Síntese, Espectroscopia e Correlações de Energia Livre de Novos Heterocíclicos Mesoiônicos da Classe dos 1,3,4-Tiadiazólio-2-Fenilamina.

ANA CRISTINA SOUZA DOS SANTOS

UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE CIÊNCIAS EXATAS

CURSO DE PÓS-GRADUAÇÃO EM QUÍMICA ORGÂNICA

ANA CRISTINA SOUZA DOS SANTOS

SOB A ORIENTAÇÃO DA PROFESSORA: Drª Áurea Echevarria

Tese submetida como requisito parcial para obtenção do grau de Mestre em Ciências em Química Orgânica, Área de Concentração em Química Orgânica.

ITAGUAÍ, RIO DE JANEIRO

1992

TÍTULO DA TESE

Síntese, Espectroscopia e Correlações de Energia Livre de Novos Heterocíclicos Mesoiônicos da Classe dos 1,3,4-Tiadiazólio-2-Fenilamina.

AUTOR

ANA CRISTINA SOUZA DOS SANTOS

TESE APROVADA EM: 27/03/1992.

Prof^a Dr^a Maria da Graça Nascimento M. graça. Mascimento. Gautitii Onneen Educion Prof^a Dr^a Edna Cruz Fantini

Prof^a Dr^a Áurea Echevarria

Aos meus pais, por tudo que me proporcionaram.

Ao Alvimar por sua dedicação, carinho e amor.

AGRADECIMENTOS

Aos Professores Drs. Raimundo Braz Filho, Aurélio Baird Buarque Ferreira, Edna Cruz Fantini, Mario Geraldo de Carvalho, Anselmo Alphande de Moraes e Vitor Marcos Rumjanek por terem contribuído valiosamente em minha formação.

Aos Professores Joseph Miller e Aurélio B. Baird Ferreira pelas valiosas contribuições prestadas no decorrer da execução deste trabalho.

A professora M.A. Cayoco Ponzzoni pela confiança e estímulo a que me tem demonstrado ao longo destes anos.

A Viviane pela grande amizade e companheirismo que os anos de convivência me proporcionaram.

Aos meus amigos Kátia e Jayme pela amizade sincera e sempre presente.

À Lúcia Helena Souza Santos, Francisco de Assis da Silva e demais amigos da pós-graduação, pela amizade e convivência harmoniosa. Aos professores, Edna Gomes, Silvio Martins Junior, Humberto Machareti, Sonildes Lamego e demais professores e funcionários do Departamento de química do ICE da UFRRJ, pela confiança e apoio demonstrado.

Aos colegas de laboratório Jovino, André, João e Carlos, cada um a seu tempo, durante estes anos de trabalho.

A Eduardo Mesquita Mendonça pela valiosa contribuição na elaboração das estruturas.

A Nilson Brito de Carvalho pelo paciente trabalho de digitação

Às moradoras do F1-19 pela acolhedora hospedagem.

À Universidade Federal Rural do Rio de Janeiro e a CAPES pela oportunidade concedida.

À Universidade Federal da Paraíba pela obtenção dos espectros de massa.

À Professora, orientadora, e amiga Drª Aurea Echevarria, cuja orientação e estímulo tornaram possível a realização deste trabalho.

ÍNDICE

INT	TRODUÇÃO		1
1.1.	Compos	to Mesoiônicos	1
	1.1.1.	Representação	2
	1.1.2.	Classificação	5
	1.1.3.	Nomenclatura	8
	1.1.4.	Estrutura e Aromaticidade	10
	1.1.5.	Propriedades Espectroscópicas	15
		1.1.5.1. RMN ¹ H	16
		1.1.5.2. RMN ¹³ C	19
		1.1.5.3. Espectroscopia na Região do In-	
		fravermelho e do Ultravioleta	23
		1.1.5.4. Espectrometria de Massa	25
1.2.	Relaçõ	es Lineares de Energia Livre/Correlação	
	da Est	rutura x Reatividade	28
	1.2.1.	A Equação de Hammett	29
	INT 1.1. 1.2.	INTRODUÇÃO 1.1. Compos 1.1.1. 1.1.2. 1.1.3. 1.1.4. 1.1.5. 1.2. Relaçõ da Est 1.2.1.	<pre>INTRODUÇÃO 1.1. Composto Mesoiônicos 1.1.1. Representação 1.1.2. Classificacão 1.1.2. Classificacão 1.1.3. Nomenclatura 1.1.4. Estrutura e Aromaticidade 1.1.5. Propriedades Espectroscópicas 1.1.5.1. RMN ¹H 1.1.5.2. RMN ¹³C 1.1.5.3. Espectroscopia na Região do In- fravermelho e do Ultravioleta 1.1.5.4. Espectrometria de Massa 1.2. Relações Lineares de Energia Livre/Correlação da Estrutura x Reatividade 1.2.1. A Equação de Hammett</pre>

	1.2.1.1.	Equação de Hammett: Um modelo	
		de Relação Linear de Energia	
		Livre	9
	1.2.1.2.	Os Efeitos dos Substituintes 3	0
	1.2.1.3.	Desvios na Equação de Hammett 3	1
	1.2.1.4.	Expansão da Equação de Hammett. 3	3
	1.2.1.5.	Correlações entre Deslocamento	
		Químico e RMN ¹³ C e a Constante	
		do Substituinte 3	5
2.	OBJETIVOS	4	1
3.	MATERIAIS E MÉTODO	s 4	2
	3.1. Aparelhos		2
	3.2. Solventes para	as Sínteses 4	3
	3.3. Reagentes para	as Sínteses 4	3
	3.4. Sínteses		3
	3.4.1. Sínteses	o dos ácidos cinâmicos meta e	
	para su	bstituídos 4	: 3
	3.4.2. Sínteses	dos ácidos meta e para acetoxi-	
	nâmicos		5
	3.4.3. Caracteri	ização dos ácidos cinâmicos 4	5
	3.4.4. Síntese	da 1,4-difeniltiossemicarbazida. 5	2
	3.4.5. Síntese o	dos cloretos de cinamoilas m e p	
	substituí	ídos 5	2

3.4.6. Síntese dos cloretos de 4-fenil-5-[4-Xcinamoil]-1,3,4-tiadiazólio-2-fenilamina e cloretos de 4-fenil-5-[3-X-cinamoil-1, 3,4-tiadiazólio-2-fenilamina 53 3.4.7. Caracterização dos ácidos conjugados dos Compostos Mesoiônicos 55 4. DISCUSSÃO DOS RESULTADOS 61 4.1. Alguns comentários sobre a síntese e a purificação dos compostos mesoiônicos 61 4.1.1. Estereoquímica dos ácidos cinâmicos 61 4.1.2. Formação de cloretos de 4-fenil-5-(p- e m-hidroxicinamoil)-1,3,4tiadiazólio-2-fenilamina 61 4.2. Comportamento químico dos ácidos conjugados dos compostos mesoiônicos quando tratados com sílica 62 4.2.1. Comportamento químico de MI-7 em cromatografia de coluna 62 4.2.2. Deslocamento do equilíbrio ácido/base dos compostos MI-1, MI-2 e MI-7 na presença de sílica, clorofórmio e metanol.. 65 4.3. Interpretação dos espectros de massa 67 4.4. Discussão das atribuições dos deslocamentos de ressonância magnética nuclear de ¹³C 70 4.4.1. RMN ¹³C dos ácidos cinâmicos substituídos 70

x

	4.4.2.	RMN ¹³ C dos ácidos conjugados dos mesoiô-	
		nicos 7	2
	4.5. Relaçõe	es lineares de energia livre - correlação	
	dos de	eslocamentos químicos de RMN ¹³ C x efeitos	
	dos	substituintes	9
	4.5.1.	Correlação para os ácidos cinâmicos subs-	
		tituídos 7	9
	4.5.2.	Correlações para os ácidos conjugados	
		dos compostos mesoiônicos 8	2
5.	CONCLUSÕES	8	7
б.	REFERENCIAS	S BIBLIOGRÁFICAS 8	9
7.	ESPECTROS		4

RESUMO

Os compostos mesoiônicos são heterocíclicos dotados de estrutura não clássica cuja síntese tem mostrado interesse principalmente por serem potencialmente ativos biologicamente.

Sintetizamos uma série de 11 novos derivados contendo grupamentos cinamoilas m- e p-substituídos da classe dos 1,3,4-tiadiazólio-2-fenilamina, precursores dos correspondentes mesoiônicos. Esses compostos não estão descritos na literatura e foram caracterizados por espectroscopia de infravermelho, ultravioleta, RMN ¹H e ¹³C e espectrometria de massa.

Foram estudadas as relações lineares de energia livre considerando-se os deslocamentos químicos de RMN 13 C contra as constantes dos substituintes (σ) e os parâmetros duais (σ I, σ R, \Im e \Re) Observou-se que os efeitos dos substituintes no anel arila do grupo cinamoila eram transmitidos através da ligação homopolar aos carbonos C-2 e C-5 do anel mesoiônico, sendo que o efeito de ressonância apresentava-se como mais significativo, evidenciando uma

xii

conjugação extendida do substituinte ao átomo de nitrogênio exocíclico ligado ao anel heterocíclico.

Observou-se também que os deslocamentos químico dos carbonos C- α e C- β do grupamento cinamoila apresentaram boas correlações com os efeitos dos substituintes, tanto nos compostos heterocíclicos como nos ácidos cinâmicos; sendo que o efeito de ressonância foi mais significativo para o C- β e o indutivo para o C- α , conforme esperado.

ABSTRACT

Mesoionic compounds are heterocycles with special structure. They are important mainly due to their potential biological activity.

Eleven new coumpounds, not described in literature, were synthesized and characterized by IR, UV and particularly ¹³C NMR spectroscopie and mass spectrometry.

Linear free energy relationships relating 13 C Chemical Shifts and substituent constants (σ) and using dual parameters σ_{I} , σ_{R} , \mathfrak{J} and \mathfrak{R} were also studied. The transmition of polar substituent effects by the Cinamoil group for C₂ and C₅ in the mesoionic ring, was studied, showing that resonance is the more significant effect and that an extensive conjugation between the substituent group and the exocyclic-N of the mesoiônic ring exists.

1. INTRODUÇÃO

1.1 - COMPOSTOS MESOIÔNICOS

O grande interesse em se estudar os compostos mesoiônicos surgiu no final do século passado, quando Emil Fischer e Emil Besthorn¹ descreveram o primeiro mesoiônico. Porém, sua classificação como tal foi feita em 1949 por Baker e Ollis² que os definiram como: "heterocíclicos, em geral de 5 membros, que não podem ser representados satisfatoriamente por estruturas totalmente polares ou totalmente covalentes". A partir desta definição, acentuou-se o interesse no estudo desses compostos, não apenas devido à sua estrutura não clássica, mas também pelo potencial biológico apresentado por algumas classes. Alguns compostos mesoiônicos também apresentam apreciável interesse por participarem em reações de ciclo-adição 1,3-dipolares, podendo prover novas rotas sintéticas para uma grande variedade de heterocíclicos.

1.1.1. - Representação

O primeiro composto mesoiônico, a dehidroditizona (1) foi preparada por Fisher e Besthorn¹, há mais de cem anos e representada através de uma estrutura bicíclica, 1'.

Busch³ descreveu, durante o período de 1895 a 1905, a preparação e as propriedades químicas de alguns compostos heterocíclicos mesoiônicos (2-5), também representados, na época, por estruturas bicíclicas (2'-5').

Em 1935, Earl e Mackney⁴, prepararam a N-fenilsidnona (6), que recebeu este nome por ter sido preparada na Universidade de Sydney, Austrália. A N-fenilsidnona foi representada inicialmente por uma estrutura semelhante a uma lactona bicíclica (6').

Em 1938, Schömberg⁵ reconheceu que os compostos descritos por Busch³ podiam ser representados por estruturas de ressonância com cargas, o que levou Simpson⁶ a sugerir o nome de "composto mesoiônico" para essa classe de substâncias.

Baker e Ollis² demontraram que a sidnona (6) e os compostos 2 a 5 pertencem a mesma família de heterocíclicos e são descritos como mesoiônicos.

A característica básica dos compostos mesoiônicos é o fato de não poderem ser representados adequadamente por apenas estruturas totalmente covalentes ou totalmente polares e não terem todavia um comportamento típico de ilídeos ou betaínas, sendo melhor descritos por um híbrido de ressonância de todas as possíveis formas carregadas envolvendo no anel a presença do carater aromático⁷ $(4n+2)e\pi$. Como exemplo citamos o sistema 1,3,4-tiadiazólio-2-aminida (7) que é representado por um híbrido de ressonância das diversas formas canônicas (Figura 1).

Figura 1

Os compostos mesoiônicos da classe do 1,3,4-tiadiazólio-2-aminidas (7) são algumas vezes representados pela estrutura 7a caracterizando-os como betaínas heteroaromáticas.

As betaínas heteroaromáticas são moléculas neutras, conjugadas e podem ser representadas somente por estruturas dipolares, nas quais as cargas positivas e negativas estão deslocalizadas através do sistema de elétrons π . Desta forma, alguns compostos mesoiônicos podem ser descritos como betaínas. No entanto, como a distribuição eletrônica é diferenciada dependendo da espécie e arranjos dos átomos que constituem o anel e os heteroátomos exocíclicos, o conceito de betaínas^{7,8} não poderá ser aplicado a todos os compostos mesoiônicos. Por exemplo, a aromaticidade dos compostos mesoiônicos da classe dos 1,3,4-tiadiazólio-2-aminida, está associada à deslocalização dos seis elétrons, como representado na estrutura 7 (Figura 1). Neste caso, existe a possibilidade de que uma das formas canônicas contribua mais significativamente para o híbrido de ressonância e, portanto em função de seu comportamento físico e químico, este composto mesoiônico seria melhor representado como uma betaína heteroaromática, 7a.

1.1.2 - Classificação

Considerando os compostos mesoiônicos heterocíclicos de cinco membros, dois tipos gerais podem ser descritos³ (Figura 2), onde a,b,c,d,e e f (9) se referem aos carbonos ou heteroátomos apropriadamente substituídos. Estes são escolhidos de maneira que possam permitir um sistema conjugado entre todos os átomos componentes do anel, como também o substituinte exocíclico. As fórmulas genéricas 10 e 11 representam os sistemas mesoiônicos tipo A e tipo B, respectivamente. Os números indicados acima das letras representam o número de elétrons com que esses átomos contribuem para o sistema conjugado.

Figura 2

Os mesoiônicos 1,2,3,4-tetrazólio-5-tiolato (12) e desidroditizona (1) são isômeros e classificados em mesoiônicos tipo A e tipo B, respectivamente. Os dois tipos gerais de mesoiônicos possuem propriedades químicas distintas.

O mesoiônico tipo A tem como importante propriedade química a participação em reações 1,3-dipolares 5. Como exemplo, temos a típica reação de ciclo adição do 2,4-difenil-3-metil-1,3- oxadiazólio-5-olato, Figura 3.

Figura 3

Uma importante característica do heterocíclico mesoiônico do tipo B é sua facilidade em abrir o anel para dar tautômeros acíclicos⁵, levando a novos heterocíclicos. Por exemplo, a reação da desidroditizona, Figura 4.

Figura 4

Existem cerca de 144 estruturas teóricas possíveis para o composto mesoiônico tipo A e 84 para o composto mesoiônico tipo B⁸.

1.1.3 - Nomenclatura

A nomenclatura utilizada pelo Chemical Abstracts baseia-se em normas convencionais da IUPAC e denomina os compostos mesoiônicos como derivados de hidróxidos anidros, por exemplo, a 3-fenil-sidnona(6) será anidro-3-fenil-5-hidroxi-1-oxa-diazólio-hidróxido. Tal nomenclatura porém não é satisfatória, pois pode confundí-los com betainas. Para se evitar tal situação, utiliza-se o adjetivo "mesoiônico" precedendo o nome do sistema², que será convenientemente descrito como mesoiônico 3-fenil-1,2,3-oxadiazólio-5-olato.

Alguns sistemas mesoiônicos não apresentam dúvidas quanto a sua nomenclatura, como é o caso do sistema 1,3,4-tiadiazólio-2-aminida (7), porém quando nos referimos ao seu isômero (13), verificamos três nomemclaturas utilizadas: 1,2,4-triazólio-3-tiolato $(A_{13})^{9,10}$, que é baseado na regra dos menores números para o anel; 1,3,4-triazólio-2-tiolato $(B_{13})^{11}$ e 1,3,4 triazólio-5tiolato $(C_{13})^{12}$. Estas duas últimas nomeações obedecem a seguinte regra: numera-se com 1 o heteroátomo que contribui com o par de elétrons não compartilhado, de acordo com a classificação de compostos mesoiônicos, de forma que possa prevalecer a seqüência de prioridade: oxigênio, enxofre e nitrogênio e a ordem dos menores números para o anel. A seqüência da numeração se faz ou considerando o grupo exocíclico (B_{13}) ou os menores números para os substituintes ligado ao anel(C_{13}).

Sendo assim, os compostos mesoiônicos 7 e 13 terão numerações diferenciadas levando às nomenclaturas variadas, como mostrado na Figura 5.

SISTEMA MESOIÔNICO

NOMENCLATURA

mesoiônico-4,5-difenil-1,3,4-tiadiazólio-2-aminida

mesoiônico 1,4,5-trifenil-1,2,4-triazólio-3-tiolato (A_{13}) mesoiônico-1,4,5-trifenil-1,3,4-triazólio-2-tiolato (B_{13}) mesoiônico-1,2,3-trifenil-1,3,4-triazólio-5-tiolato (C_{13})

Figura 5

Neste trabalho a nomenclatura utilizada será baseada na seqüência de numeração que obedece a ordem de prioridade: oxigênio, enxofre e nitrogênio e dos menores números para o anel mesoiônico. 1.1.4 - Estrutura e Aromaticidade

Desde a introdução do conceito de compostos mesoiônicos por Baker², classificando-os como pertencentes a uma nova classe de heterocíclicos que não podem ser representados satisfatoriamente por estruturas totalmente polares ou totalmente covalentes, desenvolveram-se diversos estudos para a determinação das estruturas desses compostos.

Alguns desses estudos têm como fundamento a correlação entre a fórmula estrutural do composto e suas propriedades espectroscópicas, como o encontrado para a sidnona (6). A sidnona apresenta na região do espectro do infravermelho uma banda de absorção de carbonila de alta freqüência (1768 cm⁻¹) e grande intensidade¹³, que coloca em questão a sua representação estrutural.

Fundamentados em tais fatos Thiessen e Hope¹⁴ determinaram os comprimentos e ângulos de ligação para o composto 4,4-dicloro-3,3'-etileno-bis-sidnona (14) utilizando cálculos baseados na análise dos resultados de difração de Raios-X. (Figura 6). Comparando o comprimento das ligações: C-C no benzeno (1,397Å), C-N na piridina (1,340Å), N-N na tetrazina (1,321Å) e N-O no 1,2,5-oxadiazol (1,38Å), verificaram que todas as distâncias entre os átomos no anel mesoiônico estavam entre ligações simples e duplas, exceto para a ligação C-O exocíclica.

10

Comprimento de ligação Å 01-N2: 1,389 C5-01 : 1,407 02-N3= 1,313 N3-CH2 = 1,679 N3-C4= 1,344 C4-C1 = 1,479 C4-C5= 1,395 C5-06 = 1,215 Ângulos de ligação A= 1113° E= 127,6° I= 103,3° B= 103,8° F: 107,2° J= 135,5° C= 114,4° C= 125,1° L= 121,1° D= 118,0° D= 126,7°

Figura 6

O comprimento de ligação observado para a ligação C-O do anel (1,407Å) é maior que os encontrados para o furano (1,362Å) e para lactonas α,β -insaturadas (1,37Å). O comprimento observado para a ligação exocíclica C-O (1,21Å) possui essencialmente carater de dupla, sendo ligeiramente maior que o encontrado em 4-hidroxicumarina (1,20Å). Estes resultados levaram Thiessen e Hope a postularem quatro estruturas de ressonância, sendo "d" a de maior contribuição para o híbrido de ressonância (Figura 7).

Figura 7

A deformação do ângulo de ligação no grupo carbonila é diretamente atribuída à contribuição da forma "d" semelhante ao ceteno.

Trabalhos posteriores, utilizando o método W-Huckel e o método CNDO para cálculos dos valores de momentos dipolares, constantes de força, ordem de ligação e densidade eletrônica para 3-metil-sidnona, foram realizados. A Figura 8 mostra, separadamente, os resultados para as ordens de ligação e densidade eletrônica obtidos por Kier¹⁵ e Schimid¹⁶.

0	í	Densidade de Carga		~	Ordem de Ligação	
H C 5	Atomos	Método W-Huckel ¹⁵	Método CNDO ¹⁶	Ligaçao	Método W-Huckel ¹⁵	Método CNDO ¹⁶
···	1	0,079	0,080	1-2	0,272	0,222
4 \ / '	2	-0,204	-0,119	1-5	0,360	0,231
$\langle \rangle$	3	0,263	0,421	2-3	0,639	0,569
	4	-0,139	0,044	3-4	0,651	0,503
/N 2 2	5	0,455	0,100	4-5	0,399	0,660
3	6	-0,487	-0,530	5-6	0,802	0,635
H。C						

Figura 8

As cargas positiva no átomo de nitrogênio-3 e negativa no átomo de carbono-4 são também confirmadas¹¹ por análise de RMN ¹H. A alta ordem de ligação entre C5-C6 é coerente com o estudo de Raios-X realizado por Thiessen e Hope¹⁴ e os dados de infravermelho¹³.

No trabalho "Correlação entre cálculos teóricos e dados experimentais em compostos mesoiônicos", os autores¹⁷ sugerem que o ácido conjugado do sistema mesoiônico 1,3,4-tiadiazólio-2-aminida (8) apresente como maior contribuição para o seu híbrido de ressonância a forma canônica 8a.

Tal sugestão foi baseada nos cálculos teóricos utilizando-se os métodos semi-empírico (MNDO, AM-1, MNDO-PM3) e ab-initio (STO- 3G/6-311 + G e GVB-pp) e difração de Raios-X.

Os valores calculados para a ordem de ligação π e π + σ conferem um maior carater de dupla ligação entre os átomos C-5 e N-4 e C-2 e N-3 (Figura 9).

13

Estes resultados foram confirmados através de difração de Raios-X, Figura 10.

Figura 10

O caráter aromático dos compostos mesoiônicos é fundamentado na regra de Hückel onde são considerados aromáticos os sistemas anelares contendo um número de elétrons π igual a 4n+2, sendo n um número inteiro e positivo. A evidência deste caráter aromático é bem pronunciada no deslocamento químico de RMN de ¹H, o que será visto adiante, como também nas distâncias aproximadamente iguais entre os átomos anelares obtidos através de cálculos teóricos e difração de Raios-X, conforme os 1,3,4-tiadiazólio-2-aminida (pag. 13 e 14, respectivamente).

Uma outra evidência de aromaticidade dos compostos mesoiônicos foi relatada por Duffin e Kendall¹⁸. Eles verificaram reações de substituição eletrofílica como bromação e nitração em derivados do sistema mesoiônico 1,2,3-tiadiazólio-4-olato(15).

1.1.5 - Propriedades Espectroscópicas

Os compostos heterocíclicos mesoiônicos pertencem a uma classe ainda pouco estudada quanto às propriedades espectroscópicas. Sua identificação é geralmente feita comparando-os a outros sistemas que apresentem mais ou menos as mesmas características e que tenham sido detalhadamente estudados.

Serão destacados a seguir alguns dos conceitos e caracterizações mais relevantes dentro dos trabalhos da espectroscopia de ressonância magnética nuclear de ¹H e ¹³C, infravermelho, ultravioleta e espectrometria de massa dos compostos mesoiônicos.

$1.1.5.1 - RMN^{1}H$

A espectrometria de RMN ¹H para estes compostos é de grande relevância, principalmente quando existem átomos de hidrogênio ligados diretamente ao anel mesoiônico. Os deslocamentos químicos destes átomos podem levar a informações importantes sobre as estruturas dos compostos, possibilitando assim fazer menções sobre a aromaticidade e a distribuição de carga nos aneis.

O deslocamento químico para o hidrogênio ligado ao carbono-4 das sidnonas e N-derivados (6) varia de 6,2 à 6,8 ppm. A observação dos sinais em campo mais alto que o esperado foi justificada através da proposta de que alguma carga negativa era gerada nesse átomo, contribuindo assim para uma proteção diamagnética desse próton¹³. O cálculo de densidade eletrônica realizada por Schimid¹⁶ também fundamentou esta proposta.

Os valores¹⁹ dos deslocamentos químicos para os hidrogênios anelares da classe dos 1,3,4-triazólio-2-tiolato e 1,3,4-triazólio-2-olato, são observados em campo baixo, a saber: 10,40 ppm para o composto 16 e 10,10 ppm para 17 em N,Ndimetilformamida.

O alto grau de desproteção desses prótons é conseqüência da estrutura dipolar dos compostos mesoiônicos²⁰, em que o polo positivo está no heterociclo. Os efeitos eletrônicos são transferidos do átomo ou grupo exocíclico para a posição-5 do anel através dos efeitos mesoméricos.

A metilação do enxofre exocíclico do composto 16 resulta no aumento da desproteção do hidrogênio-5, devido a uma localização de carga positiva nessa posição de acordo com a estrutura proposta 18 na Figura 11.

Figura 11

O sinal do grupo metila ligado ao átomo de nitrogênio-4 dos derivados 1,3,4-oxadiazólio-2-tiolato(18), apresenta-se como um singleto em 4,90 ppm para o composto 18a e 4,17 ppm para o composto 18b 21.

18

Comparando-se o deslocamento químico de RMN ¹H do grupo metila do composto mesoiônico 18a aos das N-acil-hidrazinas 19 e 20 verifica-se que o deslocamento químico em campo mais baixo para o composto mesoiônico indica para a molécula uma estrutura polar e aromática.

19

 $CH_3 = 3,32 \text{ ppm}$

 $CH_3 = 3,18 \text{ ppm}$

1.1.5.2 - RMN ¹³C

Existem poucos trabalhos na literatura sobre espectroscopia de RMN ¹³C de compostos mesoiônicos e compostos heterocíclicos relacionados.

Comparando os heterocíclicos mesoiônicos 1,2,4-triazólio-3-tiolato (21) e 1,2,4-triazólio-3-tiona (22), Shutske e Agnew⁹ verificaram que os deslocamentos químicos dos C-3 e C-5 para os dois heterocíclicos estão na mesma faixa.

Echevarria¹², estudando o mesmo sistema mesoiônico observou deslocamentos químicos de RMN ¹³C coerentes com os apresentados por Shutske.

C – 3	170	ppm	C-3	164	ppm
C-5	144	ppm	C-5	146	ppm

Os compostos mesoiônicos pertencentes ao sistema conjugado 1,2,4-triazólio (4,3-b)-1,2,4-triazólio 23a-b e 24a-b foram sintetizados por Molina e colaboradores¹⁰. A atribuição dos deslocamentos químicos de RMN ¹³C desse sistema foi realizada comparando-se com o composto heterocíclico 25, conforme a Tabela 1.1.

Comp.	R	C-3	C-6	C-8	N1 ^{CH} 3	C3SCH3	C6SCH3
23 a	с ₆ н ₅	136,3	175,9	144,6	35,8	13,6	-
23 b	p-CLC ₆ H4	136,3	176,1	144,8	35,9	13,6	-
24 a	с ₆ н ₅	138,6	162,3	146,1	36,6	14,2	14,4
24 b	p-CLC6H4	138,9	162,4	146,3	36,8	14,3	14,6

Tabela 1.1: Deslocamentos químicos de RMN ¹³C para os compostos 23a-b e 24a-b.

Segundo os autores, os átomos de C-6 estão mais desprotegidos nos compostos 23a-b, devido a grande contribuição do caráter de dupla da ligação C-6-S⁻.

Tsolerides e Alexandrou²² examinaram os espectros de RMN 13 C dos compostos mesoiônicos 1,2,3-triazólio-4-acetamida e 1,2,3-triazólio-4-olato e atribuíram os deslocamentos químicos de 13 C para as duas séries, conforme a Tabela 1.2.

Com	p.	C-4	C-5	C-1/	C-2'6'	C-3/5/	C-4'	N-CH3	C-7	C-8
26	а	151,4	117,8	135,7	142,1	129,0	129,2	39,5	179,3	27,2
26	b	150,9	117,6	132,9	123,7	129 ,3	139,1	39,2	178,9	27,0
27	с	151,5	117,9	134,3	125,2	129,3	135,1	39,7	179,5	27,3
27	а	158,1	107,9	135,8	121,9	128,9	127,5	39,7	-	-
27	b	158,2	107,8	133,6	121,2	129,6	137,7	39,8	-	-

Tabeta 1.2: Deslocamento químico de RMN ¹³C para os compostos mesoiônicos 26 e 27.

Os deslocamentos químicos dos C-4 e C-5 para os compostos 26a-c serão afetados pelo efeito de ressonância do grupo exocíclico acetamida que provocará um deslocamento para campo baixo para o C-4 e campo mais alto para C-5. No C-4 além do efeito de ressonância observa-se também o efeito γ de proteção.
1.1.5.3 - Espectroscopia na Região do Infravermelho e do Ultravioleta

A espectroscopia na região do infravermelho é um método geralmente utilizado na caracterização da estrutura mesoiônica e na distinção entre os pares de isômeros. A espectroscopia na região do ultravioleta é muito pouco evidenciada na literatura.

Comparando-se os heterocíclicos, mesoiônico 1,4,5-trifenil-1,2,4-triazólio-3-olato (28) e 1,4,5-trifenil-1,2, 4-triazol-ona (29), observou-se a presença de bandas de absorção de carbonila na região do infravermelho correspondentes a 1675 cm^{-1} e 1705 cm^{-1} , respectivamente²³.

A baixa freqüência de absorção da ligação C-O do composto 28 se deve ao caráter iônico do grupo, caracterizando o composto mesoiônico como uma estrutura dipolar, onde o polo negativo do dipolo está direcionado para o átomo ou grupo exocíclico, enquanto o polo positivo está no anel. A absorção máxima na região do ultravioleta pelo anel mesoiônico apresenta-se no comprimento de onda de 242 nm (log $\varepsilon = 4,15$). Os pares de isômeros mesoiônicos 30 e 31 apresentam propriedades espectroscópicas bastante características. O composto mesoiônico 1,3,4-triazólio-2-olato (30) mostra absorção na região do infravermelho mais intensa na freqüência de 1650 cm⁻¹, que pode ser atribuída ao estiramento da ligação C-O. Este número de onda é menor do que a absorção observada para as sidnonas¹³ (6) (1718-1770 cm⁻¹). O espectro na região do infravermelho para o sistema 1,3,4 oxadiazólio-2-tiolato (30) mostra absorção a 1420 cm⁻¹ que pode ser atribuída à ligação $C-S^{11}$.

Semelhantemente, os isômeros 1,3,4-tiadiazólio-2-amideto (32) e 1,2,4-triazólio-3-tiolato (33) são também diferenciados pela banda de absorção na região do infra-vermelho do grupo exocíclico¹¹.

Os 1,3,4-tiadiazólio-2-amideto (32) mostram¹¹ no espectro de IV absorções a freqüência de 1550-1580 cm⁻¹, que podem ser atribuídas ao estiramento da ligação C-N. Já os compostos mesoiônicos da série 1,3,4-triazólio-2-tiolato (33) mostram absorção à freqüência de 1320-1330 cm⁻¹ devido ao estiramento da ligação C-S. O espectro na região do ultra-violeta para esta série mostra comprimento de onda para absorção máxima em 240 nm (ϵ =3100).

1.1.5.4 - Espectrometria de Massa

A espectrometria de massa é uma técnica muito importante na determinação estrutural de compostos mesoiônicos e particularmente útil na distinção entre os pares de isômeros.

O processo de fragmentação²⁴ de várias classes de compostos mesoiônicos de estrutura genérica I é resumido no esquema geral representado na Figura 12.

Figura 12

Observa-se que o esquema de fragmentação desses sistemas mesoiônicos é simples, onde o íon molecular aparentemente fragmenta-se em duas rotas principais, A e B. A rota A fornece o íon $R^2C=X^+$ (II) pela fissão das ligações 1-2 e 4-5 que sofrem a usual fragmentação dando o íon R^{2+} . A rota B fornece o íon $R^1N=CR^{2+}$ (IV), que envolve a fissão das ligações 1-5 e 3-4 originando os íons R^{1+} e R^{2+} . Em menor proporção, a rota C dá origem ao íon $R^1NCR^2X^+$ (III).

Citamos como exemplo, a classe 1,3,4-triazólio-2-aminida, cujos isômeros a e b são diferenciados a partir do fragmento proveniente da rota A. (Figura 13).

Figura 13

Hanley *et al.*²⁵ discutiram a fragmentação de várias classes de compostos mesoiônicos de estrutura genérica V e propuseram o esquema geral de fragmentação mostrado na Figura 14.

Figura 14

A fragmentação proposta para esses sistemas mesoiônicos indica que o íon molecular pode fragmentar-se por quatro rotas diferentes (A, B, C, e D), sendo que uma rota será predominante em função da estrutura de cada sistema.

Como exemplo citamos a fragmentação da classe 1,2, 3,4-oxatriazólio-5-olato (33) (Figura 15).

Figura 15

1.2 - RELAÇÕES LINEARES DE ENERGIA LIVRE/CORRELAÇÃO DA ESTRUTURA X REATIVIDADE

A tentativa de correlacionar matematicamente a estrutura química de um composto orgânico com a sua reatividade é bastante antiga²⁶, porém, foi somente a partir de 1937, quando Hammett²⁷ publicou seu clássico trabalho "Phisical Organic Chemistry" que os avanços nesse campo passaram a ser realmente significativos.

1.2.1 - A Equação de Hammett

O primeiro trabalho de grande relevância sobre estrutura x reatividade foi realizado por Hammett²⁷ através do estudo da constante de ionização de ácidos benzóicos meta e para substituídos em água a 25°C, onde foi estabelecida a primeira correlação empírica conhecida como Equação de Hammett (I).

 $\log K = \rho \sigma + \log K^{\circ}$ (I)

K = Constante de ionização do ácido benzóico substituído
K°= Constante de ionização do ácido benzóico ρ = Coeficiente de susceptibilidade da reação σ : Constante do substituinte

1.2.1.1 - Equação de Hammett: Um Modelo de elação Linear de Energia Livre

Na construção do gráfico log k_x/k_H (k_x = constante de hidrólise do benzoato de etila substituído; k_H = constante de hidrólise do benzoato de etila) contra log K_x/K_H (K_x = constante de ionização do ácido benzóico substituído, K_H = constante de ionização do ácido benzóico), Hammett observou um alinhamento entre os pontos experimentais. Esta evidência mostrou que cada substituinte exerce o mesmo efeito em cada uma dessas reações. Este fenômeno só foi observado quando os substituintes se localizavam na posição para ou meta do anel benzênico²⁶.

Considerando o fato de que relações entre os logarítimos das constantes de equilíbrio ou de velocidade são quantidades de energia livre, Equações (II) e (III), verifica-se que as constantes dos substituintes na equação de Hammett também interferem nos fatores ΔG ou ΔG^{\neq} , ΔH ou ΔH^{\neq} e, menos significativamente nos fatores ΔS e ΔS^{\neq} , Equações (IV). O fator entropia é consideravelmente mais afetado nos compostos orto substituídos, daí a sua não aplicação na equação de Hammett simples²⁸.

$$\log K = - \frac{\Delta G^{\circ}}{2,303RT}$$
(II)
$$\log K = \log \frac{RT}{N_{A}h} - \frac{\Delta G^{*}}{2,303RT}$$
(III)
$$\Delta G: \Delta H - T \Delta S$$
(IV)

1.2.1.2 - Os efeitos dos Substituintes

Os efeitos dos substituintes são ocasionados pela combinação de dois fatores eletrônicos: o de ressonância e o indutivo. No efeito de ressonância os substituintes polarizam a densidade de carga do anel aromático através do sistema π de elétrons. Estes susbtituintes podem ter características doadoras ou retiradoras de elétrons, transferindo ou retirando elétrons π do sítio da reação respectivamente. O efeito indutivo é resultante da diferença de eletronegatividade entre dois grupos,

30

originando um dipolo entre as ligações. Este efeito pode se apresentar sob duas maneiras: o efeito indutivo e o efeito indutivo de campo. A diferença entre eles é que o primeiro é transmitido através da ligação polarizada formando uma interação entre o polo da ligação e o sítio reativo, enquanto que o segundo se dá por uma interação eletrostática através do espaço.

A predominância diferenciada desses efeitos (ressonância e indutivo) pode ser observada através dos valores de ρ obtidos da Equação de Hammett a partir das constantes de ionização dos derivados de ácidos benzóicos substituídos (Tabela 1.3)²⁸.

Ácidos	Solvente T (°C)	ρ	
ArCOOH ArCH ₂ COOH ArCH ₂ CH ₂ COOH ArCH=CH-COOH	H ₂ O/25 H ₂ O/25 H ₂ O/25 H ₂ O/25 H ₂ O/25	1,0 0,562 0,237 0,68	

1.2.1.3 - Desvios na Equação de Hammett

Aplicando-se a equação de Hammett às constantes de ionização de fenóis para-substituidos, observou-se não haver uma boa correlação entre os pontos. Os pontos correspondentes aos grupos substituintes fortemente retiradores situavam-se acima da reta obtida, sugerindo que os valores das constantes dos substituintes (σ) não estavam adequados. Da mesma forma, para a solvólise dos cloretos de t-cumila para-substituidos, a reta obtida, com aplicação da equação de Hammett, mostrou pontos correspondentes aos grupos fortemente doadores de eletrons abaixo da mesma.

O comportamento apresentado por esses compostos pode ser explicado pela estabilização dos intermediários, nas reações consideradas, através do efeito da conjugação cruzada (Figura 16).

Figura 16

Os valores de σ e foram então ajustados, considerando-se o comportamento dos efeitos eletrônicos em cada situação. Essa adaptação deu origem a novos conjuntos de valores de σ e que passaram a receber a denominação de σ^- para os grupos substituintes fortemente retiradores (por exemplo para o grupo NO₂, σ = 0,78 e σ^- = 1,24) e σ^+ para os fortemente doadores (por exemplo para o grupo CH₃0, σ = -0,27 e σ^+ = -0,78). 1.2.1.4 - Expansão da Equação de Hammett

Na determinação das constantes de ionização dos ácidos metoxibenzóicos, observou-se para o composto para-substituido constantes de ionização igual a 3,38 x 10^{-5} M⁻¹ e para o meta-substituido 8,12 x 10^{-5} M⁻¹. Estes resultados se devem aos diferentes efeitos causados pelo grupo metoxila nestas posições, exercendo efeito doador de elétrons por ressonância na posição para (+R) e efeito indutivo retirador de elétrons na posição meta (-I).

A separação desses efeitos eletrônicos forneceu duas novas escalas para o parâmetro σ , constante do substituinte, o indutivo σ_{I} e o de ressonância σ_{R} , conhecidos como parâmetros duais (Equações (V) e (VI))^{22,30}. Estes valores foram de grande interesse teórico, pois possibilitaram novas correlações em sistemas onde a equação de Hammett simples não se aplicavam e levaram à Equação (VII).

 $\sigma_{p} = \sigma_{I} + \sigma_{R} \qquad (v)$ $\sigma_{m} = \sigma_{I} + \sigma_{R} \qquad (vI)$ $\alpha = fator de correlação$

A Equação de Hammett expandida (VII) é capaz de expressar as contribuições isoladas dos efeitos indutivos e de ressonância, permitindo calcular a susceptibilidade da reação em relação a estes efeitos separadamente²⁹.

log K= $\rho_{I}\sigma_{I}$ + $\rho_{R}\sigma_{R}$ + log K° (VII)

O modelo de Taft

Taft^{29,30} estudou a hidrólise de ésteres alifáticos sob condições ácidas e básicas, verificando que as constantes de velocidade dos acetatos de etila substituídos não obedeciam à equação de Hammett. Propôs então que estas reações estavam também sujeitas ao efeito estérico do substituinte, E_s , que interfere na entropia da reação. Neste caso a relação matemática que melhor correlaciona esses efeitos é dada pela Equação (VIII).

$$\log K_{x}/K_{H} = \rho_{I}\sigma_{I} + \rho_{R}\sigma_{R} + E_{s} \qquad (VIII)$$

Segundo Ingold²⁸, em meio ácido os efeitos eletrônico não afeta a velocidade da reação, desta forma a Equação (VIII) pode ser simplificada, Equação (IX). Em meio básico o efeito eletrônico predominante será o indutivo, uma vez que o grupo $-CH_2$ - não transmite efeito de ressonância entre os substituintes e o centro reativo, Equação (X).

$$\log K_{x}^{a}/K_{H}^{a} = E_{S}$$
(IX)
$$\log K_{x}^{b}/K_{H}^{b} = \rho_{I}\sigma_{I} + E_{S}$$
(X)

Relacionando-se as Equações (IX) e (X) obteve-se (XI), que fornece o novo parâmetro he e, incluindo o efeito estérico.

$$\log(K_x/K_H): \rho_I \sigma_I : \rho^* \sigma^*$$
(XI)

O modelo de Swain e Lupton

Swain e Lupton³², a partir das constantes de dissociação dos ácidos biciclo-[2,2,2]-octano-1-carboxílicos 4-substituídos, propuseram a separação dos efeitos indutivos e de ressonância através da Equação (XII), onde \Im e \Re substituem os valores dos parâmetros duais $\rho_{\rm I}$ e $\sigma_{\rm R}$, respectivamente e, f e r são fatores que expressam a predominância desses efeitos.

$$\sigma = f \mathfrak{I} + r \mathfrak{R}$$
 (XII)

1.2.1.5 - Correlação entre Deslocamento Químico de RMN ¹³C e a Constante do Substituinte

A técnica de RMN, de grande utilidade na determinação estrutural de compostos orgânicos, tem sido também amplamente utilizada para examinar e prever os efeitos dos substituintes nos deslocamentos químicos. Essas correlações físico-químicas são de grande importância, não apenas na previsão dos efeitos dos substituintes, mas também no entendimento da transmissão dos efeitos eletrônicos do anel aromático e/ou em cadeias laterais à esses anéis.

Considerando-se os parâmetros σ (σ +, σ -, σ), a correlação com os valores dos deslocamentos químicos δ , é representada pela Equação (XIII), onde ρ é denominado coeficiente de transmissão expressa a susceptibilidade do deslocamento químico em função da natureza dos grupos substituintes.

 $\Delta \delta = \rho \sigma \qquad (XIII)$

35

Quando são utilizados os parâmetros duais $\sigma_{I} \in \sigma_{R}$, os valores de $\rho_{I} \in \rho_{R}$, indicam de forma quantitativa como os efeitos indutivo e de ressonância afetam o deslocamento químico, Equação (XIV).

$$\Delta \delta = \rho_{\rm I} \sigma_{\rm I} + \rho_{\rm R} \rho_{\rm R} \qquad ({\rm XIV})$$

Segundo Taft e colaboradores²⁹⁻³³, a utilização dos parâmetros eletrônicos separados apresenta maior significância em relação ao tratamento com parâmetros simples, pois permite o cálculo separado dos coeficientes de transmissão através dos efeitos polar e de ressonância.

A seguir serão destacados alguns estudos de correlações entre deslocamentos químicos de RMN ¹³C e constantes dos substituintes, em moléculas relacionadas com as do nosso trabalho.

A - Estirenos e derivados

O estireno e seus derivados pertencem à classe de compostos cujas correlações são mais estudadas³⁴.

Através do método que utiliza os parâmetros duais para as constantes dos substituintes, Reynold's³⁵ analisou os efeitos sobre os deslocamentos químicos dos carbonos α e β da cadeia lateral de estirenos meta e para-substituídos. As Equações (XVI) à (XIX) foram obtidas e observa-se que o efeito de ressonância predomina sobre o carbono- β da série para-substituída. Esta evidência pode ser justificada pela polarização da densidade eletrônica através do sistema π , ao longo da cadeia e do anel.

O maior valor de σ_{I} para o C- α da série meta-substituída mostra que o efeito indutivo de polarização dos elétrons π é transmitido mais eficientemente devido a curta distância entre o sítio polarizado e o substituinte. Para o carbono C- β os valores de σ_{I} , para as séries meta e para-substituídas, são ainda maiores devido ao efeito indutivo de campo, transmitido mais eficientemente pela polarização da ligação vinílica através das linhas de força do campo elétrico formado. Butt e Topson³⁶ também estudaram as séries meta e para-substituídas de derivados trans e cis- cinamonitrila. A correlação dos deslocamentos químicos de RMN ¹³C dos átomos de carbono C- α e C- β com os parâmetros σ_{I} e σ_{R} mostrou que o efeito de ressonância parece ser igualmente transmitido para as duas séries.

série trans

$$C_{\mathfrak{a}} = -3, 3 \ \sigma_{I} - 1, 3 \ \sigma_{R}$$

$$C_{\mathfrak{\beta}} = 6, 0 \ \sigma_{I} + 8, 1 \ \sigma_{R}$$
série cis

$$C_{\mathfrak{a}} = -3, 5 \ \sigma_{I} - 0, 6 \ \sigma_{R}$$

$$C_{\mathfrak{\beta}} = 5, 5 \ \sigma_{I} + 8, 5 \ \sigma_{R}$$

Happer e Steerson³⁷ prepararam as séries meta e para-X-CH₂-substituídas dos cinamatos de metila e investigaram o efeito dos substituintes na cadeia lateral através das correlações com os deslocamentos químicos de RMN ¹³C.

A análise dos efeitos eletrônicos, utilizando-se os parâmetros duais para as constantes dos substituintes, revelou, como era esperado, que σ_R é muito menor do que σ_I , pois a interposição do grupo -CH₂- entre o substituinte e o sistema de elétrons, eliminava a possibilidade de interação por ressonância, predominando então o efeito indutivo. Porém, a razão de ρ_{Ip}/ρ_{Im} =0,95 para o átomo de C- α levou à conclusão de que a distância entre o substituinte e a cadeia lateral não era um fator relevante, prevalecendo neste caso o efeito indutivo de campo. A razão ρ_{Ip}/ρ_{Im} = 1,69 para o C- β foi justificada através do efeito de hiperconjugação.

B - Compostos contendo ligação C=N conjugada

A presença da ligação heteropolar C=N conjugada a sistemas aromáticos tem sido estudada com os objetivos de se entenderem a natureza da ligação carbono-nitrogênio e o efeito de transmissão dos grupos substituintes no anel aromático.

Gordon e colaboradores³⁸ reportaram um estudo sistemático de espectroscopia de RMN ¹³C de hidrazonas, fenil-hidrazonas, oximas e éteres de metil-oximas para-substituídas. Nas hidrazonas o deslocamento químico do átomo de carbono imino diminui na presença de grupos substituintes retiradores de elétrons. O gráfico de Hammett

38

utilizando-se valores de o apresentou ρ = -4,42 (coeficiente de correlação 0,98), enquanto que utilizando-se valores de $\sigma_{\rm I}$ mostrou coeficiente de correlação igual a 0,89. Os mesmos efeitos foram observados para as aril-hidrazinas. Esta significativa susceptibilidade ao efeito dos substituintes pode ser atribuída às formas de ressonâcia na Figura 17.

onde Y - NH₂ ; NHPh

Figura 17

As oximas, isômeras E e Z, também apresentaram valores de ρ negativos, porém menores, portanto menos susceptíveis aos efeitos dos substituintes. O valor de ρ para os isômeros E é de -2,50, equanto que os isômeros Z mostraram ρ = -2,82. Foi verificado também que os valores de $\sigma_{\rm I}$ correlacionaram melhor do que os valores de $\sigma_{\rm P}$

Echevarria e colaboradores³⁹, investigaram o efeito dos substituintes no carbono imidoila em séries de N-benzilidenanilinas. A Equação de Hammett foi aplicada aos deslocamentos químicos de RMN ¹³C e ¹H para o carbono e o proton imidoilas contra as constantes dos substituintes. As séries estudadas foram a 4-X-,4'-X- e 4,4'-X-substituídas (Figura 18).

Figura 18

A série I apresentou correlação de Hammett aceitável com ρ = -1,84 (coeficiente de correlação 0,926), a série II ρ = 4,88 (coeficiente de correlação 0,973) e a série III não apresentou correlação. O valor negativo para ρ na série I foi explicado através da possível inversão da interação normal do grupo C=N com o grupo substituinte (Figura 19).

H, considerando-se B=A retirador de elétrons.

Figura 19

Na série II o valor de ρ é positivo e bem mais significativo, o que corresponderia ao efeito normal da conjugação da ligação C=N com o anel aromático ligado ao átomo de nitrogênio (Figura 20).

Figura 2

2. OBJETIVOS

Os principais objetivos deste trabalho são:

- 1 Sintetizar novos derivados contendo grupamento cinamoila -m e -p substituído da classe dos 1,3,4-tiadiazólio-2-fenilaminas.
- 2 Caracterizar os novos compostos utilizando as técnicas espectroscópicas de infravermelho, ultravioleta, dando ênfase especial à RMN ¹³C e espectrometria de massa.
- 3 Estudar a transmissão dos efeitos eletrônicos dos substituintes no anel aromático através da ligação homopolar ao anel mesoiônico.
- 4 Estudar as correlações lineares de energia livre entre os deslocamentos químicos de RMN ¹³C x efeitos dos substituintes para os novos derivados heterocíclicos e os ácidos cinâmicos, seus precursores.

3. MATERIAIS E MÉTODOS

3.1 - Aparelhos

Os espectros de ressonância magnética nuclear de ¹H e ¹³C foram obtidos em espectrômetro de Bruker, modelo AC200.

Os espectros na região do infravermelho foram obtidos em espectrômetro Perkin-Elmer modelo 1420, sendo calibrados com filme de poliestireno a 1600cm⁻¹.

Os espectros na região do ultravioleta foram obtidos em espectrofotômetro de Beckman, modelo DU-6.

Os espectros de massa foram obtidos através da injeção direta em espectrômetro Hewlett-Packard modelo 5987A.

Os pontos de fusão foram determinados utilizando-se um aparelho tipo Kofler e não foram corrigidos.

3.2 - Solventes para as Sínteses

Os solventes utilizados neste trabalho foram os seguintes: metanol, etanol, éter etílico, clorofórmio, benzeno, diclorometano, 1,4-dioxano, tolueno, hexano e água. Estes solventes são procedentes do Grupo Química, Merck e Vetec. Alguns deles foram purificados por métodos comuns⁴⁰, enquanto outros foram utilizados sem qualquer purificação prévia.

3.3 - Reagentes para as Sínteses

Aldeídos: A maioria dos aldeídos 3 e 4 substituídos são procedentes da Aldrich, exceto o 4-metoxibenzaldeído que é produzido por J.T. Baker, o aldeído benzóico produzido por Carlo Erba, 3-nitrobenzaldeído produzido por Riedel-de Haën e 3-metoxibenzaldeído produzido por Fluka AG.

Ácido malônico: proveniente da Merck.

Isotiocianato de fenila e fenil hidrazina: provenientes da Aldrich e utilizados sem nenhum tratamento prévio.

3.4 - Sínteses

3.4.1 - Síntese dos ácidos cinâmicos meta e para substituídos

Os ácidos cinâmicos foram sintetizados⁴¹ pela condensação de Doebner utilizando-se benzaldeídos 3 e 4-substituídos, ácido malônico, piridina e piperidina como catalisador.

* A denominação α , $\beta \in \gamma$ é dada em função da aproximidade do substituinte no anel aromático.

сн₂(соон)2 %^a Х Aldeído Piridina Piperidina (mmoles) (mimoles) (ml) (ml) AC-1 н 50 100 20 0,4 88 4-0CH3 AC-2 50 100 20 0,4 75 AC-3 4-Cl 22,5 45 10 0,3 89 4-CH3 AC-4 50 100 20 0.4 85 AC-5 4-F 19 38 10 0,2 86 AC-6 4-CN 11,4 0,2 0,3 22,8 7,0 93 4-N(CH3)2 AC-7 25 50 15 78 4-NO₂ 4-OH² AC-8 50 100 20 0,4 75 AC-9 16,3 33 0,3 8,5 60 3-NO2 3-0H AC-10 50 100 20 0,4 78 AC-11 AC-12 50 100 20 0,4 70 3-0CH2 25 50 10 0,3 80 3-0068 AC-13 12,6 25 8,0 0,2 65

Tabela 3.1 - Condições de reação para os ácidos cinâmicos meta e para substituídos.

^a%, rendimento da reação.

As reações foram realizadas em balão de fundo redondo conectado a um condensador de refluxo e mantidas a temperatura de 90°C durante duas horas e depois por mais quinze minutos sob refluxo. A mistura reacional foi acidificada por uma solução de HCl (20% V/V), com precipitação imediata dos cristais que foram filtrados e lavados primeiramente com uma solução de HCl (20% V/V) e depois com água.

Os ácidos foram recristalizados em hexano e etanol (30:70), exceto o p-fluorcinâmico que foi recristalizado em tolueno e etanol (90:10).

3.4.2 Síntese dos Ácidos meta e para Acetoxicinâmicos

Os produtos foram obtidos através da reação de acetilação dos ácidos *m*-hidroxicinâmico e *p*-hidroxicinâmico. Para 12 mmoles de ácido *m*-hidroxicinâmico foram utilizados 5ml de anidrido acético e 5ml de piridina. Para 6 mmoles de ácido *p*-hidroxicinâmico foram utilizados 3ml de anidrido acético e 5ml de piridina. As misturas reacionais foram mantidas em repouso durante 24 horas. A seguir adicionou-se uma solução de ácido clorídrico (15% V/V) e extraiu-se com clorofórmio. Tornou-se a repetir o tratamento com a solução de ácido clorídrico (15% V/V) e finalmente com uma solução de cloreto de sódio, extraindo-se com clorofórmio.

A quantidade de material obtido revelou um rendimento de 60% para a reação com o ácido meta-hidroxicinâmico e 50% para o reação com o ácido para-hidroxicinâmico.

3.4.3 - Caracterização dos ácidos cinâmicos

AC-1 Ácido cinâmico:

Ponto de Fusão: 132-134°C

Espectroscopia na região do infravermelho (principais bandas de absorções, $\sqrt{cm^{-1}}$)

3100-2500 (banda larga de OH); 1695 (banda desdobrada de VC=O), 1675 (C=C vinila, trans), 995 (δ fora do plano de C-H vinílico), 1610 e 1520 (C=C aromático)

Espectroscopia de ressonância magnética nuclear de $^{1}{\rm H}$ (Espectro 1, em ${\rm DMSOd}_{6},~\delta$ ppm)

 ${\rm H}\alpha$ - 7,58 (d, JH α H β : 16Hz), H β - 6,52 (d, JH α H β : 16Hz), H1 e H5 - 7,39; H2 e H4 - 7,41; H3-6,52

Espectroscopia de ressonância magnética nuclear de ¹³C (Espectro 2, em DMSOd₆, δ ppm) Cy - 167,87, C β - 119,29, C α - 144,02, C1 - 144,02, C2 e C6 - 128,97, C3 e C5 - 128,25, C4 130,28 Ácido p-metoxicinâmico: AC-2 Ponto de Fusão: 193°C Espectroscopia, na região do infravermelho (principais bandas de absorções, $\sqrt{cm^{-1}}$) 3000-2600 (banda larga de OH); 1670 (banda desdobrada de C=O), 1615 e 1480 (C=C aromático, 970 (δ fora do plano de C-H vinílico) Espectroscopia de ressonância magnética nuclear de ¹H (Espectro 3, em DMSOd₆, δ ppm) $H\alpha$ - 7,53 (d, JH α H β = 16Hz), H β - 6,36 (d, JH α H β = 16Hz), H2 e H6 - 7,53 (dd); H3 e H5 - 6,94 (dd) Espectroscopia de ressonância magnética nuclear de ¹³C (Espectro 4, em DMSOd₆, δ ppm) C γ - 166, C β - 116,58, C α - 143,89, C1 - 126,91, C2 e C6 - 130,01, C3 e C5 - 144,42, C4 - 161,02, OM1 - 55,33 AC-3 Ácido p-clorocinâmico Ponto de Fusão: 252°C Espectroscopia na região do infravermelho (principais bandas de absorções, $\sqrt{cm^{-1}}$) 3100-2500 (banda larga de OH); 1698 (banda desdobrada de C=O), 1675 (C=C), 970 (δ fora do plano de C-H vinílico), 1610 e 1490 (C=C aromático) Espectroscopia de ressonância magnética nuclear de ¹H (Espectro 5, em DMSOd₆, δ ppm) H1 e H4 - 6,82; H2 e H3 - 6,56;

Espectroscopia de ressonância magnética nuclear de ¹³C (Espectro 6, em DMSOd₆, δ ppm) C γ - 167,45, C β - 120,6, C α - 142,56, C1 - 133,22, C2 e C4 -128,35, C3 e C5 - 129,35, C4 - 134,74 Ácido p-metilcinâmico AC-4 Ponto de Fusão: 195-197°C Espectroscopia na região do infravermelho (principais bandas de absorções, $\sqrt{cm^{-1}}$ 3100-2500 (banda larga de OH); 1685 (C=O), 1665 (C=C vinílico), 1610 e 1510 (C=C de aromático), 990 a (δ fora do plano de C-H vinílico) Espectroscopia de ressonância magnética nuclear de ¹H (Espectro 7, em DMSOd₆, δ ppm) $H\alpha$ - 6,64 (d, JH α H β = 16Hz), H β - 5,55 (d, JH α H β = 16Hz), H2 e H6 - 6,65; H3 e H5 - 6,30 ^{13}C Espectroscopia de ressonância magnética nuclear de (Espectro 8, em DMSOd₆, δ ppm) Cy - 167,75, C β - 118,1, C α - 140,2, C1 - 140,2, C2 e C6 - 131,5, C3 e C5 - 128,2, C4 - 143,9, M1 - 39,5 Ácido p-flúorcinâmico AC-5 Ponto de Fusão: 208°C Espectroscopia na região do infravermelho (principais bandas de absorções, $\sqrt{cm^{-1}}$ 3200-2500 (banda larga de OH); 1685 (C=O), 1600 e 1500 (C=C de aromático) Espectroscopia de ressonância magnética nuclear de ¹H (Espectro 9, em DMSOd₆, δ ppm) $H\alpha$ - 7,58 (d, JH α H β = 16Hz), H β - 6,48 (d, JH α H β = 16Hz), H2 e H6 - 7,76; H3 e H5 - 7,71 ¹³C Espectroscopia de ressonância magnética nuclear de (Espectro 10, em DMSOd₆, δ ppm) Cy 167,76, C β - 119,22, C α - 142,85, C1 - 131,01 (J -3,02H2), C2 e C6 - 130,55 (J $_{\rm CF}$ = 8,85 H2), C3 e C5 - 115,97 (J $_{\rm CF}$ = 21,43 H2) C4 - 163,31 (J_{CF}= 248,7 H2)

47

AC-6 Ácido p-cianocinâmico

Ponto de Fusão: 186-188°C

Espectroscopia na região do infravermelho (principais bandas de absorções, $\sqrt{\rm cm^{-1}})$

3100-2500 (banda larga de OH); 2200 (C-N), 1690 (C=O) 1600 e 1500 (C=C aromático), 990 (δ fora do plano de C-H vinílico)

Espectroscopia de ressonância magnética nuclear de ${}^{\rm L}{\rm H}$ (Espectro 11, em ${\rm DMSOd}_6,~\delta$ ppm)

 $H\alpha$ - 6,75 (d, JH α H β = 16Hz), H β - 5,87 (d, JH α H β = 16H2)

Espectroscopia de ressonância magnética nuclear de $^{13}{\rm C}$ (Espectro 12, em DMSOd_6, δ ppm)

cy - 167,27, c β - 122,91, c α - 142,02, c1 - 138,89, c2 e c6 - 128,95, c3 e c5 - 132,80, c4 - 112,24, c-N - 118,70

AC-7 Ácido p-N,N-dimetilcinâmico

Ponto de Fusão: 210°C

Espectroscopia na região do infravermelho (principais bandas de absorções, $\sqrt{\text{cm-1}})$

3200-2500 (banda larga de OH); 1680 (C=O), 1605 e 1530 (C=C aromático), 960 (δ fora do plano de C-H vinílico)

Espectroscopia de ressonância magnética nuclear de $^{1}{\rm H}$ (Espectro 13, em DMSOd_6, δ ppm)

Espectroscopia de ressonância magnética nuclear de $^{13}{\rm C}$ (Espectro 14, em DMSOd_6, δ ppm)

C7 - 168,09, C β - 112,75, C α - 144,51, C1 121,36, C2 e C6 - 129,55, C3 e C5 - 111,57, C4 - 151,38, N(CH_3)_2 - 39,85

AC-8 Ácido p-nitrocinâmico Ponto de Fusão: 290°C

Espectroscopia na região do infravermelho (principais bandas de absorções, $\sqrt{cm^{-1}}$)

3200-2500 (banda larga de OH); 1685 (C=O), 1600 e 1500 (C=C aromático), 1348 (NO₂), 990 (δ fora do palno de C-H vinílico)

Espectroscopia de ressonância magnética nuclear de ¹H (Espectro 14, em DMSOd₆, δ ppm) $H\alpha$ - 7,70 (d, JH α H β = 16Hz), H β - 6,63 (d, JH α H β = 16Hz), H2 e H6 - 7,99 (JHα Hβ= 16Hz), H3 e H5 - 8,25 Espectroscopia de ressonância magnética nuclear de ¹³C (Espectro 15, em DMSOd₆, δ ppm) Cy 167,09, Ceta - 123,64, Clpha - 141,36, C1 - 140,77, C2 e C6 129,34, C3 e C5 - 123,96, C4 - 147,86 Ácido p-hidroxicinâmico AC-9 Ponto de Fusão (Lit)42: 210-213°C Ponto de Fusão obtido: 210°C Ácido m-nitrocinâmico AC-10 Ponto de Fusão: 200-202°C Espectroscopia na região do infravermelho (Principais bandas de absorções, √cm⁻¹) 3100-2500 (banda larga de OH); 1690 (C=O), 1600 e 1530 (C=C aromático), 1348 (NO₂) Espectroscopia de ressonância magnética nuclear de ¹H (Espectro 17, em DMSOd₆, δ ppm) $H\alpha$ - 7,70 (d, JH α H β = 16Hz), H β - 6,68 (d, JH α H β = 16Hz), H2 - 8,4, H4 - 8,2, H5 - 7,62, H6 - 8,14 Espectroscopia de ressonância magnética nuclear de ¹³C (Espectro 18, em DMSOd₆, δ ppm) $C\gamma$ - 167,25, $C\beta$ - 124,43, $C\alpha$ - 141,53, C1- 136,16, C2 - 122,24, C3 - 148,32, C4 - 122,85, C5 - 130,37, C6 - 134,06 AC-11 Ácido 3-hidroxicinâmico Ponto de Fusão: 190°C (com decomposição) Espectroscopia na região do infravermelho (Principais bandas de absorções, √cm⁻¹) 3390 (OH fenólico); 3000-2500 (C=O de ácido), 1675 (C=O), 1500-1600 (C=C aromático), 990 (δ fora do plano de C-H vinílico)

49

Espectroscopia de ressonância magnética nuclear de ¹H (Espectro 19, em $DMSOd_6$, δ ppm) $H\alpha - 7,49$ (d, $JH\alpha H\beta = 16H2$), $H\beta - 6,39$ (d, $JH\alpha H\beta = 16H2$), Н2 - 7,04, Н4 - 6,80, Н5 - 7,15, Н6 - 7,22 Espectroscopia de ressonância magnética nuclear de ¹³C (Espectro 20, em DMSOd₆, δ ppm) $C\gamma$ - 167,58, $C\beta$ - 118,91, $C\alpha$ - 144,17, C1 - 135,47, C2 -114,47, C3 - 157,69, C4 - 117,42, C5 - 129,91, C6 - 119,14 Ácido 3-metoxicinâmico AC-12 Ponto de Fusão: 118-120°C Espectroscopia na região do infravermelho (Principais bandas de absorções, √cm⁻¹) 3200-2500 (OH); 1680 (C=O), 1600 e 1490 (C=C aromático), 950 (δ fora do plano de C-H vinílico) Espectroscopia de ressonância magnética nuclear de ¹H (Espectro 21, em DMSOd₆, δ ppm) $H\alpha - 7,57$ (d, $JH\alpha H\beta = 16H2$), $H\beta - 6,55$ (d, $JH\alpha H\beta = 16H2$), Н2 - 6,97, Н4 6,93, Н5 - 7,32, Н6 - 7,26 Espectroscopia de ressonância magnética nuclear de ¹³C (Espectro 22C, em DMSOd₆, δ ppm) $\mbox{C}\gamma$ - 167,73, $\mbox{C}\beta$ - 116,28, $\mbox{C}\alpha$ - 143,99, $\mbox{C}1$ - 135,77, $\mbox{C}2$ - 113,03, $\mbox{C}3$ - 159,89, $\mbox{C}4$ 119,66, $\mbox{C}5$ - 129,98, C6 - 120,82, OCH3 - 55,23 AC-13 Ácido 3-fenoxicinâmico Ponto de Fusão: 199°C Espectroscopia na região do infravermelho (Principais bandas de absorções, √cm⁻¹) 3200-2500 (banda larga de OH); 1695 (C:O), 1580 e 1490 (C=C aromático) Espectroscopia de ressonância magnética nuclear de ¹H (Espectro 23B, em DMSOd₆, δ ppm) $H\alpha$ - 7,55 (d, JH α H β = 16H2), H β - 6,46 (d, JH α H β = 16H2), H aromático - 6,96 - 7,38

50

Espectroscopia de ressonância magnética nuclear de ¹³C (Espectro 24, em DMSOd₆, δ ppm) $C\gamma - 165,57, C\beta - 118,20, C\alpha - 141,22, C1 - 134,5, C2 - NO, C3$ - 155,27, C4 - NO, C5 - 128,45, C6 - 121,26, C7 - 154,5, C8 - 116,78, C9 - 128,07, C10 - NO NO - não observado. AC-14 Ácido 4-acetoxicinâmico Ponto de Fusão: 189°C Espectroscopia de ressonância magnética nuclear de ¹H (Espectro 25, em DMSOd₆, δ ppm) $H\alpha$ - 6,55 (d, JH α H β = 16Hz), H β - 7,65 (d, JH α H β = 16H2), H2 e H6 - 7,20, H3 e H5 - 7,75 Espectroscopia de ressonância magnética nuclear de ¹³C (Espectro 26B, em DMSOd₆, δ ppm) $C\gamma$ - 167,70, $C\beta$ - 119,39, $C\alpha$ - 143,08, C1 - 132,01, C2e C6 129,50, C3 e C5 - 122,45, C4 - 151,93, C7 - 169,12, C8 -20,91 AC-15 Ácido 3-acetoxicinâmico Ponto de Fusão: 180°C Espectroscopia na região do infravermelho (Principais bandas de absorções, √cm⁻¹) 3000-2500 (banda larga de OH); 1755 (C=O de ester), 1675 (C=O do ácido), 1595 e 1500 (C=C de aromático), 970 (δ fora do plano de C-H vinílico) Espectroscopia de ressonância magnética nuclear de ¹H (Espectro 27B, em DMSOd₆, δ ppm) $H\alpha$ - 7,86 (d, JH α H β = 16Hz), H β - 6,82 (d, JH α H β = 16Hz), H1 - 7,70, H2 7,40, H3 7,67, H4 - 7,73 Espectroscopia de ressonância magnética nuclear de ¹³C (Espectro 28C, em DMSOd₆, δ ppm) Cy 167,67, C β - 120,51, C α - 143,05, C1 - 136,09, C2 -121,34, C3 - 151,12, C4 123,74, C5 - 130,07, C6 - 125,91, C7 - 169,30

3.4.4 - Síntese da 1,4-difeniltiossemicarbazida⁴³

Em um balão de duas bocas, equipado com condensador de refluxo com tubo de cloreto de cálcio na extremidade e funil de adição, foram adicionados 70ml de tolueno anidro e 53mmoles de isotiocianato de fenila. Levou-se a solução ao refluxo e adcionou-se aos poucos os 53 mmoles de fenil-hidrazina, através do funil de adição. A formação do produto foi praticamente imediata, precipitando no fundo do balão em forma de flocos brancos. O produto foi filtrado a vácuo, lavado com um pouco de tolueno e posteriormente com éter etílico. O ponto de fusão foi de 177- 178°C (Lit.: 176°C) e o rendimento de 85%.

3.4.5 - Síntese dos Cloretos de Cinamoílas m- e p- substituídos

MÉTODO A^{44} X= H, Me, OMe, F, Cl e NO₂

Em um balão de 15ml foram colocados de 2,5 a 10 mmoles do ácido cinâmico correspondente e 12,5 a 50 mmoles de cloreto de tionila. Adaptou-se ao balão um condensador de refluxo equipado com um tubo contendo cloreto de cálcio na extremidade. As reações foram mantidas a temperatura de aproximadamente 60°C durante cerca de 5 a 6 horas.

O excesso de cloreto de tionila foi removido por destilação a pressão reduzida e o produto utilizado imediatamente sem tratamento de purificação.

MÉTODO B⁴⁵ X= OH, OCOMe, CN

Neste método foi utilizada a razão estequiométrica 1:3 entre os ácidos correspondentes e o cloreto de tionila, adicionando-se ao meio reacional benzeno anidro.

A reação mantida à temperatura ambiente mostrou resultados satisfatórios para os compostos ciano (CN) e acetoxi (OCOMe) substituídos.

Os ácidos hidroxicinâmicos quando reagem com cloreto de tionila, polimerizam mesmo a baixas temperaturas (10°C). O mesmo foi evidenciado para o ácido 4-N,N-dimetilcinâmico.

3.4.6 - Síntese dos cloretos de 4-fenil-5-[4-X-cinamoil]-1,3,4-tiadiazólio-2-fenilamina e cloreto de 4-fenil-5-[3-X-cinamoil]-1,3,4-tiadiazólio-2- fenilamina

		Solução Cloreto de cinamoíla X-substituído + 1,4 dioxano		Suspensão 1,4 difeniltiosse- micarbazida + 1,4 dioxano			
						ano temp	0 %
		(mmoles)	(ml)	(mmoles)	(ml)	(h)	
MI-1	H	10,0	5,0	10,0	15,0	24	75
MI-2	4-0CH3	10,0	5,0	10,0	15,0	36	70
MI-3	4-CH3	10,0	5,0	10,0	15,0	30	73
MI-4	4-Cl	7,0	6,0	7,0	10,0	24	75
MI-5	4 - F	5,0	5,0	5,0	10,0	24	77
MI-6	4-CN	3,7	4,0	3,7	8,0	24	80
MI-7	4-N02	10,0	5,0	10,0	15,0	24	78
MI-8	4-0H	2,4	3,0	2,4	7,0	30	65
MI-9	3-NO2	10,0	5,0	10,0	15,0	24	73
MI-10	3-0H	7,0	6,0	7,0	10,0	48	58
MI-11	3-0CH ₃	4,8	6,0	4,8	10,0	36	62

Tabela 3.2: Condições de reação para a obtenção dos ácidos conjugados dos compostos mesoiônicos.

O correspondente cloreto de cinamoíla recém preparado foi solubilizado em 1,4-dioxano e colocado sob agitação magnética. A esta solução foi adicionada uma suspensão em quantidade equivalente de 1,4-difeniltiossemicarbazida e 1,4-dioxano. Logo após a adição pôde-se observar a completa solubilização, formando-se uma solução de cor amarela. Interrompeu-se a agitação e deixou-se em repouso por cerca de 24-48 horas. Filtrou-se a vácuo o precipitado pulverulento de tonalidade amarela e lavou-e com um pouco de 1,4-dioxano seco.

Apesar de ser muito pequena a solubilidade destes compostos nos solventes orgânicos comuns, eles foram recristalizados em diclorometano/etanol 1:1.

A purificação utilizando a cromatografia em coluna não se mostrou um método eficiente, pois houve formação de novos compostos (Veja Resultados e Discussão, item 4.2.1).

3.4.7 - Caracterização dos Ácidos Conjugados dos Compostos Mesoiônicos

MI-1 Cloreto de 4-fenil-5-cinamoil-1,3,4-tiadiazólio-2-fenilamina

Espectroscopia na região do infravermelho (Espectro 29, em KBr, $\sqrt{c\,m^{-1}})$

3060 (C-H aromático), 2680 (C=N+-H), 1605 e 1510 (C=C de aromático), 1570 (C=N), 965 (δ angular foram do plano de C-H vinílico)

Espectroscopia de ressonância magnética nuclear de $^{\rm L}{\rm H}$ (Espectro 30, em CDCl3, δ ppm)

H α - 760 (d, JH α H β = 16Hz), H β - 6,83 (d, JH α H β = 162Hz), H aromáticos -7,18 a 7,69 (multipletos)

Espectroscopia de ressonância magnética nuclear de $^{13}{\rm C}$ (Espectro 31, em CDCl_3 e CD_3OD, δ ppm)

C1' - 137,82, C2' e C6' - 118,85, C3' e C5' - 129,15, C4' - 124,33, C1'' - 136,45, C2'' e C6''- 125, C3'' e C5'' - 128,85, C4'' - 132,36, C1''' - 132,97, C2''' e C6''' 128,94, C4''' - 131,91, C α - 149,10, C β 109,88, C2 - 158,6, C5 - 161,74

Espectrometria de massa (Espectro 32)

356 (17%), 355 (64%), 206 (10%), 147 (100%), 103 (12%), 135 (7%), 77 (46%)

MI-2 Cloreto de 4-fenil-5-(4-metoxicinamoil)-1,3,4-tiadiazólio--2-fenilamina

Espectroscopia na região do infravermelho (Espectro 33, em KBr, $\rm Vcm^{-1})$

3020 (C-H aromático), 2920 (C-H alifático), 2690 (C=NH), 1600 e 1512 (C-C aromático), 1570 (C=N), 1260 (O-C aromático)

Espectroscopia de ressonância magnética nuclear de $^{\rm L}{\rm H}$ (Espectro 34, em CDCl₃, δ ppm)

 $H\alpha$ - 7,318 (d, JH α H β = 16Hz), H β - 6,77 (d, JH α H β = 16Hz), 7,85 a 7,36 (multipletos), 7,27 a 6,38 (multipletos), 3,80 (singleto)

Espectroscopia de ressonância magnética nuclear de 13 C (Espectro 35, em CDCl₃ e CD₃OD, δ ppm)

C1' - 138,0, C2' e C6' - 118,85, C3' e C5' - 129,15, C4' - 124,33, C1'' - 136,4, C2'' e C6''- 125,35, C3'' e C5'' - 130,09, C4'' - 131,61, C1''' 130,92, C2''' e C6''' 125,81, C3'' e C5''' 114,70, C4''' 163,15, C α - 149,00, C β - 107,12, C2 - 158,75, C2 - 158,75, C5 - 162,02

Espectrometria de massa (Espectro 36)

386 (28%), 385 (100%), 236 (14%), 177 (100%), 134 (24%), 135 (8%), 77 (21%)

MI-3 Cloreto de 4-fenil-5-(4-metilcinamoil)-1,3,4-tiadiazólio-2-fenilamina

Espectroscopia na região do infravermelho (Espectro 37, em KBr, $\sqrt{\text{cm}^{-1}})$

3030 (C-H aromático), 2890 (CH₃), 2690 (C=NH), 1615 (C-C vinílico), 1600 e 1510 (C=C aromático)

Espectroscopia de ressonância magnética nuclear de 13 C (Espectro 38, em CDCl₃ e CD₃OD, δ ppm)

C1' - 137,73, C2' e C6' - 118,86, C3' e C5' - 128,84, C4' 124,21, CI' - 136,33, C2'' e C6'' - 125,18, C3'' e C5'' 128,66, C4'' - 131,73, C1''' 130,24, C2''' e C6''' - 130,24, C2''' e C6''' - 130,24, C2''' e C6''' - 146,64, C2''' e C6''' - 108,63, C2 - 158,36, C5 162,02

Espectrometria de massa (Espectro 39)

370 (21%), 369 (80%), 220 (10%), 161 (100%), 135 (5%), 117 (10%), 77 (61%)

MI-4 Cloreto de 4-fenil-5-(4-clorocinamoil)-1,3,4-tiadiazólio-2-fenilamina

Espectroscopia na região do infravermelho (Espectro 40, em KBr, $\sqrt{cm^{-1}}$)

3040 (CH aromático), 2650 (C=N⁺-H), 1625 (C-C vinílico), 1600 e 1500 (C-C aromático), 1570 (C=N)

Espectroscopia de ressonância magnética nuclear de 13 C (Espectro 41, em CDCl₃ e CD₃OD, δ ppm)

C1' - 138,33, C2' e C6' - 118,71, C3' e C5' - 129,84, C4' - 124,23, C1'' 137,94, C2'' e C6''- 125,45, C3'' e C5'' 130,21, C4'' - 131,91, C1''' 131,91, C2''' e C6''' - 128,95, C3''' e C5''' 129,45, C4''' 136,57, C α - 147,25, C β - 110,48, C2 - 158,75, C5 - 161,38

Espectrometria de massa (Espectro 42)

390 (30%), 389 (100%), 240 (11%), 181 (99%), 13 (6%), 135 (5%), 77 (94%)

MI-5 Cloreto de 4-fenil-5-(4-fluorcinamoil)-1,3,4-tiadiazólio-2-fenilamina

Espectroscopia de ressonância magnética nuclear de 13 C (Espectro 43, em CDCl₃ e CD₃OD, δ ppm)

C1' - 137,79, C2' e C6' - 118,56, C3' e C5' - 130,12, C4' - 124,16, C1'' - 136,43, C2'' e C6''- 125,30, C3'' e C5'' - 128,65, C4'' - 131,85, C1''' 129,36, C2''' e C6''' - 130,94, C3'' e C5''' 116,47, C4''' 164,83, C α - 147,56, C β - 109,85, C2 158,50, C5 - 161,65

Espectrometria de massa (Espectro 44)

374 (28%), 373 (98%), 224 (12%), 165 (100%), 121 (7%), 77 (55%), 51 (19%)

MI-6 Cloreto de 4-fenil-5-(4-cianocinamoil)-1,3,4-tiadiazólio-2-fenilamina

Espectroscopia na região do infravermelho (Espectro 45, em KBr, $\sqrt{\rm cm^{-1}})$

3060 (C-H aromático), 2740 (C=N+-H), 2220 (C≡N), 1610 e 1500 (C-C aromático), 1570 (C=N)

Espectroscopia de ressonância magnética nuclear de 13 C (Espectro 46, em CDCl₃ e CD₃OD, δ ppm)

C1' - 137,34, C2' e C6' 118,42, C3' e C5' - 124,36, C1'' - 137,00, C2'' e C6'' - 124,92, C3'' e C5'' - 129,61, C4'' - 131,54, C2''' e C6''' 128,69, C3''' e C5''' 132,94, C α - 145,38, C β - 113,16, C2 - 158,93, C5 - 161,00

Espectrometria de massa (Espectro 47)

381 (24%), 380 (80%), 231 (14%), 172 (39%), 135 (29%), 128 (9%), 77 (100%), 51 (23%)

MI-7 Cloreto de 4-fenil-5-(4-nitrocinamoil)-1,3,4-tiadiazólio-2-fenilamina

Espectroscopia na região do infravermelho (Espectro 48, em KBr, $\sqrt{\rm cm^{-1}})$

3090 (C-H aromático), 1620 (C-C vinílico), 1600 (banda sobreposta a 1620 de C-C aromático), 1570 (C=N), 1380 (NO₂)

Espectroscopia de ressonância magnética nuclear de 13 C (Espectro 49, em CDCl₃ e CD₃OD, δ ppm)

C1' - 137,62, C2' e C6' - 118,70, C3' e C5' - 129,29, C4' - 124,54, C1'' - 136,38, C2'' e C6'' - 125,33, C3'' e C5'' - 128,97, C4'' - 132,15, C1''' - 138,94, C2''' e C6''' - 124,06, C4''' -148,86, C α - 145,32, C β - 113,87, C2 - 159,40, C5 - 160,65

Espectrometria de massa (Espectro 50)

401 (12%), 400 (48%), 251 (10%), 192 (5%), 135 (81%), 91 (40%), 77 (100%), 51 (17%)

MI-8 Cloreto de 4-fenil(4-hidroxicinamoil)-1,3,4-tiadiazólio-2--fenilamina

Espectroscopia na região do infravermelho (Espectro 51, em KBr, $\sqrt{\rm cm^{-1}})$

3050 (C-H aromático), 160 e 1500 (C=C aromático), 1570 (C=N), 1270 (VO-C aromático).
Espectroscopia de ressonância magnética nuclear de $^{13}\rm{C}$ (Espectro 52, em CDCl_3 e CD_3OD, δ ppm)

C1' - 139,49, C2' e C6' - 118,85, C3' e C5' - 130,18, C4' - 124,24, C1'' - 138,07, C2'' e C6'' - 125,42, C3'' e C5'' - 129,00, C4'' - 131,67, C1'' - 124, C2''' e C6''' - 131,45, C3''' e C5''' - 116,42, C4''' - 159,00, C α - 149,93, C β - 105,86, C2 - 157,94, C5 - 162,58.

MI-9 Cloreto de 4-fenil-5-(3-nitrocinamoil)-1,3,4-tiadiazólio-2-fenilamina

Espectroscopia na região do infravermelho (Espectro 53, em KBr, $\rm V cm^{-1})$

3050 (C-H aromático), 1620 (C=C vinílico, sobreposto ao estiramento C=C aromático) 1570 (C=N), 1335 (NO₂)

Espectroscopia de ressonância magnética nuclear de $^{13}\rm{C}$ (Espectro 54, em CDCl₃ e CD₃OD, δ ppm)

C1' - 137,4, C2' e C6' - 118,44, C3' e C5' - 124,63, C4' - 124,36, C1'' - 136,3, C2'' e C6'' - 124,96, C3'' e C5'' - 128,69, C4'' - 131,58, C1''' - 134,5, C2''' - 125,21, C4''' - 122,7, C5''' - 129,75, C6''' - 133,42, C α - 145,17, C β - 112,79

Espectrometria de massa (Espectro 55)

401 (16%), 400 (57%), 251 (13%), 208 (14%), 135 (63%), 91 (42%), 77 (100%), 51 (30%)

MI-10 Cloreto de 4-fenil-5-(3-acetoxicinamoil)-1,3,4-tiadiazólio-2-fenilamina

Espectroscopia na região do infravermelho (Espectro 56, em KBr, $\sqrt{\rm cm^{-1}})$

3050 (C-H aromático), 2285 (C=N⁺-H), 1615 (C-C vinílico), 1595, 1495 (C-C aromático), 1570 (C=N), 1290 (C-O aromático).

Espectroscopia de ressonância magnética nuclear de ¹³C (Espectro 57, em CDCl₃ e CD₃OD, δ ppm)

C1' - 137,8, C2' e C6' - 118,66, C3' e C5' - 128,97, C4' - 124,43, C2'' - e C6'' - 125,24, C3'' e C5'' - 130,12, C4'' - 131,85, C2''' - 114,62, C3''' - 157,86, C4''' - 115,00, C6''' - 120,10, C α - 149,26, C β - 109,89, C2 - 158,5, C5 - 162,0.

Espectrometria de massa (Espectro 58)

372 (19%), 371 (48%), 354 (23%), 353 (18%), 222 (16%), 163 (39%), 135 (45%), 118 (32%), 91 (66%), 77 (100%), 65 (32%), 51 (46%)

MI-11 Cloreto de 4-fenil-5-(3-metoxicinamoil)-1,3,4-tiadiazólio-2-fenilamina

Espectroscopia na região do infravermelho (Espectro 59, em KBr, $\rm cm^{-1})$

3060 (C-H aromático), 2600 (C=N⁺-H), 1620 (C-C vinílico, sobreposto ao estiramento C-C aromático) 1570 (C=N), 1490 (C=C aromático)

Espectroscopia de ressonância magnética nuclear de $^{13}{\rm C}$ (Espectro 60, em CDCl3 e CD3OD, δ ppm)

C2' e C6' - 118,69, C3' e C5' - 128,94, C4' - 124,30, C1'' - 136,39, C2'' e C6'' - 125,35, C3'' e C5'' - 130,21, C4'' - 131,94, C1''' - 134,94, C2''' - 114,03, C3''' - 159,83, C4''' - 117,84, C α - 110,23, C β - 148,98, C2 - 159,0, C5 - 161,63

4. DISCUSSÃO DOS RESULTADOS

 4.1 - Alguns Comentários Sobre a Síntese e a Purificação dos Compostos Estudados

4.1.1 - Estereoquímica dos Ácidos Cinâmicos

A análise dos espectros de ressonância magnética nuclear ¹H dos ácidos cinâmicos mostrou deslocamentos químicos correspondentes aos hidrogênios vinílicos na forma de dubletos, com constante de acoplamento igual a 16 Hz, revelando que estes compostos possuem configuração trans. Verificou-se, porém, que os ácidos cinâmicos para-nitro e para-ciano substituídos apresentavam também em seus espectros de RMN ¹H sinais de menores intensidades na forma de dubletos, com constante de acoplamento de cerca de 9Hz, indicando a presença de isômero cis. (Espectro 62).

4.1.2 - Formação de Cloretos de 4-fenil-5-(p- e m- hidroxicinamoil)-1,3,4-tiadiazólio-2-fenilamina

A formação dos cloretos dos ácidos *p*- e *m*hidroxicinâmicos através da reação com cloretos de tionila forneceram produtos polimerizados. Observou-se porém que as reações consecutivas de formação dos cloretos de ácidos *p*- e *m*-acetoxicinâmicos⁴⁵ e dos respectivos ácidos conjugados dos compostos mesoiônicos forneceram como produtos os cloretos de 4-fenil-5-(p- e m-hidroxicinamoil)-1,3,4-tiadiazólio-2-feni-lamina (MI-8 e MI-10). A partir desta análise verificamos que o grupo acetoxi funcionou como grupo de proteção e sua hidrólise foi provocada pela presença de ácido clorídrico no meio reacional.

4.2 - Comportamento Químico dos Ácidos Conjugados dos Compostos Mesoiônicos Quando Tratados com Sílica

4.2.1 - Comportamento Químico de MI-7 em Cromatografia de Coluna

A cromatografia em camada fina do composto MI-7, previamente exposto a luz por uma semana, revelou a presença de dois compostos de Rfs 0,70 e 0.5, sendo a quantidade do primeiro (Rf= 0,70) muito pequena. Adsorvente: silicagel 60H, Art 7736 (Merck); Solvente: clorofórmio e metanol (90:10).

A purificação em cromatografia em coluna seguiu o procedimento abaixo:

Método: coluna seca

Adsorvente: silicagel 60,70-230 mesh ASTM (Merck) Massa do adsorvente: 5,00g; massa da amostra: 0,4g

Eluente	2	Frações
Clorofórmio		30ml
Clorofórmio e metanol ((99,75:0,25)	50ml
Clorofórmio e metanol ((99,50:0,50)	50ml
Clorofórmio e metanol ((99,25:0,75)	150ml
Clorofórmio e metanol ((99,00:1,00)	100ml
Clorofórmio e metanol ((97,00:3,00)	50ml

A primeira fração recolhida em clorofórmio foi muito pequena não sendo possível identificá-la. A segunda fração começou a ser recolhida em clorofórmio e metanol (99,75:0,25), mostrando a princípio uma mistura dos dois compostos e depois só o produto de Rf= 0,50, identificado como MI-7. Quando a polaridade do eluente foi aumentada, começou-se a coletar uma fração de tonalidade violeta que denominamos BL-7. A espectrometria de massa deste composto revelou a presença de um íon molecular de m/z 400, correspondendo a base livre de MI-7.

Na tentativa de se obter grande parte da base livre, utilizando como eluente clorofórmio e metanol (99,25:0,75), observou-se a presença de um terceiro produto, denominado BLR-7.

Aumentando a concentração de metanol no eluente, continuava-se a obter a solução de tonalidade violeta, sem a presença de BLR-7. Quando se expunha esta solução à luz solar, observava-se um descoloramento, tornando-se amarela e depois incolor. A cromatografia em camada fina desta solução ainda de cor amarela revelou a presença de dois compostos de Rfs correspondente a BL-7 e a BLR-7.

Montanari⁴⁶ também observou o mesmo fenômeno para os compostos mesoiônicos 1,3,4-tiadiazólio-2-aminidas derivados dos ácidos benzóicos não substituído, 4-metoxi e 4-nitro-substituídos. Os produtos incolores foram identificados como mesoiônicos 4-fenil-5-aroil-1,3,4-triazólio-2-tiolato, portanto o composto BLR-7 corresponde ao mesoiônico 1,4-difenil-5-[4-nitrocinamoil]-1,2,4-triazólio-3-tiolato, proveniente do rearranjo fotoquímico do correspondente mesoiônico BL-7.

Acreditamos que o composto presente na primeira fração correspondia ao ácido conjugado de BLR-7, ou seja, cloreto de 1,4-difenil-5-[4-nitrocinamoil]-1,2,4-triazólio-3-tiol(IM-7)⁴⁷.

4.2.2 - Deslocamento do Equilíbrio Ácido Base dos Compostos MI-1, MI-2 e MI-7 na presença de Sílica, Clorofórmio e Metanol

Em três tubos contendo uma pequena quantidade de sílica para cromatografia em coluna (Silicagel 60, 70-230 mesh ASTM) foram adicionados os compostos MI-1, MI-2 e MI-7, respectivamente. Misturou-se bem a sílica com o composto e adicionou-se clorofórmio. As soluções tinham tonalidades de amarelo a laranja. Com a adição de metanol estas soluções tornaram-se escuras com tonalidades variando de grená a violeta.

A tonalidade vermelha desses compostos é atribuída a suas bases livres¹¹.

Sabemos que os ácidos conjugados (MI) estão em equilíbrio com suas bases livres (BL). A presença de metanol, solvente polar protônico, favorece a solvatação da base livre deslocando o equilíbrio no sentido de sua formação. Na presença de sílica que possui cárater de ácido de Lewis, o deslocamento químico favorece a formação da base livre. A solução torna-se límpida de coloração grená à violeta Os espectros de absorção na região do ultravioleta dos compostos MI-2 e MI-7 e de suas bases livres, BL-2 e Bl-7 foram obtidos em metanol e forneceram valores de absorções máximas apresentadas na Tabela 4.2.

Tabela 4.2: Dados de U.V. dos compostos MI-2, MI-7 e de suas bases livres BL-2 e BL-7 (Espectros 63, 64, 65 e 66, em MeOH).

composto		NT O			
banda	(nm)	M1 - 2	M1 - 7	BL-2	
λ	MI	369	327	(325)	• (319)
E	MI	17.023	15.933	10.108	14.925
λ	Ph	243	259	235	270
€	Ph	23.809	17.733	18.795	15.250

Os espectros de absorção na região do U.V. dos ácidos conjugados dos compostos mesoiônicos, mostraram absorções na região do visível com intensidade média, relativas às transições eletrônicas do anel heterocíclico do tipo π - π^* e absorções máximas na região do ultravioleta relativas às transições π - π^* do anel aromático conjugado à ligação vinílica e anel mesoiônico.

As bases livres correspondentes apresentaram absorções relativas às transições eletrônicas do anel mesoiônico em comprimentos de onda menores. As absorções correspondentes às transições π - π^* , se encontram em maior comprimento de onda para BL-7 devido a presença do cromóforo nitro. 4.3 - Interpretação dos Espectros de Massa

O estudo da espectrometria de massa dos compostos mesoiônicos tem despertado considerável interesse devido às suas estruturas não-clássicas. Na literatura existem poucos trabalhos sobre a espectrometria dos 1,3,4-tiadiazólio-2-aminidas.

Os espectros de massa têm sido muito utilizados para a distinção entre os mesoiônicos isômeros das classes 1,3,4-tiadiazólio-2-aminida e 1,3,4-triazólio-2-tiolato. Os fragmentos que diferenciam essas duas classes são os íons tioacílio ($Ar-C=S^+$) e nitrílio ($Ar-C=N^+$) em função de sua maior abundância relativa²², ou seja o íon tioacílio apresenta-se mais abundante na classe dos tiadiazólios e o íon nitrílio na classe dos triazólios.

Neste trabalho obtivemos os espectros de massa dos compostos: cloreto de 4-fenil-5[X-cinamoil]-1,3,4-tiadiazólio-2-fenilaminas, onde X= p-OCH₃; p-CH₃; m-OH; H; Cl; F; p-CN; m-NO₂ e p-NO₂.

Analisando detalhadamente os espectros de massa da série dos compostos citados, observamos um padrão de fragmentação, onde o íon molecular (massa molecular (M⁺) - Cl, por tratarem-se de sais) estava sempre presente com abundância relativa bastante variável.

O esquema geral de fragmentação dos compostos estudados (Figura 23) mostra como principais e característicos fragmentos os íons tioacílio [Ar-CH=CH-C≡S]+, nitrílio [Ar-CH=CH-C=N-Ph]⁺ e o íon radical isotiocianio [Ph-N=C=S]^{+.}.

67

ź ÌI M, *[*]³ C <u>ر</u> اا _____c ____s * E 1 * **_**

Esquema Geral de Fragmentação

Figura 23

F

]+

D

A Tabela 4.3 mostra os principais fragmentos, a relação m/z e a abundância relativa para os compostos analisados.

Tabela 4.3: Principais fragmentos de massa e intensidades retativas dos ácidos conjugados dos compostos mesoiônicos.

	M ⁺ '(m/z)	(%)	A(m/z)	(%)	B(m/z)	(%)	C(m/z)	(%)	D(m/z)	(%)	E(m/z)	(%)	F(m/z)	(%)
MI-1	356	17	355	64	206	10	147	100	103	12	135	7	77	46
MI-2	386	28	385	100	236	14	177	100	133	81	135	8	77	21
MI-3	370	21	369	80	220	10	161	100	117	10	135	5	77	61
MI-4	390	30	389	100	240	11	181	99	137	5	135	6	77	94
MI-5	374	28	373	98	224	12	165	100	121	7	-	-	77	55
MI-6	381	24	3 80	80	231	14	172	34	128	9	135	29	77	100
MI-7	401	12	400	48	251	10	192	5	-	-	135	81	77	100
MI-9	401	16	400	57	251	13	192	8	-	-	135	63	77	100
MI-10	372	19	371	48	222	16	163	39	118	32	-	-	77	100

O íon tioacílio apresenta-se como pico base na maioria dos compostos que possuem grupos substituintes doadores de elétrons (com exceção dos grupos m- e p-OH), pois estes favorecem sua estabilização por efeito de ressonância.

O fragmento com valor m/z 135 foi observado na maioria dos espectros estudados, sendo com maior abundância relativa para os compostos com grupos substituintes retiradores de elétrons. 4.4 - Discussão das Atribuições dos Deslocamentos Químicos de Ressonância Magnética Nuclear de ¹³C

4.4.1 - RMN ¹³C dos ácidos cinâmicos substituídos

Os ácidos cinâmicos para e meta substituídos são compostos já descritos na literatura e alguns dos espectros de RMN ¹³C têm sido relatados^{34,37}. No entanto os deslocamentos químicos desses ácidos não foram atribuídos por comparação direta, pois os artigos traziam apenas os valores para os deslocamentos dos carbonos vinílicos (C α e C β) de alguns dos compostos sintetizados.

As atribuições para os deslocamentos químicos dos carbonos aromáticos foram realizadas através de cálculo utilizando a regra da aditividade dos efeitos no anel aromático⁴⁸, considerando como padrões os estirenos substituídos e ácidos benzóicos substituídos.

Observou-se que os valores dos deslocamentos químicos dos carbonos aromáticos obtidos nos espectros de RMN de 13 C ficaram entre os valores calculados para os padrões. Esses valores indicam uma atenuação do efeito retirador de elétrons do grupo carboxila, através da ligação π , que tem caráter "pan-ativante", blindando principalmente os carbonos orto e para do anel.

Os átomos de carbono da ligação vinílica, C α e C β , foram atribuídos considerando-se inicialmente os deslocamentos químicos para a molécula do estireno (33) e do ácido vinílico (34).

70

Aos valores intermediários obtidos adicionou-se empiricamente incrementos em função da natureza eletrônica dos grupos substituintes. No caso dos compostos para-substituídos a intensidade dos sinais também facilitou a atribuição.

Tabeta 4.4: Deslocamentos químicos de RMN $^{13}{\rm C}$ para os ácidos cinâmicos 4-substituídos (Em DMSOd_6, δ ppm)

	x	Cα	Сβ	Сү	C1	C2 e C6	C3 e C5	C4	Х
AC-1	K	144,02	119,29	167,87	134,28	128,97	128,25	130,28	-
AC-2	OCH3	143,89	116,59	166,00	126,92	130,01	114,42	161,03	55
AC-3	сι	142,56	120,06	167,45	133,22	128,95	129,97	134,74	-
AC-4	СНЗ	140,20	118,10	167,73	131,50	129,52	128,20	143,90	39,5
AC-5	F	142,85	119,22	167,76	131,01	130,55	115,97	163,31	-
AC-6	CN	142,02	122,91	167,27	138,89	128,95	132,80	112,24	118,70
AC-7	N(CH3)2	144,51	112,75	168,09	121,36	129,55	111,57	151,38	39,5
AC-8	NO2	141,36	123,64	167,10	140,77	129,34	123,96	147,86	-
AC-9	сн ₃ со ₂	143,08	119,39	167,70	132,01	129,50	122,45	151,93	20,91 169,11

72

Tabela 4.5: Destocamento químico de RMN ¹³C para os ácidos 3-substituídos (Em DMSOd₆, δ ppm).

	x	Cα	Cβ	С	C1	C2	С3	C4	С5	C6	x
AC-10	NO2	141,53	124,42	167,25	136,16	122,29	148,32	122,85	130,36	134,07	
AC-11	ОН	144,17	118,91	167,58	135,47	114,47	157,70	117,42	129,91	119,14	
AC-12	сн _з со ₂	143,05	120,51	167,67	136,09	121,33	151,11	123,78	130,07	125,92	
AC-13	OCH3	143,99	116,27	167,73	135,77	113,02	159,89	119,63	129,98	120,82	55,24
AC-14	OPh	141,22	118,20	165,67	134,50	-	155,27	-	128,45	121,26	*

*

4.4.2. RMN ¹³C dos ácidos conjugados dos mesoiônicos

As atribuições dos deslocamentos químicos de RMN ¹³C dos compostos MI-1 à MI-11 foram realizadas por etapas, ou seja, as moléculas foram divididas em partes e estas comparadas à estruturas análogas com deslocamentos químicos conhecidos. A Tabela 4.6 indica os valores dos deslocamentos químicos para todos os átomos de carbono dos compostos para-substituídos e a Tabela 4.7 para os meta-substituídos. Os deslocamentos químicos dos carbonos do grupo cinamoíla ligado ao átomo de C5 do anel mesoiônico foram atribuidos por comparação com os respectivos ácidos cinâmicos substituídos. Os carbonos do anel aromático apresentam deslocamentos químicos bastante semelhantes aos correspondentes dos ácidos cinâmicos, sendo que observa-se uma variação entre 1 e 2 ppm sempre para campo mais baixo. Para os átomos de carbono $C\alpha \ e \ C\beta$ foram verificados deslocamentos químicos em campo mais baixo e mais alto, respectivamente, comparados aos dos ácidos cinâmicos correspondentes. Este comportamento pode ser comparado ao que ocorre com os ácido vinílico (35) e cianeto de vinila (36).

Como podemos observar a variação entre os deslocamentos químicos do C α do ácido vinílico e cianeto de vinila é de 5,9 ppm, enquanto que para os C β é de 20,3 ppm, em módulo. A maior diferença para os carbonos C β deve-se à soma dos efeitos anisotrópico e retirador de elétrons do grupo ciano que levam o deslocamento químico do C- β para campo mais alto. Entretanto a diferença entre os deslocamentos químicos de C β dos ácidos cinâmicos e dos mesoiônicos correspondentes, é de cerca de 10 ppm. Neste caso não está presente o efeito anisotrópico, e o efeito do grupo retirador de elétrons, agora o anel heterocíclico π -deficiente é o maior, apresentando σ = 0,71⁴⁹ enquanto que o grupo carboxila possui valor de σ = 0,45.

A atribuição dos deslocamentos químicos dos carbonos aromáticos dos anéis ligados ao N⁴ e N_{exocíclico}, foi realizada utilizando os resultados da difração de Raios-X⁵⁰ do ácido conjugado do mesoiônico: cloreto de 4-fenil-5-[4-metoxifenil]-1,3,4-tiadiazólio-2-fenilamina e os dados de cálculos teóricos 17 obtidos para esse sistema. Inicialmente para a atribuição C1' e C1'', consideramos os valores de comprimento de ligação para N4- C1'' = 1,461 Å, N_{exo} - C1' = 1,408 Å, N_{exo} - C2 = 1,343 Å e os valores de ordem de ligação $\sigma + \pi$ para N4 -C1''= 0,88, N_{exo} - C2= 1,27, N_{exo} - C1'= 0,95. A partir desses dados propomos uma significativa contribuição das estruturas canônicas 37b e 37c que indicam a presença de ligação dupla entre os átomos N_{exo} - C2 e N_{exo} - C1'.

Conseqüentemente, comparando os sinais de mesma intensidade na faixa de 136 a 139 ppm correspondentes aos C1' e C1'', atribuímos o maior valor do deslocamento químico para o átomo de C1' Esta interpretação é coerente com os resultados de Montanari⁴⁵ que utilizou técnicas de RMN de ¹⁵N para a caracterização de compostos mesoiônicos pertencentes a esse sistema.

Os deslocamentos químicos dos carbonos orto, meta e para do anel ligado ao átomo de N4 foram atribuídos por comparação com o íon anilônio (38). Os carbonos orto, meta e para do anel ligado ao átomo de N_{exocíclico} apresentaram-se em campo mais alto devido ao menor caráter positivo deste nitrogênio quando comparado ao N4 (37a), mostrando deslocamentos químicos mais próximos da anilina (39).

Os carbonos C2 e C5 do anel heterocíclico apresentaram deslocamentos químicos entre 157,94-159,40 ppm e entre 160,65-162,58 ppm, respectivamente. Essas atribuições também foram baseadas nos resultados da difração de Raios- X^{50} e cálculos teóricos¹⁷ (Figura 24).

Figura 24

Outro fator que contribuiu para essas atribuições foi a intensidade dos sinais apresentados por esses carbonos. O sinal do átomo C2 apresentava-se sempre menos intenso, devido ao maior tempo de relaxamento por estar ligado à três heteroátomos, enquanto que o C5 apenas à dois. Essas atribuições também são fundamentadas pelos resultados obtidos por Montanari⁴⁶ que através de RMN ¹³C observou o acoplamento do C2 com o $N_{exocíclico}$, previamente enriquecido com o ¹⁵N.

76

Tabela 4.6: Deslocamentos químicos de RMM ¹³C para os ácidos conjugados dos compostos mesoiônicos <u>para</u>-substituídos.

Composto		~ ~											**********			-	4X=	-
Carbon	1' D	2,6	31,51	4	1.	2.,6.	3,5	4	1	2,6	3, 5	4	۵	ß	2.	5.	Olle, lie, C	N
MI-1	137,82	118,85	129,15	124,33	136,45	125,33	128,85	132,36	132,97	130,18	128,94	131,91	149,10	109,88	158,62	161,74		-
MI-2	137,99	118,56	128,81	123,95	136,15	125,35	130.09	131,61	130,92	125,81	114,70	1 63, 15	149,00	107,12	157,97	162,03	55,32	
MI-3	137,73	118,46	128,84	124,21	136,33	125,18	128,66	131,77	130,24	1 30 ,03	129,76	143,64	149,24	108,63	158,36	162,02	21,07	
MI-4	138,33	118,71	129,84	124,23	137,94	125,45	130,21	131,91	131,63	128,95	129,45	136,57	147,25	110,48	158,75	161,38		
MI-5	137,79	118,56	130,12	124,16	136,43	125,30	128,65	131,85	129,36	130,94	116,47	164,83	147,56	109,85	158,50	161,65		
MI-6	137,34	118,42	128,51	124,36	137,00	124,92	129,61	131,54	N.O.	128,69	132,94	N.O.	145,38	113,16	N.O.	161,00	117	,3
MI-7	137,62	118,70	129,29	124,54	136,38	125,33	128,97	132,15	138,94	130,22	124,06	148,86	145,32	113,87	159,40	160,65		
MI-8	139,49	118,85	130,18	124,24	138,07	125,42	129,00	131,67	124,72	131,45	116,42	159,00	148,93	105,86	157,94	162,58		

Composto	1'	2',6'	31,51	4'	1	2	3**,5**	4**	1	2	3	4	5***	6	۵	8	2.	5.	X
Carbon	0	•				•				-		-	-	-	-				
MI-9	137,40	118,44	124,63	124,36	136,30	124,96	128,69	131,58	134,50	125,21	-	122,70	129,75	133,42	145,17	112,79	-	-	-
MI-10	137,80	118,66	128,97	124,43	125,24	130,12	131,85	-	-	119,62	157,86	115,00	-	120,10	149,26	109,89	158,50	162,00	-
MI-11	-	118,69	128,94	124,30	136,39	125,35	130,21	131,94	134,34	114,03	159,83	117,84	-	-	110,23	148,98	159,00	161,63	-

Tabela 4.6: Deslocamentos químicos de RMM ¹³C para os ácidos conjugados dos compostos mesoiônicos <u>meta</u>-substituídos.

4.5 - Relações Lineares de Energia Livre-Correlações dos Deslocamentos Químicos de RMN ¹³C x Efeitos dos Substituintes

4.5.1 - Correlações para os Ácidos Cinâmicos Substituídos Com o objetivo de estudarmos a contribuição dos efeitos eletrônicos dos grupos substituintes nos deslocamentos químicos de RMN ¹³C dos compostos da série dos 1,3,4-tiadiazólio-2-fenilaminas, derivados dos ácidos cinâmicos substituídos, realizamos previamente um estudo das correlações desses efeitos x deslocamentos químicos para os ácidos cinâmicos, seus precursores.

Aplicando a correlação de Hammett para os deslocamentos químicos da ligação vinílica (C α e C β) contra os valores das constantes dos substituíntes (σ) e separadamente contra σ_p e σ_m , obtivemos os resultados indicados na Tabela 4.8.

	ρ	c.c ^a	Erro ^b	F ^C
δCα χ σ	-2,10±0,47	0,7894	0,7220	19,84
	-1,97±0,51	0,9215	0,4540	39,32
δርβ χ.σ δርβ χ.σ _Π	6,74±0,76 6,50±0,21	0,9316 0,9842	1,1610 0,6137	78,79 215,76
δCβ χ σ <u>Ρ</u>	9,04±2,91	0,8405	1,6636	9,634

Tabela 4.8: Correlações de Hammett envolvendo $\delta C\alpha$, $\delta C\beta \ x \ \sigma, \ \sigma_p \ e \ \sigma_m \ para \ \text{ácidos cinâmicos.}$

^aCC, Coeficiente de correlação ^berro, Desvio padrão ^CF, Significância ou fator de confiabilidade

A melhor correlação observada, foi para os átomos $C\beta$ dos derivados para-substituídos como era esperado, pois os grupos na posição para transmitem melhor os efeitos de ressonância.

Utilizando a equação de Hammett simples com parâmetro σ_p^+ para a correlação do C β , obtivemos coeficiente de correlação 0,9948 com valor de ρ =4,31 (F= 568,12). Este resultado corresponde a melhor correlação e, é coerente com o trabalho de Happer que utilizou o parâmetro he σ_R^+ , para os ácidos cinâmicos, obtendo valor ρ_R = 3,9.

Considerando a equação de Hammett modificada, com a separação dos efeitos eletrônicos de ressonância e indutivo, utilizamos os parâmetros duais $\sigma_{\rm I}$ e $\sigma_{\rm R}$ e as constantes de Swain e Lupton, \mathscr{F} e \Re , contra os deslocamentos químicos dos carbonos C α e C β . Foram aplicadas regressões múltiplas para obtermos os coeficientes de susceptibilidade, indicando separadamente os efeitos de ressonância e indutivo sobre os deslocamentos químicos desses carbonos. A Tabela 4.9 Mostra os resultados obtidos.

80

Posição do substituinte	Equação de Hammett expandida utilizando os parâmetros duais σ _I e σ _R	c.c.	Erro	F
<u>para</u> meta	δC c = -(3,24±0,41)σ _I - (1,14±0,24)σ _R + 143,91±0,18 Não houve correlação	0,977	0,25	64,75
para	$\delta C \beta = (4,64\pm0,88)\sigma_1 + (7,32\pm0,60)\sigma_2 + 119,13\pm0,38$	0,9896	0,534	142.05
meta	$\delta C \beta = (6,29\pm3,17)\sigma_{I}^{1} + (5,46\pm2,21)\sigma_{R}^{K} + 118,82\pm1,43$	0,9097	1,47	7,20
para	δCα= -(1,84±0,23)ℱ - (0,49±0,06)號 + 143,94±0,16	0,9814	0,23	78,37
meta	δCα= -(10,84±2,71) F + (1,00±0,46) + 151,08±2,21	0,9622	0.53	12.49
para	$\delta C \beta = (2,20\pm0,52) \mathscr{F} + (2,70\pm0,13) \Re + 118,99\pm0,36$	0,9903	0.52	153.11
meta	δCβ= (2,47±0,01) F + (1,89±0,60) + 119,43±1,44	0,9085	0,48	7,09

Tabela 4.9: Equações de Hammett expandidas envolvendo $\delta C\alpha$, $\delta C\beta$ x $\sigma_{\rm I}$, $\sigma_{\rm R}$ e e $\pmb{\mathscr{T}}$ e \Re dos ácidos cinâmicos.

Observamos que para o C α o efeito indutivo apresenta maior contribuição devido à maior proximidade do anel aromático, com valor de ρ_I negativo, indicando para grupos doadores de elétrons deslocamentos químicos em campo mais baixo. Para o C β para-substituído o efeito de ressonância é mais significativo, utilizando os parâmetros σ_I e σ_R e, para os meta-substituídos o efeito indutivo "parece predominar", como era esperado.

As correlações com os parâmetros de Swain e Lupton, indicam aproximadamente os mesmos efeitos com melhores coeficientes de correlação. Os valores dos desvios padrão obtidos nas equações para os compostos meta-substituídos apresentam-se muito maiores, devido ao menor número de compostos estudados, sendo também evidenciado pelos pequenos valores de F. 4.5.2 - Correlações para os ácidos conjugados dos compostos mesoiônicos

As correlações entre os deslocamentos químicos e os efeitos dos substituintes para os ácidos conjugados dos compostos mesoiônicos, foram realizados considerando os carbonos C2 e C5 do anel heterocíclico e os carbonos C α e C β do grupo cinamoila ligado ao átomo C5.

Aplicando-se a equação de Hammett para os deslocamentos químicos dos carbonos C α e C β contra os valores de σ_p , verificamos coeficiente de correlação 0.9722 e 0,9807, respectivamente. Quando utilizados os valores de σ^+ , essa correlação tornou-se significativamente melhor para o C β (C.C. 0,9961), Tabela 4.10.

Segundo Craik e Brownlee³⁴, os derivados de estireno com grupos retiradores de elétrons na posição β ao anel aromático, possuem melhores correlações com valores de σ^+ .

Tabela 4.10: Correlações de Hammett envolvendo $\delta C\alpha$, $\delta C\beta \propto \sigma$, $\sigma_p \in \sigma^+$ para os ácidos conjugados dos mesoiônicos.

			ρ	C.C.	Erro	F
δCα	x	σ	-4,28±0,54	0,9319	0,6935	59,15
δCα	x	σ _p	-4,11±0,40	0,9722	0,4486	111,62
ðCα	x	σ+	-2,67±0,48	0,9145	0,7760	30,64
δĊβ	x	σ	6,08±0,42	0,9775	0,5456	193,17
δCβ	x	σ _p	6,39±0,52	0,9807	0,5772	151,17
δĊβ	x	σ+	4,45±0,16	0,9961	0,2605	765,53

Considerando a equação de Hammett expandida, aplicada aos deslocamentos químicos dos C α e C β com os parâmetros σ_{I} , σ_{R} e \mathscr{F} , \Re obtivemos as equações indicadas na Tabela 4.11.

Equação de Hammett expandida utilizando os parâmetros duais $\sigma^{}_{\rm I}$ e $\sigma^{}_{\rm R}$	C.C.	Erro	F
$\begin{aligned} \delta C \alpha &= -(4,81\pm0,56)\sigma_{\rm I} - (3,38\pm0,45)\sigma_{\rm R} + 148,79\pm0,25\\ \delta C \beta &= (4,45\pm0,63)\sigma_{\rm I} + (7,48\pm0,51)\sigma_{\rm R} + 109,78\pm0,28 \end{aligned}$	0,9860	0,3506	97,57
	0,9926	0,3937	166,44
Equação de Hammett expandida utilizando os parâmetros Swain e Lupton	c.c.	Erro	F
$\delta C \alpha = -(2,77\pm0,26)\mathscr{F} - (1,07\pm0,09) \Re + 148,44\pm0,18$	0,9929	0,2502	173,88
$\delta C \beta = (1,90\pm0,24)\mathscr{F} + (2,35\pm0,08) \Re + 109,73\pm0,16$	0,9926	0,2242	516,32

Tabela 4.11: Equações de Hammett expandidas envotvendo $\delta C \alpha$, $\delta C \beta \ge \sigma_{I}$, $\sigma_{R} \in \mathscr{F}, \Re$, dos ácidos conjugados dos mesoiônicos.

Os resultados obtidos com a Equação de Hammett expandida mostraram maior contribuição do efeito indutivo C α com $\rho_{\rm R}/\rho_{\rm I}$ = 0,70 e, maior contribuição do efeito de ressonância no C β , com $\rho_{\rm R}/\rho_{\rm I}$ = 1,66.

Comparando as correlações obtidas para os Ca e C β dos ácidos cinâmicos com os correspondentes mesoiônicos, observamos uma razão de $\rho_R/\rho_I = 0,35$ para o C α dos ácidos cinâmicos, enquanto que $\rho_R/\rho_I = 0,70$ para o C α dos mesoiônicos, indicando que o efeito de ressonância é mais efetivo. Para o C β a razão entre ρ_R/ρ_I é aproximadamente a mesma para as duas séries de compostos estudados. Os deslocamentos químicos dos átomos C2 e C5 do anel heterocíclico foram correlacionados com os valores de σ , σ_p e e σ^+ , respectivamente. A Tabela 4.12 indica os resultados obtidos.

		ρ	(C.C.		Erro		F
		x σ, σ _p e iônicos.	σ^{+} para	a os	ácidos	conjugados	dos	meso-
Tabela	4.12:	Correlações	de	Hamme	ett en	volvendo	δC2,	δC5

			•			
δC2	x	σ	1,27±0,10	0,9777	0,0981	151,75
δC2	х	σ	$1,27\pm0,12$	0,9785	0,1110	112,28
δC2	х	σ¥	0,85±0,05	0,9903	0,0698	303,37
δC5	х	σ	$-1,43\pm0,24$	0,9056	0,2624	36,46
δC5	х	σ	$-1,43\pm0,14$	0,9757	0,1454	119,15
δ C5	х	σ¥	-0,97±0,10	0,9643	0,1757	79,60

Observando os resultados verificamos que para o carbono C2, a melhor correlação se faz com σ_p e o sinal de ρ é positivo, indicando que o efeito retirador de elétrons no anel aromático somado ao efeito retirador de elétrons do anel mesoiônico provoca uma conjugação extendida, deslocando o par de elétrons do átomo de nitrogênio exocíclico (Figura 40).

Figura 40

84

Para o carbono C5, o sinal de ρ indica a participação mais significativa dos grupos doadores de elétrons no anel cinamoíla conjugação cruzada na com 0 grupo mesoiônico, de elétrons (Figura comportando-se como retirador 41).

Figura 41

A equação de Hammett expandida foi aplicada aos deslocamentos químicos de C2 e C5, utilizando-se os parâmetros $\sigma_{\rm I}$, $\sigma_{\rm R}$ e \mathcal{F} , \Re . A Tabela 4.13 mostra as equações obtidas.

Equação de Hammett expandida utilizando os parâmetros duais $\sigma_{I} = \sigma_{R}$ c.c. Erro F 0,9956 0,0567 230,80 0,9767 0,1562 51,07 Equação de Hammett expandida F utilizando os parâmetros Swain e Lupton c.c. Erro 0,9961 0,0542 253,30 0,9799 0,1452 60,27

Tabela 4.13: Equações de Hammett expandidas envolvendo δ C2, δ C5 x σ_{I} , $\sigma_{R} \in \mathscr{F}$, \mathfrak{R} dos ácidos conjugados mesoiônicos.

Os resultados da Tabela 4.13 indicam melhores correlações para o C2, mostrando uma significativa contribuição do fator ressonância $\rho_{\rm R}/\rho_{\rm I}$ = 1,71 e r/f= 1,35), ao passo que para o C5 a contribuição do efeito indutivo é relativamente maior $(\rho_{\rm R}/\rho_{\rm I}$ = 1,21 e r/f= 0,77), devido provavelmente a ocorrência da participação do efeito indutivo de campo.

As comparações entre as correlações dos ácidos cinâmicos e compostos relacionados, mostram que os efeitos polares são melhor transmitidos quando o anel heterocíclico está presente como substituinte ao invés do grupo carboxila. A deslocalização dos elétrons através do sistema π envolvido entre o heterociclo, ligação vinílica e anel aromático é favorecida pela relativa coplanaridade dos orbitais π presentes nesses grupos.

5. CONCLUSÕES

Considerando os diversos aspectos abordados neste trabalho, podemos concluir que:

- 1 O método utilizado para síntese dos novos compostos da classe 1,3,4-tiadiazólio-2-fenilaminas, a partir de cloretos dos ácidos cinâmicos m- e p-substituídos e 1,4-difeniltiossemicarbazida, mostrou-se eficiente fornecendo os produtos geralmente em alto grau de pureza e com rendimento médio de 70%.
- 2 A caracterização dos produtos obtidos, realizadas através das técnicas espectroscópicas usuais mostrou perfeita concordância com as estruturas propostas, considerando a estrutura não clássica dos compostos mesoiônicos.

- 3 Os deslocamentos químicos dos Cα e Cβ nos ácidos conjugados dos mesoiônicos comparado aos respectivos ácidos cinâmicos, apresentam-se em campo mais baixo e mais alto, respectivamente, devido ao forte caráter retirador de elétrons do anel mesoiônico.
- 4 As correlações de Hammett obtidas para o C α dos ácidos cinâmicos e dos ácidos conjugados dos mesoiônicos mostraram que o efeito de ressonância é duas vezes maior para a segunda classe de compostos. A melhor trasmissão do efeito polar se deve a maior deslocalização dos elétrons π envolvido entre o heterociclo, ligação vinílica e anel aromático e pela relativa coplanaridade dos orbitais π presente nesses grupos.
- 5 Para os compostos heterocíclicos as correlações obtidas para os átomos C2 e C5 do anel mesoiônico indicaram menor susceptibilidade aos efeitos eletrônicos dos substituintes do anel cinamoíla, evidenciado pelos valores de ρ . O efeito de ressonância mostrou-se mais significativo para o C-2, que embora pequeno, indica uma extensa conjugação dos elétrons π desde os grupos substituintes até o N- exocíclico ligado ao anel mesoiônico.

6.REFERÊNCIAS BIBLIOGRÁFICAS

- ¹ Fischer, E. and Besthorn, E., <u>Ann.</u>, <u>212</u>, 316 (1882).
- ² Baker, W., Ollis, W.D., Poole, V.D., <u>J. Chem. Soc.</u>, 307 (1949).
- ³ Baker, W., Ollis, W.D.; <u>Quart. Rev.</u>, <u>11</u>, 15 (1987).
- ⁴ Earl, J.C. and Macney, A.W., <u>J. Chem. Soc.</u>, 899 (1935).
- ⁵ Schönberg, A., <u>J. Chem. Soc.</u>, 824 (1938).,
- ⁶ Simpson, J.C.E., <u>J. Chem. Soc.</u>, 95 (1946).
- ⁷ Potts, K.T., <u>Lect. Heterocycl. Chem.</u>, <u>4</u>, 35 (1978).
- ⁸ Ollis, W.D. and Ransden, C.A., <u>Adv. Heterocycl Chem.</u>, <u>19</u>,3 (1976).
- ⁹ Shutske, G.M. and Agnew, M.N., <u>J. Het. Chem.</u>, <u>18</u>, 1025 (1981).
- ¹⁰ Molina, P.; Lorenzo, A.; Claramunt, R.M. and Elguero, J., <u>Tetrahedron</u>, <u>42</u>:(7) 2121 (1986).

- ¹¹ Ollis, W.D. and Ramsden, C.A. <u>J. Chem. Soc. Perkin I</u>, 633 (1974).
- ¹² Echevarria, A., Tese de Doutorado USP (1985).
- ¹³ Stewart, F.H.C., <u>Chem.</u> <u>Rev.</u>, <u>64</u>, 129 (1964).
- ¹⁴ Thiessen, W.E. and Hope, H., <u>J. Amer. Chem. Soc.</u>, <u>89</u>,5977 (1967).
- ¹⁵ Kier, L.B. and Roche, E.B., <u>J. Pharm. Sci.</u>, <u>56</u>(2)194 (1967).
- ¹⁶ Schimed, G.H., <u>J. Mol. Structure</u>, <u>5</u>, 236 (1970).
- ¹⁷ Cheung, K., Echevarria, A.; Galembeck, S., Maciel, M.A., Miller, J., Rumjanek, V. and Simas, A., I Workshop Chemical Structure and Biological Activity - USP - SP (1991).
- ¹⁸ Duffin, G.H. and Kendan, J.D., <u>J. Chem. Soc.</u>, 3189 (1956).
- ¹⁹ Simith, R.F., Deutsch, J.L., Almeter, P.A., Johnson, D.S., Roblyer, S.M. and Rosenthal, T.C., <u>J. Heterocycl</u> <u>Chem.</u>, <u>7</u>, 671 (1970).
- ²⁰ Lazaris, A. Ya. and Egorochkin, A.N., <u>Akademmi Nauk SSSR</u>, <u>Seriya Khimicheskaya</u>, <u>8</u>, 1870 (1979).
- ²¹ McCarthy, A.R., Ollis, W.O. and Ramsden, C.A., <u>J. Chem.</u> <u>Soc. Perkin I</u>, 627 (1974).

- ²² Tsoleridis, C.A. and Alexandrou, N.E., <u>Magnetic Resonance</u> <u>in Chemistry</u>, <u>23</u>(10) (1985).
- 23 Potts, K.T., Roy, S.K. and Jones, D.P., <u>J. Het. Chem.</u>, <u>2</u>, 105 (1965).
- 24 Ollis, W.D. and Ramsden, C.A., <u>J. Chem. Soc. Perkin I</u>, 645 (1974).
- ²⁵ Hanley, R.N., Ollis, W.D. and Ramsden, C.A., <u>J.</u> <u>Chem.</u> <u>Soc.</u> <u>Perkin</u> <u>I</u>, 747 (1979).
- ²⁶ Bastos, M.P., <u>Química Nova</u>, <u>7</u>, 3 (1984).
- ²⁷ Hammett, L.P., <u>J. Amer. Chem. Soc.</u>, <u>59</u>, 96 (1937).
- ²⁸ Isaacs, N.S., "Physical Organic Chemestry", Longman Scientific & Technical, New York, 1986.
- ²⁹ Taft, R.W., <u>J. Amer. Chem.</u> <u>Soc.</u>, <u>75</u>, 4231 (1953).
- ³⁰ Taft, R.W., <u>J. Amer. Chem. Soc.</u>, <u>79</u>, 1045 (1957).
- ³¹ Taft, R.W. and Lewis, J., <u>J. Amer. Chem. Soc.</u>, <u>80</u>, 2436 (1958).
- ³² Swain, C.G. and Lupton, E.C., <u>J. Amer. Chem. Soc.</u>, <u>90</u>, 4328 (1968).
- ³³ Ehrenson, S., <u>J. Org. Chem.</u>, <u>44</u>, 1793 (1979).

- ³⁴ Shorter, J., "Correlation Analysis in Organic Chemistry: An Introduction to Linear Free-Energy Relationships" Clarendon Tress, Oxford, 1973.
- ³⁵ Reynolds, W.F. and Hammer, G.K., <u>Canad.</u> J. <u>Chem.</u>, <u>51</u>, 897 (1973).
- ³⁶ Butt, G. and Topson, R.D., <u>Spechtrochmica</u> <u>Acta</u>, <u>36</u>, 811 (1980).
- ³⁷ Happer, D.A.R. and Steenson, B.E., <u>J. Chem. Soc. Perkin</u> <u>Trans II</u>, 843 (1983).
- ³⁸ Gordon, M.S. and Sojka, S.A., <u>J. Org. Chem.</u>, <u>49</u>, 97 (1984).
- ³⁹ Echevarria, A., Miller, J. and Nascimento, M.G., <u>Magnetic</u> <u>Resonance in Chemistry</u>, <u>23</u>(10) 809 (1985).
- ⁴⁰ Morita, T. and Assumpção, R.M.V., Manual de Soluções, Reagentes e Solventes, 2^a ed., Editora Edgard Blücker Ltda, S.P., 1972.
- ⁴¹ House, H.O., "Modern Synthetic Reaction", 2nd edition, the Benjamin Cummings Publishing Company (1972).
- ⁴² The Merck Index, 10th edition, Martha Windholz (1983).
- ⁴³ Marckwald, W., <u>Chem. Ber.</u>, 25, 3098 (1892).
- ⁴⁴ Tietze, L., "Reactions and Synthesis in the Organic Chemistry Laboratory, Mill Vall, Califórnia (1988).

45 Pereira, A.B., Tese de Doutoramento, IQ, USP (1987).

- ⁴⁶ Montanari, C.A., Tese de Doutoramento, IQ, USP (1991).
- 47 Maciel, M.A.M., Tese de Mestrado, PQ, UFRRJ (1991).
- ⁴⁸ Silverstein, R.M.; Bassler, G.C.; Morril, T.C., "Spectrometric Identification of organic Compouds, 4rd edition, John & Sons, New York (1979).
- ⁴⁹ Echevarria, A. and Miller, J., <u>J. Chem. Research</u> (s), 391 (1987).
- ⁵⁰ Cheing, K., Echevarria, A. and Miller, J., <u>Acta</u> <u>Cristalograph</u>, in press (1992).

7. ESPECTROS
Espectro 1 - RMN ¹H do ácido cinâmico (em DMSOd₆)

Espectro 2 - RMN ¹³C do ácido cinâmico (em DMSOd₆)

Espectro 3 - RMN ¹H do ácido p-metoxicinâmico (em DMSOd $_6$)

Espectro 5 - RMN ¹H do ácido *p*-clorocinâmico (em DMSOd₆)

Espectro 7 - RMN ¹H do ácido *p*-metilcināmico (em DMSOd₆)

Espectro 10 - RMN 13 C do ácido *p*-fluorcinâmico (em DMSOd₆)

Espectro 12 - RMN ¹³C do ácido *p*-cianocinâmico (em DMSOd₆)

Espectro 13 - RMN ¹H do ácido N,N-dimetilcin \overline{amico} (em DMSOd₆)

Espectro 14 - RMN 13 C do ácido p-N,N-dimetilcinâmico (em DMSOd₆)

Espectro 17 - RMN ¹H do ácido m-nitrocinâmico (em DMSOd_ó)

Espectro 18 - RMN ¹³C do ácido m-nitrocināmico (em DMSOd₆)

Espectro 21 - RMN ¹H do ácido m-metoxicinâmico (em DMSOd₆)

Espectro 23 - RMN ¹H do ácido m-fenoxicinâmico (em DMSOd₆)

Espectro 24 - RMN ¹³C do ácido m-fenoxicinâmico (em DMSOd₆)

Espectro 26 - RMN ¹³C do ácido *p*-acetoxicinâmico (Em DMSOd₆)

Espectro 27 - RMN ¹H do ácido æ-acetoxicinâmico (Em DMSOd₆)

Espectro 28 - RMN ¹³C do ácido m-acetoxicināmico (Em DMSOd₆)

Espectro 29 - I.V. do cloreto de 4-fenil-5-cinamoil-1,3,4-ti<u>a</u> diazólio-2-fenilamina (MI-1), em KBr

Espectro 31 - RMN ¹³C do cloreto de 4-fenil-5-cinamoil-1,3,4tiadiazólio-2-fenilamina (MI-1), em CDCl₃ e

MeOHd₄

Espectro 34 - RMN ¹H do cloreto de 4-fenil-5-(4-metoxicinamoil)-1,3,4-tiadiazólio-2-fenilamina (MI-2), em CDCl₃

Espectro 35 - RMN ¹³C do cloreto de 4-fenil-5-(4-metoxicinamoil)-

1,3,4-tiadiazólio-2-fenilamina (MI-2), em CDCl₃ e MeOHd₄

240 PPM 200 150 160 140 128 100 80 50 40 20 -0

Espectro 36 - Espectro de Massa do cloreto de 4-fenil-5-(4metoxicinamoil)-1,3,4-tiadiazólio-2-fenilamina (MI-2)

Espectro 38 - RMN ¹³C do cloreto de 4-fenil-5-(4-metilcinamoil),3,4tiadiazólio-2-fenilamina (MI-3), em CDCl₃ e MeOHd₄.

Espectro 39 - Espectro de Massa do cloreto de 4-fenil-5-(4metilcinamoil),3,4-tiadiazólio-2-fenilamina (MI-3).

Espectro 40 - I.V. do cloreto de 4-fenil-5-(4-clorocinamoil)-1,3,4-tiadiazólio-2-fenilamina (MI-4), em KBr. Espectro 41 - RMN ¹³C do cloreto de 4-fenil-5-(4-clorocinamoil)-1,3,4-tiadiazólio-2-fenilamina (MI-4), em CDCl₃ e MeOHd₄.

Espectro 42 - Espectro de Massa do cloreto de 4-fenil-5-(4clorocinamoil)-1,3,4-tiadiazólio-2-fenilamina (MI-4), em CDCl₃ e MeOHd₄.

Espectro 43 - RMN ¹³C do cloreto de 4-fenil-5-(4-fluorcinamoil)-1,3,4-tiadiazólio-2-fenilamina (MI-5), em CDCl₃ e MeOHd₄.

Espectro 44 - Espectro de Massa do cloreto de 4-fenil-5-(4fluorcinamoil)-1,3,4-tiadiazólio-2-fenilamina (MI-5)

Espectro 45 - I.V. do cloreto de 4-fenil-5-(4-cianocinamoil)-1,3,4tiadiazólio-2-fenilamina (MI-6), em KBr.

Espectro 47 - Espectro de Massa do cloreto de 4-fenil-5-(4-cianoc<u>i</u> namoil)-1,3,4-tiadiazólio-2-fenilamina (MI-6).

Espectro 49 - RMN ¹³C do cloreto de 4-fenil-5-(4-nitrocinamoil)-1,3,4tiadiazólio-2-fenilamina (MI-7), em CDCl₃ e MeOHd₄.

Espectro 50 - Espectro de Massa do cloreto de 4-fenil-5-(4-nitroc<u>i</u> namoil)-1,3,4-tiadiazólio-2-fenilamina (MI-7)

Espectro 51 - I.V. do cloreto de 4-fenil-5-(4-hidroxicinamoil)-1,3,4-tiadiazólio-2-fenilamina (MI-8), em KBr.

Espectro 52 - RMN ¹³C do cloreto de 4-fenil-5-(4-hidroxic<u>i</u> namoil),3,4-tiadiazólio-2-fenilamina (MI-8), em CDCl₃ e MeOHd₄.

Espectro 54 - RMN ¹³C do cloreto de 4-fenil-5-(3-nitrocinamoil)-1,3,4-tiadiazólio-2-fenilamina (MI-9), em CDCl₃ e

Espectro 55 - Espectro de Massa do cloreto de 4-fenil-5-(3-nitroc<u>i</u> namoil)-1,3,4-tiadiazólio-2-fenilamina (MI-9).

Espectro 58 - Espectro de Massa cloreto de 4-fenil-5-(3-hidrox<u>i</u> cinamoil).3.4-tiadiazólio-2-fenilamine (NT-10).

Espectro 59 - I.V. do cloreto de 4-fenil-5-(3-metoxicinamoil)-1,3,4-tiadiazólio-2-fenilamina (MI-11), em KBr.

Espectro 62 - RMN ¹H do ácido 4-nitrocinâmico (mistura dos isômeros) em DMSOd₆. Espectro 63

U.V. do cloreto de 4-fenil-5-(3-metoxicinamoil)-1,3,4tiadiazólio-2-fenilamina (MI-2), em metanol.

Espectro 64 - U.V. do cloreto de 4-fenil-5-(4-nitrocinamoil)-1,3,4tiadiazólio-2-fenilamina (MI-7), em metanol.

tiadiazólio-2-aminida (BL-2), em metanol.

Espectro 66 - U.V. do cloreto de 4-fenil-5-(4-nitrocinamoil)-1,3,4-

tiadiazólio-2-aminida (BL-7), em metanol.

