello Conde de Brito3.82 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.