UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE QUÍMICA CURSO DE PÓS-GRADUAÇAO EM QUÍMICA ORGÂNICA

ESTUDO DE TRANSFORMAÇÕES QUÍMICAS E ATIVIDADES BIOLÓGICAS DE UM LIMONÓIDE DO TIPO *A-SECO* E DO LUPEOL

ANDRÉA LUZIA FERREIRA DE SOUZA

Sob a orientação do Prof. Dr. Victor Marcos RumjanEk

> Seropédica Novembro de 1998

UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE CIÊNCIAS EXATAS CURSO DE PÓS-GRADUAÇÃO EM QUÍMICA ORGÂNICA

ESTUDO DE TRANSFORMAÇÕES QUÍMICAS E DE ATIVIDADES BIOLÓGICAS DE UM LIMONÓIDE DO TIPO A-SECO E DO LUPEOL

ANDRÉA LUZIA FERREIRA DE SOUZA

Sob orientação do Professor Dr. Victor Marcos Rumjanek

> Tese submetida como requisito parcial para obtenção do grau de mestre em Ciências. Área de concentração em Síntese Orgânica.

Seropédica, Rio de Janeiro Novembro de 1998

ESTUDO DE TRANSFORMAÇÕES QUÍMICAS E DE ATIVIDADES BIOLÓGICAS DE UM LIMONÓIDE DO TIPO A-SECO E DO LUPEOL

ANDRÉA LUZIA FERREIRA DE SOUZA

Aprovada em 13/11/98

Victor Marcos Rumjanek (DQ-PPGQO-UFRRJ)

Octávio Augusto Ceva Antunes (IQ – UFRJ)

 $\left[\frac{\lambda}{2}\right] = \left[\frac{\lambda}{2}\right] =$

João Batista Neves da Costa (DQ- PPGQO – UFRRJ)

Aurea Echevarria Aznar Neves Lima (suplente) (DQ- PPGQO – UFRRJ)

Dedico esta tese à minha Mãe, Marlene, (in memorian).

Agradeço aos meus padrinhos, Neuza e Ribas, pelo carinho e dedicação, e a Deus por existir.

No auge da dificuldade, você está a um passo da sua meta. Masaharu Taniguchi

AGRADECIMENTOS

Agradeço ao Prof. Dr. Victor Marcos Rumjanek, pela orientação, ajuda e atenção.

À Banca Examinadora pelo aceite do convite.

À Prof^a.Dra. Áurea Echevarria, pelo apoio e amizade.

Aos Profs. Drs. *Raimundo Braz-Filho* e *Mário G. de Carvalho,* pelas idéias de trabalho que contribuíram para o melhor desenvolvimento desta tese e pela amostra de lupeol.

Ao Prof. Dr. *Marco Edilson Freire de Lima,* pelas dicas e gentileza de ceder o seu laboratório para a finalização deste trabalho.

À Dra. Vera Bongertz, chefe de Departamento de AIDS da Fiocruz, pela gentileza de realizar os testes anti-HIV.

Ao Prof. Dr. Carlos Maurício R. de Sant'ana pela realização dos cálculos teóricos.

Ao Miguel Neto pelos testes farmacológicos com a LLD-3 e amizade.

Às amigas do RMN, Áurea Tatagiba e Frances Regiane, pelos espectros, apoio e principalmente pela amizade.

Aos funcionários, Aldir, Carlão, Eli, Fábio, Osmar e Reginaldo pela ajuda e amizade.

Ao amigo e técnico Maurício Lemos, pela ajuda constante e amizade.

Aos amigos da Rural, Alessandra, Andreza, Carlão, Cássia, Cristina, Daniela, Edson, Francisco, Geizi Jane, Heloísa, Janaína, Jadier, Javier, Lucinha, Márcia, Margareth, Marlúcio, Miguel, Paulo Afonso, Raquel, Valmir e Viviane, pela convivência durante o curso.

Às amigas especiais, Andressa Esteves, Astrid Torres, Denise Gomes, Luciana Vignolio, Luiza Wriedt e Rosane Alves, pelos muitos momentos alegres, carinho e companheirismo durante a convivência no mestrado.

A amiga Ana Paula Santos, pelo apoio nos momentos díficeis e principalmente pela amizade de sempre.

Ao meu amigo André Gabriel, pela ajuda constante, carinho e amizade que foram de muita importância para realização deste trabalho.

Ao Roberto Carlos, o irmão que compartilhou durante este tempo os momentos díficeis e alegres tornando a nossa convivência na Rural muito mais agradável.

À amiga e irmã, *Mabel Paranhos Chagas,* pelo apoio de sempre e principalmente pela amizade sincera.

As minhas tias, Neide e Nilce, pelo carinho de sempre.

Ao *CNPq* pela bolsa de estudo concedida.

SUMÁRIO

Resumo	
Abstract	
Índice de esquemas	i
Índice de figuras	iii
Índice de tabelas	viii
Abreviaturas	
1 - Introdução	
1.1 - Limonóides	1
1.2 - Triterpenos pentacíclicos	18
2 - Objetivos	25
3 - Resultados e Discussão	
3.1 - Reação de desidratação da LLD-3	30
3.2 - Resuttados da Modelagem Molecular	31
3.3 - Reação de hidrogenação da LLD-3	37
3.4 - Reação de hidrólise do acetato primário da LLD-3	42
3.5 - Reação de hidrogenação do lupeol	43
3.6 - Reação de epoxidação do lupeol	53
3.7 - Reação de abertura de epóxido do lupeol-EP	60
3.8 - Resultados dos testes farmacológicos da LLD-3	66
3.9 - Resultados dos testes anti-HIV dos derivados do lupeol	68

4-	Parte	Experimental

		4.1 - Materiais & Métodos	
		4.1.1 - Aparelhos	70
		4.1.2 - Solventes	71
		4.1.3 - Coleta da planta	71
		4.1.4 - Extração do material	72
		4.2 - Modificações Estruturais	
		4.2.1 - Reação de desidratação da LLD-3 com DCC	73
		4.2.2 - Reação de desidratação da LLD-3 com p-TsOH	74
		4.2.3 - Reação de hidrogenação da LLD-3	75
		4.2.4 - Reação de hidrólise do acetato primário da LLD-3	76
		4.2.5 - Reação de hidrogenação do lupeol	77
		4.2.6 - Reação de epoxidação do lupeol	78
		4.2.7 - Reação de abertura de epóxido do lupeol-EP	79
5	-	Espectros	80
6	-	Referências Bibliográficas	108

RESUMO

Durante a investigação de *Lophanthera lactescens* Ducke, família Malpighiaceae, foram isoladas várias substâncias, entre elas um limonóide que devido à fração clorofórmica foi chamado de LLD-3 e como este composto é altamente funcionalizado, foram realizadas algumas tentativas de transformações químicas.

Foram feitas duas tentativas de eliminação da hidroxila terciária, usando como reagentes desidratantes *p*-TsOH e DCC. Ambas as reações não deram os resultados esperados, e assim, foram feitos estudos de modelagem molecular a fim de averiguar os efeitos estéricos que possivelmente impediram a desidratação de LLD-3.

Foi feita uma reação de hidrogenação das ligações duplas, mas somente a ligação dupla do anel lactônico foi hidrogenada, o que foi comprovado por análise de RMN de ¹H e IV.

Foram também realizados testes farmacológicos que não mostraram atividade antiinflamatória até a dose de 0,5 mg/kg. A LLD-3 nas condições utilizadas nos testes é capaz de produzir efeitos tóxicos sobre o tecido hepático e provoca lesão no sistema urinário.

Um isolamento de LLD-3 de uma outra amostra de madeira de *Lophanthera lactescens* forneceu somente uma quantidade ínfima de LLD-3, insuficiente para realizar outras transformações químicas e como alternativa foram preparados alguns derivados do lupeol que foram analisados quanto a sua atividade anti-HIV.

Foram feitas também algumas modificações químicas com o lupeol, um triterpeno pentacíclico da série dos lupanos. A reação de hidrogenação do lupeol foi feita com Pd-C 10% e a análise dos espectros de IV, RMN de ¹H e ¹³C e DEPT mostrou que houve redução da ligação dupla.

Foi feita epoxidação da ligação dupla do lupeol com *m*-CPBA e análise de RMN de ¹H e ¹³C e IV comprovou a obtenção do epóxido denominado lupeol-EP. A partir deste produto, foi feita uma reação de abertura do anel oxirânico sendo que a análise de espectros de RMN de ¹H e ¹³C, DEPT e IV mostrou a formação do monoálcool.

Os testes anti-HIV mostraram que há inibição de HIV-1 na célula MT2 (similar à célula H9) em torno de 40% somente com os derivados lupeol-29-ol e lupeol-EP. O próprio lupeol e o lupeol-H não foram testados porque não são solúveis no solvente utilizado nos testes (DMSO).

ABSTRACT

During the chemical investigation of *Lophanthera lactescens* Ducke, family Malpighiaceae, a number of compounds were isolated, among them a new limonoid which was named LLD-3 and since this compound is highly functionalized, various transformations were attempted.

Two dehydration reactions were attempted using either *p*-TsOH or DCC but only starting material was recovered. In order to investigate the possible influence of steric effects, a molecular modelling study of the original compound and of its unsaturated derivatives was also made.

Hydrogenation of LLD-3 with Pd-C 10% led to the reduction of only the C1-C2 double bond, which was shown by NMR spectroscopy.

Farmacological tests were also carried out but did not shown antiinflamatory activity even 0,5 mg/kg doses. LLD-3 in the conditions used in these tests is able to induce toxic effects on the hepatic tissue and also gives rise to lesions in the urinary sistem.

A new isolation of LLD-3 from a another sample of wood furnished only an amount too small to be useful for further reactions and as an alternative, a few derivatives of lupeol were prepared and tested against HIV.

Hydrogenation of lupeol with Pd-C 10% afforded the saturated compound as proven by NMR and IR spectroscopy.

Epoxidation of the double bond of lupeol with m-CPBA led to the expected product, confirmed by NMR and IR spectroscopy. Reaction of the epoxide with $LiAIH_4$ led to the formation of the corresponding alcohol as shown by NMR and IR spectroscopy.

Anti-HIV tests with lupeol-29-ol and lupeol-EP afforded around 40% inhibition of HIV-1 in MT2 cells (similar to H9 cells). Lupeol and its saturated derivative lupeol-H were not tested because they were not soluble in the solvent used (DMSO).

Índice de Esquemas

	Рg
Esquema 1 - Rota biossintética de um triterpenóide	4
Esquema 2 - Rota biossintética da oxidação do anel furânico	5
Esquema 3 - Biossíntese do Iupeol	20
Esquema 4 - Modificações estruturais da LLD-3	26
Esquema 5 - Hidrólise do acetato primário da LLD-3	27
Esquema 6 - Modificações estruturais do lupeol	28
Esquema 7 - Modificação estrutural do IupeoI-EP	29
Esquema 8 - Produtos da reação de eliminação da hidroxila da LLD-3	31
Esquema 9 - Reação de hidrogenação da LLD-3	37
Esquema 10 - Reação e hidrólise do acetato primário da LLD-3	42
Esquema 11 - Reação de hidrogenação do lupeol	43

Esquema 12 - Reação de epoxidação do lupeol	53
Esquema 13 - Reação de abertura de epóxido do lupeol-EP	60
Esquema 14 - Reação de desidratação da LLD-3 com DCC	73
Esquema 15 - Reação de desidratação da LLD-3 com <i>p</i> -TsOH	74
Esquema 16 - Reação de hidrogenação da LLD-3 com Pd-C 10%	75
Esquema 17 - Reação de hidrólise do acetato primário da LLD-3	76
Esquema 18 - Reação de hidrogenação do lupeol	77
Esquema 19 - Reação de epoxidação do lupeol com <i>m</i> -CPBA	78
Esquema 20 - Reação de abertura de epóxido do lupeol-EP com LiAIH ₄	79

ÍNDICE DE FIGURAS

	Pg
Figura 1 - Estrutura da cneorina NP ₃₆ (I) e hispidol B (11)	5
Figura 2 - Estrutura da azadirona (III)	6
Figura 3 - Estrutura da gedunina (IV)	7
Figura 4 - Estrutura da 2- hidroxi- (6- deoxiswietenina (V), pseudrelona A_2 (VI) e 2 α -acetoxi-3 α -hidroxi-3,3-diidro-angolensato (VII)	8
Figura 5 - Estrutura da kiadalactona A (VIII)	9
Figura 6 - Estrutura da rubralina C (IX)	10
Figura 7 - Estrutura da azadiractina (X)	11
Figura 8 - Estrutura da limonina (XI)	12
Figura 9 - Estrutura da toonacilina (XII)	13

Figura 10 - Estrutura da amoorastatina (XIII) e 14,15β-epoxiprieurianina (XIV)	15
Figura 11 - Estrutura da LLD-3 (XV)	16
Figura 12 - Estruturas da β-amirina (XVI) e ácido oleanólico (XVII)	18
Figura 13 - Estruturas da α -amirina (XVIII) e ácido ursólico (XIX)	19
Figura 14 - Estruturas do Iupeol (XX), betulina (XXI) e ácido betulínico (XXII)	20
Figura 15 - Estrutura do ácido betulínico (XXII) e seus derivados, ácido platânico (XXIII) e ácido dihidrobetulínico (XXIV)	22
Figura 16 - Metilas ligadas ao Carbono-26 e C-28 e OH ligado ao C-18	34
Figura 17 - LLD-3A em 3D	35
Figura 18 - LLD-3B em 3D	36
Figura 19 - Espectro de IV da LLD-3 em filme de KBr	80
Figura 20 - Espectro de IV da LLD-3H em filme de KBr	81
Figura 21 - Espectro de RMN de ¹ H (200 MHz) da ILLD-3	82
Figura 22 - Espectro de RMN de ¹ H (200 MHz) da LLD-3H	83

iv

Figura 23 - Espectro de IV do Iupeol	84
Figura 24 - Espectro de IV do Iupeol-H	85
Figura 25 - Espectro de RMN de ¹ H (200 MHz) do lupeol	86
Figura 25a - Expansão da região de 0,0 a 2,5 ppm do RMN de ¹ H (200 MHz) do lupeol	87
Figura 26 - Espectro de RMN de ¹ H (200 MHz) do lupeol-H	88
Figura 26a - Expansão da região de 0,0 a 2,5 ppm do RMN de ¹ H (200 MHz) do lupeol-H	89
Figura 27 - Carbonos 18, 19, 20, 2'.1, 22, 29 e 30 do lupeol e do lupeol-H	44
Figura 28 - Espectro de RMN de ¹³ C (50,3 MHz) do lupeol	90
Figura 29 - Espectro de RMN de ¹³ C (50,3 MHz) do lupeol-H	91
Figura 30 - Espectro de RMN de ¹³ C [DEPT θ = 90] (50,3 MHz) do lupeol-H	92
Figura 30a - Espectro de RMN de ¹³ C [DEPT θ = 135] (50,3 MHz) do lupeol-H	93
Figura 31 - Espectro de RMN de ¹³ C [DEPT θ = 90] (50,3 MHz) do lupeol	94

Figura 31a - Espectro de RMN de 13 C [DEPT θ = 90] (50,3 MHz) do lupeol	95
Figura 32 - Espectro de HETCOR [¹ Hx ¹³ C-COSY] (50,3 MHz) do lupeol	96
Figura 33 - Espectro de HETCOR [¹ Hx ¹³ C-COSY] (50,3 MHz) do lupeol-H	97
Figura 34 - Espectro de IV do lupeol-EP	98
Figura 35 - Espectro de RMN de ¹ H (200 MHz) do IupeoI-EP	99
Figura 35a - Expansão da região de 0,0 a 2,5 ppm do espectro de RMN de ¹ H (200 MHz) do lupeol-EP	100
Figura 36 - Carbonos 18, 19, 20, 21, 22, 29 e 30 do lupeol e do lupeol-EP	54
Figura 37 - Espectro de RMN de ¹³ C (50,3 MHz) do lupeol-EP	101
Figura 38 - Espectro de DEPT(θ = 90) RMN de ¹³ C (50,3 MHz) do lupeoI-EP	102
Figura 39 - Espectro de IV do Iupeol-29-ol	103
Figura 40 - Carbonos 18,19,20, 21, 29 e 30 do lupeol-EP e do lupeol-29-ol	61
Figura 41 - Espectro de RMN de ¹ H (200 MHz) do lupeol-29-ol	104

Figura	42	-	Espectr	0	de l	RMN	de	¹³ C	(50,3	M	Hz)	do	lupeol-29-ol	105
Figura	43 ·	- E	Espectro d	ob	DEP	Т (Ө:	= 135°	°) de	RMN	de	¹³ C	do	lupeol-29-ol	106
Figura	44	-	Espectro	do	DEI	PT (f	θ=90°)	de	RMN	de	¹³ C	do	lupeol-29-ol	107

Índice de Tabelas

	Pg
Tabela 1 - Dados do teste anti-HIV feito com o ácido platânico, ácido betulínico e derivados	23
Tabela 2 - Deslocamentos químicos dos hidrogênios da LLD-3	39
Tabela 3 - Deslocamentos químicos dos hidrogênios da LLD-3H	40
Tabela 4 - Deslocamentos químicos dos hidrogênios do lupeol	45
Tabela 5 - Deslocamentos químicos dos hidrogênios do lupeol-H	46
Tabela 6 - Deslocamentos químicos dos carbonos do lupeol e do lupeol-H	49
Tabela 7 - Deslocamentos químicos do DEPT do lupeol	50
Tabela 8 - Deslocamentos químicos do DEPT do lupeol-H	51
Tabela 9 - Deslocamentos químicos dos hidrogênios do lupeol-EP	55

Tabela 10 - Comparação dos deslocamentos químicos dos carbonos	
do lupeol e do lupeol-EP	57
Tabela 11 - Deslocamentos químicos do DEPT do IupeoI-EP	58
Tabela 12 - Deslocamentos químicos dos hidrogênios do lupeol-29-ol	62
Tabela 13 - Deslocamentos químicos dos carbonos do lupeol-29-ol	64
Tabela 14 - Deslocamentos químicos do DEPT do Iupeol-29-ol	65
Tabela 15 - Dados do teste anti-HIV feito com lupeol-29-ol e o lupeol-EP	69

ABREVIATURAS

AIDS - Acquired Immunodeficiency Syndrome (Síndrome da Imunodeficiência Adquirida)

AZT - 3'-azido-3'-deoxitimidina

d - Dublete

DCC - Dicicloexilcarbodiimida

dd - Duplo dublete

DEPT - Distortionless Enhancement by Polarization Transfer (Aumento sem distorção da sensibilidade através de transferência de polarização)

LD₅₀ - Dose letal que mata 50% dos indivíduos

DMSO - Dimetilsulfóxido

dt - Duplo triplete

EC₅₀ - Concentração efetiva que produz efeito terapêutico em 50% dos indivíduos

HETCOR - Heteronuclear Correlation Spectroscopy (Correlação de deslocamento químico heteronuclear)

HIV - Human Immunodeficiency Virus (Virus da Imunodeficiência Humana)

IC50 - Concentração que inibe 50% dos indivíduos

IV - Infravermelho

m - Multiplete

Me - Metil

m-CPBA - Ácido m-cloroperbenzóico

p-TsOH - Ácido *p*-toluenossulfônico

PM3 - Parametric Method Number 3 (MOPAC)

q - Quarteto

RMN de ¹H - Ressonância Magnética Nuclear de Hidrogênio

RMN de ¹³C - Ressonância Magnética Nuclear de Carbono-13

- s Singlete
- t Triplete
- THF Tetraidrofurano
- Tig Tigloil
- TMS Tetrametilsilano

INTRODUÇÃO

1 - INTRODUÇÃO

1.1 - Limonóides

Limonóides são triterpenos modificados, com um esqueleto básico 4,4,8trimetil-17-furanilesteróide. Cerca de 300 substâncias já foram isoladas. Uma de suas características estruturais é a presença de um anel furânico. São constituintes predominantes em plantas da ordem Rutales que compreende as famílias Meliaceae, Rutaceae, Simaroubaceae e Cneoraceae.¹

Devido às suas atividades biológicas variadas, a família Meliaceae possui o maior número de limonóides isolados de suas plantas. A *Carapa guianensis*, conhecida como andiroba, possui limonóides da classe gedunina e azadiradiona e é usada na medicina popular devido às suas propriedades como cicatrizante, emoliente, antisséptico e antiinflamatório e o seu óleo é usado como repelente contra insetos. O manuseio com madeiras desta família sempre provoca reações alérgicas, como dermatites de contato e problemas respiratórios.²

1

A família Rutaceae contêm 150 gêneros, 900 espécies divididas em 4 ou 5 subfamílias. Comercialmente, o gênero Citrus é o mais importante porque possui plantas com propriedades laxativa, expectorante e hipertensiva. O precursor da limonina, limonóide que está presente no tecido de frutas do gênero Citrus, após ruptura do tecido se converte em limonina (Fig. 8) que é a responsável pelo amargor que desenvolve gradualmente em sucos de frutas após sua preparação. Este gênero contém de 12 a 15 espécies, entre elas a Citrus aurantium, conhecida como laranja amarga, que possui limonóides como limonina e nomilina.³ A Calamondina (Citrus reticulata var. austera X Fortunella sp.) é um híbrido dos gêneros Citrus e Fortunella, e portanto os limonóides contidos nesta planta vem da mistura dos dois gêneros. Sementes de Citrus contém uma enzima que em pH 8 abre o anel D lactâmico dos limonóides para a produção de sais solúveis em água. A família Rutaceae é rica em metabólitos secundários com biodinâmica.4 atividade potente

Os limonóides são classificados em 10 grupos, a saber:

• Grupo 1 : Protolimonóides

Protolimonóides são triterpenos que possuem esqueleto do tipo tirucalano/eufano [H-20,C-20(R);H-20,C-20(S)]. Este precursor é formado a partir do tirucalol ou eufol : a abertura do epóxido 7,8 permite a migração do grupo metil da posição 14 para a 8, cria insaturação na posição 14, e suporta um grupo hidroxila em C-7, segundo o Esquema 1. A oxidação do anel A ou do anel D, ou de ambos na posição a relativa à insaturação ocorre através da reação de Baeyer-Villiger. A oxidação da cadeia lateral é um pré-requisito para a formação do sistema C-17 furanóide, típico dos limonóides (Esquema 2).¹

TETRANORTRITERPENÓIDE

Esquema 1 : Rota biossintética de um triterpenóide

Esquema 2 : Rota biossintética do anel furânico de um limonóide

Do fruto de *Phellodendron chinense* (Rutaceae) foram isolados vários protolimonóides tais como cneorina-NP₃₆ (I) e hispidol A (II) (Fig. 1)⁵, que também podem ser encontrados em plantas das famílias Cneoraceae e Meliaceae.⁶⁻⁷

Figura 1 : Estrutura da cneorina- NP_{36} (I) e hispidol A (II)

Alguns limonóides não são característicos apenas de uma família. Isso indica a existência de processos de fotooxidação, mostrando que os estágios iniciais da biossíntese dos limonóides também são semelhantes em todas as famílias.

• Grupo 2 : Limonóides apo-eufol

São limonóides com o esqueleto básico 4,4,8-trimetil-17-furanilesteróide. *Chisocheton microcarpus*⁸ e *Entandrophragma delevoyi*⁹, ambas da família Meliaceae, são exemplos de plantas que contêm limonóides da classe azadirona (III) (Fig. 2).

Figura 2 : Estrutura da azadirona (III)

+ Grupo 3 : Limonóides D-seco

Os limonóides D-*seco* são formados pela oxidação do anel D dos limonóides apo-eufol. A gedunina (IV) (Fig. 3) pode ser encontrada na planta *Azadirachta indica* A. Juss. (Meliaceae).¹

Figura 3 : Estrutura da gedunina (IV)

◆ Grupo 4 e 5 : Limonóides B,D-seco

A oxidação de Baeyer-Villiger¹⁰ do anel B dos limonóides D-*seco*, produz os limonóides B,D-*seco*. A 2- hidroxi- 6- deoxiswietenina (V) é um exemplo de limonóide isolado de *Capuronianthus mahafalensis*, assim como a pseudrelona A₂ (VI) que é extraída de *Neobeguea mahafalensis* e 2α - acetoxi- 3α - hidroxi-3,3- dihidro- angolensato (VII) isolada de *Quivisianthe papinae* (Fig. 4), (Meliaceae).¹¹

Figura 4 : Estrutura da 2- hidroxi- 6- deoxiswietenina (V), pseudrelona A_2 (VI) e 2α - acetoxi- 3α - hidroxi- 3,3- dihidro- angolensato (VII)

• Grupo 6 : Limonóides A-seco

São formados pela oxidação do anel A dos limonóides apo-eufol. São encontrados em plantas da família Rutaceae como, por exemplo, a *Phellodendron amurense,* que contêm limonóides do tipo kiadalactonas, como a kiadalactona A (VIII) (Fig. 5).¹²

Figura 5 : Estrutura da kiadalactona A (VIII)

• Grupo 7 : Limonóides A,B-seco

A oxidação e posterior aberturado anel B dos limonóides A-*seco* levam à formação dos limonóides A,B-*seco*. São característicos da família Meaceae, encontrados em plantas como *Turraea floribunda*, que possui prieurianina e havanensina, e *Trichilia rubra*, originária da bacia amazônica, que possui rubrinas A-E, rubralina C (IX) (Fig. 6) e hispidina A.^{13,14}

Figura 6 : Estrutura da rubralina C (IX)

• Grupo 8 : Limonóides C-seco

Esses compostos são formados a partir da oxidação do anel C dos limonóides apo-eufol. Os limonóides C-*seco* possuem atividade biológica proeminente e são encontrados somente nos gêneros *Azadirachta* e *Melia* (Meliaceae). A azadiractina (X) (Fig. 7), substância encontrada nos dois gêneros, causa grandes distúrbios no crescimento de insetos quando usada pura ou como ingrediente de extratos de sementes. A sua estrutura é bastante complexa, dificultando assim a sua síntese.¹

Figura 7 : Estrutura da azadiractina (X)

• Grupo 9 : Limonóides A,D-seco

São formados a partir da oxidação de Baeyer-Villiger do anel A dos limonóides D-*seco*. São encontrados nas famílias Meliaceae, Rutaceae e Simaroubaceae.

Na família Simaroubaceae, *Harrisonia* é o único gênero que possui limonóides, como por exemplo *Harrisonia perforata*, *H. abyssinica* e *H. brownii,* que contêm perforatina e perforatinolona. A *H. perforata* é usada na medicina popular para o tratamento de sarna.^{15,16}

Na família Meliaceae, a *Carapa grandiflora* possui carapolidas, características desta planta.¹⁷

Encontra-se na família Rutaceae o gênero *Esenbeckia* que contêm rutaevina e limonina (XI) (Fig. 8) característicos das plantas *Esenbeckia litoralis, E. berlandieri* e *E. flava.* Quando os limonóides ocorrem em espécies de um certo gênero todas as espécies daquele gênero contêm limonóides, o que foi comprovado com testes feitos com plantas do gênero Esenbeckia.¹⁸

Figura 8 : Estrutura da limonina (XI)

• Grupo 10 : Limonóides B-seco

A oxidação e posterior abertura do anel B dos limonóides apo-eufol levam à formação dos limonóides B-*seco*, mantendo-se o anel A intacto. A planta *Toona ciliata* (Meliaceae) possui toonacilina (XII) (Fig. 9) e 6-acetoxitoonacilina, que são os primeiros tetranortriterpenos *B-seco* a serem descritos com um anel A intacto.¹⁹

Figura 9 : Estrutura da toonacilina (XII)

Uma das principais atividades biológicas dos limonóides é a inseticida, que é característica de plantas da família Meliaceae. Extrato de folhas de *Toona ciliata* M. J. Roem. var australis exibiu uma forte atividade anoréxica e inseticida contra *Hypsypila grandella* (Lepidoptera;Pyralidae) e *Epilachna varivestis* Muls. (Coleoptera;Coccinellidae), sendo que esta última é conhecida como uma peste virulenta em plantações de soja na América.¹⁹

Algumas plantas Carapa grandiflora (Meliaceae) tais como е Phellodendron antifúngica, amurense (Rutaceae) possuem atividade entre outras.^{12,17} antitérmica antiinflamatória, antidiarréica e

Limonóides apo-eufol exibem atividade contra *Peridroma saucia* (Lepidoptera). *Melia azedarach* L. (Meliaceae) contêm azedaraquinas, triquilinas, azadiractina e salanal, que são ativos contra *Spodoptera frugiperda* (Lepidoptera), além das atividades antielmíntica e antimalarial.²⁰

A gedunina (Fig. 3) pode ser isolada de Azadirachta indica A. Juss e de Melia azedarach L. e já foi testada in vitro para comprovar a sua atividade antimalarial contra Plasmodium falciparum, causador da malária, teve seu IC₅₀ equivalente ao da quinina (composto utilizado para o combate da malária)³⁶. A atividade antimalarial dos limonóides requer a presença de sítios reativos no anel A, uma atividade interessante em relação às suas atividades inseticida e anticancerigena. Constituintes biologicamente ativos encontrados em folhas. frutas, caules e sementes de Azadirachta indica A. Juss (Meliaceae) são descritos pelo seu uso no combate de, no mínimo, 125 espécies de pragas, incluindo 25 espécies de besouros, 9 espécies de gafanhotos e 10 espécies de moscas. Os extratos dessa planta contêm principalmente azadiractina (Fig. 7), cedrelona e salanina, com os quais os inseticidas/pesticidas naturais são formulados. Esses compostos são muito importantes para o controle de pestes porque não são tóxicos.

Os limonóides possuem uma atividade citotóxica contra a célula linfocítica da leucemia P-388 (sistema PS) em camundongos. Testes realizados com vários limonóides como por exemplo a amoorastatina (XIII) (anel A,D-*seco*) e a 14,15b-epoxiprieurianina (XIV) (Fig. 10), ambas presentes na planta *Aphanamixus grandifolia*, família Meliaceae, mostraram que os tetranortriterpenos com o sistema de anel A-D intacto e presença de grupos lactol 19,28 e 14,15b,-epóxido são essenciais para a inibição do crescimento da célula.²¹

Figura 10 : Estrutura da amoorastatina (XIII) e 14,15 β -epoxiprieurianina (XIV)

Do extrato etanólico do caule da *Melia azedarach* L., que exibiu atividade citotóxica contra células P388 *in vitro*, foram isolados 3 limonóides análogos sendanina e 2 análogos à azadiractina. Todos os compostos foram testados contra as células P388 *in vivo*, em altas doses, mas os resultados mostraram que todos foram inativos.²²

O interesse pelo estudo de compostos análogos à azadiractina é devido sua atividade inibidora de ecdise de insetos.

Durante estudo planta Lophanthera Ducke 0 da lactescens (Malpighiaceae), vulgarmente chamada de lanterneira, foram extraídas várias substâncias, tais como um triglicerídeo (isolado da semente), estigmasterol, 24-metil-colest-4-en-3-ona, estigmast-4-en-3-ona, 24-metil-colest-5-en-3-ol, todos da classe dos esteróides, β-amirona e um tetranortriterpeno, considerado o produto majoritário, isolado da madeira. Este nortriterpeno, devido à sua fração original, foi chamado de LLD-3 (XV) (Fig. 11).23

Figura 11 : Estrutura da LLD-3 (XV)

Sendo a LLD-3 um tetranortriterpeno, seu esqueleto se assemelha ao esqueleto dos limonóides. Para que a LLD-3 seja classificada como um limonóide, deve ser incluída no grupo 9, limonóides do tipo A-*seco*, que sofreram oxidação no anel A.

A *Lophanthera lactescens* Ducke é usada pelos nativos da região Amazônica para o combate da malária, através da ingestão de cascas e folhas em infusão. Essa espécie é originária da Amazônia brasileira, na região do estado do Pará, e pode também ser encontrada no campus da Universidade Federal Rural do Rio de Janeiro-Seropédica-RJ-Brasil.²³

1.2 - Triterpenos pentacíclicos

Os triterpenos pentacíclicos podem ser isolados de plantas de vários gêneros e famílias diferentes. Podem ser encontrados na forma de alcóois, acetatos, cetonas, e outros. De acordo com os esqueletos os triterpenos pentacíclicos são divididos por séries, descritas abaixo:

• Série Oleanano

Esta série contém triterpenos pentacíclicos como β -amirina (XVI) e ácido oleanólico (XVII) (Fig. 12), entre outros, que podem ser encontrados em plantas das famílias Euphorbiaceae e Hamameliodaceae.²⁶

Figura 12 : Estrutura da β -amirina (XVI) e ácido oleanólico (XVII)

• Série Ursano

Esta série contêm triterpenos como α -amirina (XVIII) e ácido ursólico (XIX) (Fig. 13), entre outros, que podem ser encontrados em plantas das famílias Euphorbiaceae e Buceraceae.²⁶

Figura 13 : Estruturas da α-amirina (XVIII) e ácido ursólico (XIX)

♦ Série Lupano

Esta série compreende triterpenos como lupeol (XX), betulina (XXI) e ácido betulínico (XXII) (Fig. 14), que podem ser encontrados em plantas de famílias como Leguminosae, Compositae e Hamameliodaceae.²⁶

Figura 14 : Estrutura do lupeol (XX), betulina (XXI) e ácido betulínico (XXII)

A biossíntese do lupeol ocorre a partir do esqualeno (Esquema 3).

Esquema 3 : Biossíntese do Lupeol

Parahancornia amapa (Huber) Ducke, família Apocynaceae, é um exemplo de planta que possui lupeol. Essa planta ocorre no Estado do Amapá -Brasil na região da Amazônia Brasileira e é usado pelos nativos como tônico e anti-sífilis.²⁷

Na planta *Dendropanax* cf. *querceti* (Araliaceae), que ocorre na região de Monteverde em Costa Rica, também foi encontrado lupeol. Testes de atividade citotóxica foram feitos com o extrato bruto da planta e com o composto ativo, que identificaram ser o lupeol28. O extrato e o lupeol apresentaram atividade inibitória contra a topoisomerase II (enzima que promove o relaxamento da estrutura superhelicoitizada do DNA). Em contraste, a betulina (derivado do lupeol) não mostrou inibição de topoisomerase II. Esse é o primeiro relato de inibição de topoisomerase II por um triterpeno. O lupeol apresentou atividade citotóxica menor que a do extrato bruto, que significa que pode haver um efeito sinergístico com algum outro componente que aumentou a atividade do extrato. O lupeol foi comparado com a vinblastina, um importante produto natural citotóxico.

Isolado também de *Crataeva nurvala* Buch. Ham (Capparidaceae), planta que ocorre na Índia, o lupeol foi testado contra a urolitíase (doença que ocorre como uma consequência de deposição de vários constituintes formadores de cálculos renais). O lupeol tem efeito diurético que facilita a excreção regular do oxalato durante o tratamento. Essa observação foi corroborada por vários relatos sobre a atividade diurética de alguns triterpenóides.²⁹

Da planta **Syzigium claviflorum** (Roxb.) WALL (Myrtaceae), foram isolados os ácidos betulínico (**XXII**) e platânico (**XXIII**), derivados do lupeol. Foram feitos alguns derivados do ácido betulínico para teste anti-HIV. A **Figura 15** mostra as estruturas destes compostos e a **Tabela 1** mostra os dados do teste anti-HIV.³⁰

Figura 15 : Estrutura do ácido betulínico (XXII) e seus derivados, ácido platânico (XXIII) e ácido dihidrobetulínico (XXIV)

Composto	ΕС₅₀ (μΜ)	IC ₅₀ (μΜ)
XXII	1.4	13
XXIII	6.5	90
XXIV	0.9	13
XXIIa	23	45
XXIIb	17	26
XXIIc	25	20
XXIId	15	15
XXIIe	19	48
XXIIf	20	35
XXIIg	4	16
AZT	0.04	2,000

Tabela 1 : Dados do teste anti-HIV feito comácido platânico, ácido betulínico e derivados.

Os compostos XXII e XXIII são os dois primeiros triterpenos com um esqueleto lupano a demonstrar atividade anti-HIV.

Uma comparação das atividades anti-HIV dos compostos XXII, XXIII e XXIV sugere que os substituintes em C-19 são um requisito importante para a atvidade anti-HIV. O grupo COOH fornece uma atividade maior do que o grupo CH₂OH de XXIIa e o éster de XXIIb, parecendo ser essencial para o efeito inibitório do HIV. A esterificação da hidroxila C-3 diminui a atividade anti-HIV. Esses resultados mostram que a hidroxila livre em C-3 é essencial para a atividade anti-HIV.

OBJETIVOS

2 - OBJETIVOS

Os objetivos deste trabalho são:

1- Realizar transformações químicas na LLD-3, segundo os Esquemas 4 e 5 utilizando técnicas de RMN e IV para análise dos produtos, para testes farmacológicos.

2- Realizar transformações químicas no lupeol, segundo os Esquemas 6 e 7, como base para um estudo de atividade anti-HIV relacionada com os seus derivados ácido betulínico e betulina.

Esquema 4 : Modificações estruturais na LLD-3

LLD-3

Esquema 5 : Reação de hidrólise do acetato primário da LLD-3 e ciclização da LLD-3C

Esquema 6 : Modificações estruturais no lupeol

lupeol-EP

lupeol-29-ol

Esquema 7 : Abertura do anel oxirânico do lupeol-EP

RESULTADOS E DISCUSSÃO

3 - RESULTADOS & DISCUSSÃO

3.1 - Reação de desidratação da LLD-3

Para eliminação da hidroxila ligada ao carbono 18, e formação de uma ligação dupla, foram feitas duas reações de desidratação.

Na primeira tentativa foi utilizado como agente desidratante o DCC, e Cu_2Br_2 como catalisador, sendo que essa reação apresenta bons resultados na literatura³¹. Através da análise dos espectros de RMN de ¹H e IV concluiu-se que não houve reação.

Foi feita a segunda reação utilizando-se *p*-TsOH como agente desidratante. A análise dos espectros de RMN de ¹H e IV mostrou que essa reação também não ocorreu, observando-se apenas a presença do material de partida.

Normalmente, a eliminação de uma hidroxila terciária é facil de ocorrer e neste caso, a dificuldade parece estar associada a um efeito estérico ou ligação hidrogênio. A fim de investigar a possível influência deste efeito, foi feito um estudo de modelagem molecular.

3.2- Resultados da modelagem molecular

A reação de eliminação pode fornecer dois produtos, Esquema 8 :

O estudo de Modelagem Molecular foi realizado com um programa Hamiltoniano PM3 versão 6.00, que forneceu os seguintes resultados:

LLD-3 - C₄₀H₅₂O₁₆

Calor de formação: - 524.322217 kcal/mol Peso molecular: 788.841

LLD-3A - C₄₀H₅₀O₁₅

Calor de formação: - 475.280951 kcal/mol Peso molecular 770.826

LLD-3B - C₄₀H₅₀O₁₅

Calor de formação: - 465.355830 kcal/mol Peso molecular: 770.826 De acordo com os valores obtidos para os calores de formação das substâncias LLD-3A e LLD-3B verifica-se que estas são razoavelmente mais instáveis do que o álcool original, possivelmente porque os anéis que contêm as duplas ligações ficam tensionados. Além disso, há o impedimento estérico das metilas C-26 e C-28 que dificulta a aproximação dos reagentes. O derivado B tem uma energia mais alta devido ao fato de que o anel de 6 membros fica tensionado com as duas ligações duplas conjugadas.

A Figura 16 mostra a LLD-3 tridimensional.

A Figura 17 mostra a LLD-3A tridimensional.

A Figura 18 mostra a LLD-3B tridimensional.

Figura 16 : Estrutura da LLD-3 em 3D

Figura 17 : Estrutura da LLD-3A em 3D

Figura 18 : Estrutura da LLD-3B em 3D

3.3 - Reação de hidrogenação da LLD-3

Para a reação de hidrogenação da LLD-3 foi utilizado 10% de Pd-C como catalisador (Esquema 9).

LLD-3H

Esquema 9: Reação de hidrogenação da LLD-3

O espectro de IV da LLD-3 (Figura 19) apresenta bandas de absorção em 1657 e 1628 cm⁻¹ que caracterizam as duas ligações duplas da molécula, enquanto o espectro de IV da LLD-3H (Figura 20) não apresenta banda de absorção característica de insaturação.

No espectro de RMN de ¹H da LLD-3 (Figura 21) os hidrogênios vinílicos encontram-se em δ 6.3 e 6.1 ppm (H-1 e H-2) e δ 5.53 e 5.23 ppm (H-28a e H-28e) como mostra a Tabela 2 enquanto que o espectro de RMN de ¹H da LLD-3H (Figura 22,) mostra que somente a ligação dupla entre C-1 e C-2 foi hidrogenada, mantendo intacta a insaturação entre C-20 e C-28. Este resultado está de acordo com os dados obtidos através de cálculos teóricos que mostram uma maior densidade eletrônica sobre os carbonos da ligação C1-C2 e portanto sua hidrogenação ocorreria preferencialmente. Pode-se justificar a baixa reatividade da ligação C20-C28 através de um efeito estérico que dificultaria a aproximação da molécula de LLD-3 da superfície do catalisador de um modo adequado. Os deslocamentos químicos dos hidrogênios da LLD-3H estão na Tabela 3.

1	6.32
2	6.06
4	5.42
6	5.59
7	5.69
8	1.69
10	2.38
11a	1.05
11e	1.54
12a e 12e	1.68 a 1.78
13	1.33
15	4.74
16	5.72
19a	2.13
19e	2.27
21	4.02
23	1.23
24a	4.44
24e	4.12
25	1.08
26	1.46
27	1.30
28a	5.53
28e	5.23
COOCH ₃	3.91
OAc	1.81
OAc	1.98
OAc	2.08
OAc	2.01
0Ac	2 09

 Tabela 2 : Deslocamentos químicos dos hidrogênios da LLD-3

Η	δ _H	
1	2.39	
2	2.21	
4	5.35	
6	5.60	
7	5.66	
8	1.69	
10	2.36	
11a	1.03	
11e	1.54	
12a e 12e	1.68 a 1.76	
13	1.32	
15	4.74	
16	5.70	
19a	2.14	
19e	2.25	
21	4.01	
23	1.25	
24a	4.39	
24e	4.10	
25	1.07	
26	1.45	
27	1.30	
28a	5.53	
28e	5.23	
COOCH₃	3.91	
OAc	1.80	
OAc	1.99	
OAc	2.06	
OAc	2.01	
OAc	2.10	

Tabela 3 : Deslocamentos químicosdos hidrogênios da LLD-3H

3.4 - Reação de hidrólise do acetato primário da LLD-3

Originalmente, uma das transformações a serem investigadas era a obtenção de um álcool primário na posição 24 que em seguida seria ciclizado com TI(OAc)₄ para fornecer o composto LLD-3D (vide Esquema 5). Para a reação de hidrólise do acetato primário da LLD-3 foi utilizado Li₂CO₃ (Esquema 10).

Esquema 10: Reação de hidrólise do acetato primário da LLD-3

A reação de Li_2CO_3 com LLD-3 sob diferentes condições, como por exemplo a mudança de temperatura e tempo de reação, forneceu somente material de partida o que foi comprovado pela análise de espectros de IV e RMN.

3.5 - Reação de hidrogenação do lupeol

Para a redução da ligação dupla do grupo isopropenil ligado ao C-19 (Esquema 11) foi utilizado 10% de Pd-C como catalisador. A análise dos espectros de RMN de ¹H e ¹³C, DEPT e IV mostrou que houve formação do produto hidrogenado (lupeol-H).

lupeol

lupeol-H

Esquema 11: Reação de hidrogenação do lupeol

O espectro de IV do lupeol (Figura 23) apresenta banda de absorção em 1641 cm⁻¹ que caracteriza a ligação dupla do grupo isopropenil, enquanto o espectro de IV do lupeol-H (Figura 24) não apresenta banda de absorção característica de absorção.

A Tabela 4 mostra os deslocamentos químicos dos hidrogênios contidos em um espectro de RMN do lupeol (Fig. 25) (e expansão do espectro - Fig. 25a) que foram atribuídos em comparação com dados da literatura³². A Tabela 5 mostra os deslocamentos químicos dos hidrogênios do lupeol-H correspondentes a seu espectro de RMN (Fig. 26) e expansão do espectro (Fig. 26a).

No lupeol-H somente os hidrogênios ligados aos carbonos 19, 20, 21, 29 e 30 (Fig. 27) tiveram seus deslocamentos químicos alterados.

Figura 27: Carbonos 18,19,20,21,22, 29 e 30 do lupeol e do lupeol-H

O hidrogênio H-19 do lupeol tem 8 2,39 ppm (característico de hidrogênio alílico) e o mesmo hidrogênio do lupeol-H encontra-se em δ 1,62 ppm.

O espectro de RMN de ¹H mostra uma nova absorção em δ 1.85 ppm que foi atribuída ao hidrogênio H-20.

Os hidrogênios H-21 (CH₂) do lupeol que estão em posição β à ligação dupla tem deslocamentos químicos de 1,32 e 1,94 ppm (hidrogênios axial e equatorial) enquanto que no lupeol-H estes deslocamentos diminuem (δ 1,48 e 1,26 ppm).

Os hidrogênios H-22 (CH₂) do lupeol que estão em posição δ à ligação dupla tem 8 1,44 e 1,22 ppm (hidrogênios axial e equatorial) e que no lupeol-H pelo mesmo motivo exposto acima estão mais blindados e seus sinais encontram-se em δ 0,94 e 1,24 ppm.

Os hidrogênios H-29 do lupeol são vinílicos terminais e portanto seus sinais encontram-se em campo baixo característico de ligação dupla (dublete em δ 4.53 e 4.66 ppm). No lupeol-H, coma hidrogenação da ligação dupla, o deslocamento químico de H-29 é 0,98 ppm e seu sinal também é um dublete.

Um singlete em δ 1.59 ppm é atribuído aos H-30 do lupeol e com a hidrogenação da ligação dupla seu sinal cai para δ 0.74 ppm (dublete em virtude do acoplamento com H-20).

Н	δμ
1a	0.91 (t)
1e	1.64 (d)
2a	1.59 (d)
2e	1.56 (a)
3	3,19 (dd)
5	0,67 (d)
6a	1,40 (m)
6e	1,52 (d)
7	1,42 (m)
9	1,28 (d)
11a	1,25 (q)
11e	1.47 (d)
12a	1,10 (q)
12e	1,64 (d)
13	1,57 (t)
15a	1,03 (d)
15e	1,64 (t)
16a	1,38 (t)
16e	1.38 (t)
18	1.35 (t)
19	2,39 (m)
21a	1,32 (m)
21e	1,94 (m)
22a	1,22 (m)
22e	1,44 (m)
23	0,99 (s)
24	0,72 (s)
25	0,85 (s)
26	1,06 (s)
27	0,93 (s)
28	0,79 (s)
29a	4,53 (d)
29e	4,66 (d)
30	1.59 (s)

Tabela 4 : Deslocamentos	químicos
dos hidrogêniois do lup	beol

Н	δ _H
1a	0,89 (t)
1e	1,64 (d)
2a	1,57 (q)
2e	1,59 (d)
3	3,17 (dd)
5	0,63 (s)
6a	1,45 (q)
6e	1,56 (d)
7	1,41 (m)
9	1,28 (d)
11a	1,25 (q)
11e	1,38 (d)
12a	1,06 (q)
12e	1,56 (q)
13	1,64 (t)
15a	0,94 (d)
15e	1,64 (t)
16a	1,36 (t)
16e	1,46 (d)
18	1,00 (t)
19	1,62 (m)
20	1,85 (m)
21a	1,26 (m)
21e	1,48 (m)
22a	0,94 (m)
22e	1,24 (m)
23	0,98 (s)
24	0,70 (s)
25	0,82 (s)
26	1,00 (s)
27	0,94 (s)
28	0,80 (s)
29	0,74 (d)
30	1 00 (d)

Tabela :	5 : Deslocamentos químicos
dos	hidrogênios do lupeol-H

O espectro de RMN de ¹³C do lupeol (Fig. 28) foi comparado com o espectro de RMN de ¹³C do lupeol-H (Fig. 29), ver Tabela 6. As atribuições dos sinais dos carbonos do lupeol foram comparadas com as da literatura³³.

Os deslocamentos químicos dos carbonos do lupeol-H são muito parecidos com os do lupeol. Somente os carbonos 19, 20, 21, 29 e 30 do lupeol-H (Fig. 27) mostraram alterações significantes em seus deslocamentos.

O C-19 do lupeol tem deslocamento químico de 47,91 ppm, por estar ligado a um grupo isopropenil e encontra-se em campo mais baixo do que o do lupeol-H com deslocamento químico de 44,63 ppm (vizinho a um grupo isopropil).

O C-21 do lupeol está em posição β à ligação dupla e tem δ 29,77 ppm, e com a hidrogenação seu deslocamento é de 21,88 ppm não sofrendo mais o efeito da ligação dupla.

Redução dos carbonos 20 e 29 faz com que os sinais desloquem-se para campo alto C-20 do lupeol em d 150.83 ppm e 8 29.34 ppm no lupeol-H e C-29 do lupeol em δ 109.32 ppm passando para δ 22.99 ppm no lupeol-H).

O C-30 ligado ao C-20 apresentou uma pequena mudança pois no lupeol seu deslocamento químico é de 19.26 ppm enquanto no lupeol-H passa a ser δ 16.02 ppm.

47

O espectro de DEPT do lupeol-H (θ =135°) (Fig. 31) mostra um sinal de CH em δ 29,34 ppm que caracteriza o C-20. O sinal δ 22,99 ppm (θ =90°) (Figura 31a) é assinalado a um CH₃ que caracteriza o C-29. Em comparação com o espectro de DEPT do lupeol (Fig. 30) (θ = 135°, CH₂ em fase oposta) e (Figura 30a) (θ =90°), nota-se a ausência dos sinais em δ 109,32 ppm que caracteriza o C-29 (CH₂) e em δ 150,83 ppm que caracteriza o carbono quaternário da ligação dupla (C-20). Os deslocamentos químicos do espectro de DEPT do lupeol estão na Tabela 7 e do lupeol-H na Tabela 8.

Através dos espectros de HETCOR do lupeol (Fig. 32) e do lupeol-H (Fig. 33) pôde-se confirmar as atribuições dos hidrogênios e dos respectivos carbonos.

С	δ_{c} do lupeol	$\delta_{\mathbf{c}}$ do lupeol-H
1	38,64	38,64
2	27,34	27,31
3	78,88	78,95
4	38,79	40,79
5	55,22	55,19
6	18,26	18,29
7	34,21	34,30
8	40,73	40,79
9	50,34	50,02
10	37,08	37,06
11	20,86	20,87
12	25,04	26,76
13	37,97	37,74
14	42,74	43,09
15	27,34	27,31
16	35,52	35,48
17	42,92	43,09
18	48,21	47,55
19	47,91	44,63
20	150,83	29,34
21	29,77	21,88
22	39,94	40,36
23	27,94	27,96
24	15,35	15,13
25	16,08	16,02
26	15,92	15,38
27	14,50	14,38
28	17,96	18,03
29	109,32	22,99
30	19,26	16,02

Tabela 6 : Deslocamentos químicos doscarbonos do lupeol e do lupeol-H

С	СН	CH ₂	CH ₃
37,08	37,97	18,26	14,50
38,79	47,91	20,86	15,35
40,73	48,21	25,04	15,92
42,74	50,34	27,34	16,08
42,92	55,22	29,77	17,96
150,83	78,88	34,21	19,26
		35,52	27,94
		38,64	
		39,94	
		109,32	

Tabela 7 : Deslocamentos químicos do DEPT do lupeol

C	СН	CH ₂	CH ₃
37,06	29,34	18,29	14,38
40,79	37,74	20,87	15,13
43,09	44,63	21,88	15,38
	47,55	26,76	16,02
	50,02	27,31	18,03
	55,19	34,30	22,99
	78,95	35,48	27,96
		38,64	
		40,36	

Tabela 8 : deslocamentos químicos do DEPT do lupeol-H

3.6 - Reação de epoxidação do lupeol

Para a reação de epoxidação do lupeol (Esquema 12), foi utilizado ácido *m*cloroperbenzóico (*m*-CPBA). A análise dos espectros de RMN de ¹H e ¹³C, DEPT e IV mostrou a formação do produto esperado (lupeol-EP).

lupeol-EP

Esquema 12: Reação de epoxidação do lupeol

O espectro de IV do IupeoI-EP (Fig. 34) não apresenta a banda de absorção em 1641 cm⁻¹ característica da ligação dupla do IupeoI (Fig. 23) porém, apresenta uma banda de absorção em 1282 cm⁻¹ característica de C-O de epóxido.

O espectro de RMN de ¹H do lupeol-EP (Fig. 35 e expansão do espectro -Fig. 35a) foi comparado com o do lupeol (Fig. 25) mostrando as alterações esperadas. Os deslocamentos químicos dos hidrogênios encontram-se na Tabela 9.

Somente os hidrogênios ligados aos carbonos 19, 29 e 30 (Figura 36) mostraram alterações significantes em seus deslocamentos químicos.

O hidrogênio H-19 do lupeol tem deslocamento químico de 2,39 ppm e o do lupeol-EP acha-se em δ 2,48 ppm. Houve uma pequena mudança devido à epoxidação da ligação dupla, sendo que o hidrogênio H-19 sofre efeito eletrônico indutivo do oxigênio.

Os hidrogênios H-29 do lupeol (CH₂ terminal) apresentam-se como dois dubletes em δ 4,66 e 4,53 ppm, enquanto no lupeol-EP estes apresentam-se como um singlete em δ 2.59 ppm.

Um singlete em δ 1.59 ppm é atribuído aos hidrogênios H-30 do lupeol ao passo que no lupeol-EP estes hidrogênios acham-se em δ 1.41 ppm mantendo sua multiplicidade.

Н	δ _H
1a	0,91 (t)
1e	1,77 (d)
2a	1,64 (d)
2e	1,54 (q)
3	3,17 (dd)
5	0,67 (d)
6a	1,41 (d)
6e	1,54 (q)
7	1,41 (m)
9	1,23 (d)
11a	1,23 (q)
11e	1,47 (d)
12a	1,10 (q)
12e	1,64 (d)
13	1,58 (t)
15a	1,05 (d)
15e	1,64 (t)
16a	1,47 (d)
16e	1,41 (t)
18	1,33 (t)
19	2,48 (m)
21a	1,82 (m)
21e	1,33 (m)
22a	1,41 (m)
22e	1,18 (m)
23	0,96 (s)
24	0,70 (s)
25	0,88 (s)
26	1,05 (s)
27	0,91 (s)
28	0,78 (s)
29	2,59 (s)
1 30	1/1(e)

301,41 (s)Tabela 9 : Deslocamentos químicos
dos hidrogênios do lupeol-EP

No espectro de RMN de ¹³C do lupeol-EP (Fig. 37), é possível na expansão do espectro (Fig. 42a) observar que somente os carbonos 19, 20, 21, 29 e 30 tiveram alterações significantes em seus deslocamentos químicos em comparação com os do lupeol (Fig. 28). A Tabela 10 mostra os deslocamentos químicos dos átomos de carbono do lupeol-EP e do lupeol.

O C-19 do lupeol tem δ 47,91 ppm e no lupeol-EP este possui δ 46,25 ppm.

O C-20 do lupeol tem deslocamento químico de 150,83 ppm que caracteriza um carbono quaternário da ligação dupla, enquanto que no lupeol-EP este encontra-se em δ 60,41 ppm, valor característico de átomo de carbono ligado a oxigênio.

O deslocamento químico do C-21 do lupeol em posição a à ligação dupla é de δ 29,77 ppm enquanto que no lupeol-EP cai para δ 26,75 ppm pois não sofre mais a influência da ligação dupla.

O C-29 (CH₂ terminal) do lupeol tem deslocamento químico de 109,32 ppm e no lupeol-EP o seu deslocamento químico cai para campo mais alto (δ 57,42 ppm) pois está ligado ao oxigênio do epóxido. O sinal do C-30 do lupeol possui δ 19.26 ppm enquanto que este encontra-se em δ 18.06 ppm no lupeol-EP.

O espectro de DEPT do lupeoI-EP (Fig. 38) mostra um sinal de CH_2 do C-29 (θ =135°) em δ 57,42 ppm, em região diferente da do sinal do C-29 do lupeoI. O carbono quaternário C-20 do lupeoI-EP em δ 60,41 ppm encontra-se em campo mais alto do que o C-20 do lupeoI (δ 150,83 ppm) (Tabela 11).

56

н		$29 \\ 0 \\ 30 \\ 20 \\ 0 \\ 19 \\ 21 \\ 22 \\ 10 \\ 12 \\ 13 \\ 18 \\ 17 \\ 22 \\ 10 \\ 10 \\ 8 \\ 5 \\ 6 \\ 7 \\ 27 \\ 27 \\ 5 \\ 6 \\ 7 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\$	$\begin{array}{c} 29\\ 30 & 20\\ \end{array}$	19 21 22 8 17 5 16 28
ĺ	C	δ _c do lupeol-EP	δ_{c} do iupeol	
	1	38.61	38.64	
	2	27,18	27.34	
	3	78,79	78,88	
	4	38,73	38,79	
	5	55,14	55,22	
	6	18,20	18,26	
	7	34,14	34,21	
	8	40,67	40,73	
	9	50,11	50,34	
	10	38,73	37,08	
	11	20,89	20,86	
	12	25,81	25,04	
	13	37,06	37,97	
	14	42,71	42,74	
	15	27,02	27,34	
	16	35,34	35,52	
	17	43,25	42,92	
	18	49,34	48,21	
	19	46,25	47,91	
	20	60,41	150,83	
	21	26,75	29,77	
	22	39,61	39,94	
	23	27,90	27,94	
	24	15,32	15,35	
	25	15,84	15,92	
	26	10,00	10,08	
	21	14,30	14,50	
	2ð 20	17,01 57,40	100.22	
	29	07,4Z	109,32	
	30	18,06	19,20	ł

Tabela 10 : Comparação dos deslocamentos químicosdos carbonos do lupeol e do lupeol-EP

С	СН	CH ₂	CH ₃
38,73	37,06	18,20	14,30
39,01	46,25	20,89	15,32
40,67	49,34	25,81	15,84
42,71	50,11	26,75	16,00
43,25	55,14	27,02	17,81
60,41	78,79	27,18	18,06
		34,14	27,90
		35,34	
		38,61	
		39,61	
		57,42	

Tabela 11 : Deslocamentos químicosdo DEPT do lupeol-EP

3.7 - Reação de abertura do epóxido do lupeol-EP

Para reação de abertura do epóxido (Esquema 13) foi utilizado $LiAIH_4$. A análise dos espectros de RMN de ¹H e ¹³C e IV mostrou que houve formação do monoálcool (lupeol-29-ol).

Esquema 13: Reação de abertura do epóxido do lupeoI-EP

O espectro de IV do lupeol-29-ol (Fig. 39) apresenta uma banda de absorção em 1039 cm⁻¹ característica de C-O de hidroxila primária enquanto que o espectro do lupeol-EP (Fig. 34) não apresenta esta banda de absorção.

O espectro de RMN de ¹H do lupeol-29-ol (Fig. 40) foi comparado com o do lupeol-EP (Fig. 35) mostrando as alterações esperadas. Os deslocamentos químicos dos hidrogênios encontram-se na Tabela 12.

Somente os hidrogênios ligados aos carbonos 19, 29 e 30 (Figura 41) mostraram alterações significantes em seus deslocamentos químicos.

Figura 41: Carbonos 18, 19, 20, 21,22, 29 e 30 do lupeol-EP e do lupeol-20-ol

O hidrogênio H-19 do lupeol-29-ol tem deslocamento químico de 1.39 ppm e o do lupeol-EP acha-se em δ 2.13 ppm.

Os hidrogênios H-29 (CH₂) do lupeol-EP apresentam-se como um singlete em δ 2.59 ppm enquanto que no lupeol-29-ol eles estão ligados à hidroxila (δ 2.09 ppm).

Um singlete em δ 1.41 ppm é atribuído aos hidrogênios H-30 do lupeol-EP ao passo que no lupeol-29-ol estes hidrogênios acham-se em δ 1.37 ppm.

Н	8
10	
10	
1e	1.79 (d)
2a	1.65 (0)
Ze	1.56 (q)
3	3.19 (00)
5	0.65 (d)
6a	1.41 (d)
6e	1.54 (m)
/	1.42 (m)
9	1.22 (d)
11a	1.25 (q)
11e	1.47 (d)
12a	1.09 (q)
12e	1.64 (t)
13	1.57 (t)
15a	1.03 (d)
15e	1.64 (t)
16a	1.45 (d)
16e	1.42 (t)
18	1.33 (t)
19	1.39 (m)
21a	1.80 (m)
21e	1.33 (m)
22a	1.41 (m)
22e	1.20 (m)
23	0.97 (s)
24	0.69 (s)
25	0.84 (s)
26	1.02 (s)
27	0.92 (s)
28	0.77 (s)
29	2.29 (d)
30	1.37 (d)

 Tabela 12 : Deslocamentos químicos dos hidrogênios do lupeol-29-ol

No espectro de RMN de ¹³C do lupeol-29-ol (Fig. 42), é possível observar que somente os carbonos 19, 20, 21, 29 e 30 tiveram alterações em seus deslocamentos químicos em comparação com os carbonos do lupeol-EP (Fig. 37). A Tabela 13 mostra os deslocamentos químicos dos átomos de carbono do lupeol-29-ol.

O C-19 do lupeol-EP tem δ 46.25 ppm e no lupeol-29-ol este possui δ 48.27 ppm.

O C-20 do lupeol-EP tem deslocamento químico de 60.41 ppm que caracteriza um carbono quaternário ligado a oxigênio, enquanto que no lupeol-29ol este encontra-se em δ 29.34 ppm (em posição β a hidroxila).

O C-29 (CH₂ terminal) do lupeol-EP tem deslocamento químico de 57.42 ppm e no lupeol-29-ol o seu deslocamento químico cai para campo mais baixo (δ 64.85 ppm). O sinal do C-30 do lupeol-EP possui δ 18.06 ppm enquanto que este encontra-se em δ 18.01 ppm para o lupeol-29-ol.

O espectro de DEPT (θ =90°) do lupeol-29-ol (Fig. 43) mostra o sinal do C-20 (CH) e o sinal de do C-29 (CH₂) no DEPT (θ =135°).

63

÷

С	δ _c
1	39.00
2	27.64
3	79.10
4	38.94
5	55.67
6	18.27
7	34.35
8	40.86
9	50.29
10	37.21
11	21.03
12	26.22
13	37.21
14	42.81
15	27.64
16	35.42
17	42.98
18	49.79
19	48.27
20	29.34
21	27.02
22	40.01
23	28.12
24	15.78
25	16.20
26	16.22
27	14.55
28	18.02
29	64.85
30	18.01

 Tabela 13 : Deslocamentos químicos dos carbonos do lupeol-29-ol

С	СН	CH ₂	CH ₃
38.94	79.10	39.00	28.12
40.86	55.67	27.64	15.78
37.21	50.29	18.27	16.20
42.81	37.21	34.35	16.22
42.98	49.79	21.03	14.55
	48.27	26.22	18.02
	29.34	27.64	18.01
		35.42	
		27.02	
		40.01	
		64.85	

Tabela 14 : Deslocamentos o	químicos do	DEPT do	lupeol-29-ol
-----------------------------	-------------	---------	--------------

3.8 - Resultados dos testes farmacológicos da LLD-3

Testes farmacológicos foram feitos com a LLD-3 para testar atividade antiinflamatória, para determinação da DL_{50} oral (método de Spearman e Karber) de 24 h. Foram utilizados ratos Wistar e camundongos albinos da linhagem SW-55 para a determinação de DL_{50} intraperitoneal. A droga foi solubilizada em DMSO a 80% em solução salina fisiológica. Foram feitos 5 tratamentos para intoxicação, com 4 doses de 0,5 mg/kg durante 7 dias para os camundongos e 0,3mg/kg para os ratos. A DL_{50} de 24 horas por via intraperitoneal é de 1,4 mg/kg e a DL_{50} de 24 horas por via oral é de 8,57 mg/kg.

Após a última dose, os animais foram sacrificados e seu sangue colhido para avaliação sérica. Fígados e rins foram destinados ao isolamento de avaliação histopatológica mitocôndrias е na intoxicação sub-aguda dos camundongos. Induziu-se edema de orelha com óleo de cróton, e em seguida, o tratamento por via tópica com dose de 0,5 mg/kg na concentração de 50 µg de LLD-3/30 µl solubilizado em metanol. A atividade da Desidrogenase succínica, marcadora da função mitocondrial, foi acompanhada como parâmetro indicador de possível toxicidade celular, estando sua atividade aumentada no fígado e inalterada nos rins. As enzimas séricas Transaminase Glutâmica Oxalacética e Transaminase Glutâmica Pirúvica se mantiveram inalteradas. A atividade

66

enzimática da fosfatase alcalina não sofreu alteração após intoxicação sub-aguda em ratos, entretanto, a concentração de uréia sérica mostrou-se aumentada após tal intoxicação. Os exames de histopatologia mostraram a moderada tumefação difusa de hepatócitos, hepatite sub-aguda, áreas de hialinização e tumefação moderada acompanhada de eosinofilia da córtex renal.^{24,25}

Os testes farmacológicos não mostraram atividade antiinflamatória na dose de 0,5 mg/kg. A LLD-3 nas condições utilizadas nos testes é capaz de produzir efeitos tóxicos sobre o tecido hepático e provoca lesão no sistema urinário.

3.9 - Resultados do teste anti-HIV com os derivados do lupeol

Foi feito um teste anti-HIV para testar o grau de inibição da replicação/infectividade de HIV-1, sendo utilizadas células MT2 (similares às células H-9, bastante utilizadas em artigos para testes anti-HIV).

Os derivados utilizados foram o lupeol-EP e o lupeol-29-ol, sendo que o lupeol e o lupeol-H não puderam ser testados porque não são solúveis em DMSO (solvente utilizado no teste).

Os compostos foram solubilizados em DMSO (0.05 M) e colocados a 37°C para encubação juntamente com as células MT2 e o HIV-1 MN.

Foram utlizadas concentrações 0.3, 1.5, 3.0, 15 e 30 µM (1:3) de cada derivado, sendo que a cada dia a concentração do derivado era aumentada.

Após 12 dias, foi feita a contagem e as porcentagens de inibição da replicação/infectividade de HIV-1 encontram-se na Tabela 15.

68

	10 μ Μ	5μ Μ	1μ Μ	0.5 μ Μ	0.1 μ Μ
lupeol-29-ol	26.4/35.1	29.9/40.6	31.3/22.2	17.1/29.3	0/0
lupeol-EP	39.5/3.8	25.3/10.2	30.9/32.1	47.8/32.1	0/0

Tabela 15 : Dados do teste anti-HIV feito com o lupeol-29-ol e o lupeol-EP

As drogas aparentemente não afetaram a viabilidade celular, nem a detecção do antígeno p-24 de HIV-1.

Aparentemente ambas as drogas inibem pouco a replicação/infectividade viral. Existe uma falta de linearidade de dose/inibição, deveria-se testar 0.01 μM o que poderia indicar que as drogas são mais potentes do que o ácido betulínico, ácido platânico e ácido diidrobetulínico (derivados usados como padrão), mas como não chegaram a inibir 50% de replicação/infectividade do HIV-1 MN pode-se dizer que o poder inibitório dos derivados do lupeol é mais baixo.

Os derivados do lupeol (lupeol-29-ol e lupeol-EP) que não possuem o grupo COOH na posição 28 mostraram inibição mais baixa do que os derivados do ácido betulínico, o que está de acordo com Fujioka *et. al*³⁰ que sugere que este grupo pode ser indispensável para a potencialidade das estruturas contra o vírus HIV.

MATERIAIS E MÉTODOS

4 - PARTE EXPERIMENTAL

4.1 - Materiais e Métodos

4.1.1 - Aparelhos

Os espectros de RMN foram obtidos em um espectrômetro da marca Bruker AC
 200 (CPGQO-UFRRJ), 200 MHz para hidrogênio e 50,3 MHz para carbono-13. As
 amostras para análise foram dissolvidas em CDCI₃ contendo TMS como referência
 interna.

- Os espectros de IV foram obtidos em espectrofotômetro da marca Perkin-Elmer, modelo 1600 FT (CPGQO-UFRRJ), utilizando filme de KBr e NaCI.

- Os Pontos de Fusão foram feitos em um aparelho Buchi e não estão corrigidos.

4.1.2 - Solventes

- Para a extração da LLD-3 foi utilizado clorofórmio destilado

Na reação de desidratação da LLD-3 com DCC foi utilizado éter etílico destilado. Na reação de desidratação da LLD-3 com *p*-TsOH, foi empregado benzeno destilado.

O THF utilizado na reação de abertura do epóxido do lupeol-EP foi seco com sódio e benzofenona.

4.1.3 - Coleta da planta

A planta Lophanthera lactescens Ducke foi coletada na floresta da Universidade Federal Rural do Rio de Janeiro no município de Seropédica - RJ -Brasil e seca a temperatura ambiente.

4.1.4 - Extração do material

A madeira da planta *Lophanthera lactescens* Ducke, sem casca, foi moída e o material (3 kg) foi submetido a extração exaustiva com clorofórmio, em um extrator do tipo Soxhlet. A extração foi feita num total de 7 dias, após, sendo o solvente evaporado sob vácuo e o resíduo recristalizado com metanol, fornecendo puramente 1g de LLD-3. P.F. 258 °C.

4.2 - Modificações químicas

4.2.1 - Reação de desidratação da LLD-3 com DCC⁽³¹⁾

Esquema 14 : Reação de desidratação da LLD-3 com DCC

LLD-3 (50 mg) e DCC (30 mg) foram dissolvidos em 15 mL de éter anidro e a mistura posta em refluxo por 24 horas em presença de 8 mg de Cu₂Br₂ como catalisador. A mistura foi filtrada em florisil para eliminar o catalisador. Após evaporação do solvente, obteve-se 10 mg de um resíduo que por análise de RMN de ¹H e IV mostrou ser o material de partida.

4.2.2 - Reação de desidratação da LLD-3 com p-TsOH⁽³⁴⁾

Esquema 15 : Reação de desidratação da LLD-3 com *p*-TsOH

Uma solução de LLD-3 (50 mg) e *p*-TsOH (40 mg) em benzeno (15 mL) foi aquecida em refluxo por 2 h. A mistura foi resfriada a temperatura ambiente e lavada duas vezes (50 mL) com água. A fase orgânica foi seca, filtrada e o solvente eliminado sob vácuo. A análise através de IV e de RMN de ¹H mostrou não ter ocorrido reação.

4.2.3 - Reação de hidrogenação da LLD-3

Esquema 16 : Reação de hidrogenação da LLD-3 com 10% Pd-C

LLD-3 (30 mg) e 10% Pd-C (10 mg) foram dissolvidos em 7 mL de acetato de etila e esta solução sob hidrogênio ficou sob agitação magnética por 24 h. Após este período, filtrou-se a solução em papel de filtro para retirar o Pd-C e o solvente foi eliminado sob vácuo, fornerceu cristais brancos, 55% de rendimento. Análise por RMN de ¹H e IV confirmou a redução da dupla ligação do anel lactônico.

4.2.4 - Reação de hidrólise do acetato primário da LLD-3

Esquema 17 : Reação de hidrólise do acetato primário da LLD-3 com Li₂CO₃

Uma mistura de LLD-3 (150 mg) e Li_2CO_3 (80 mg) em 10 mL de THF anidro foi posta sob agitação por 2 horas. A fase orgânica foi seca, filtrada e o solvente eliminado sob vácuo, forneceu cristais brancos. A análise através de IV e de RMN de ¹H mostrou não ter ocorrido reação.

4.2.5 - Reação de hidrogenação do lupeol

Esquema 18 : Reação de hidrogenação do lupeol com 10% Pd-C

Uma mistura de lupeol (120 mg) e 10% Pd-C (10 mg) em 8 mL de CHCl₃ com balão de hidrogênio ficou sob agitação magnética por 17 h. Após este período, filtrou-se a solução em papel de filtro para retirar o Pd-C e o solvente foi eliminado sob vácuo. Forneceu cristais brancos, 75 % de rendimento. Análise dos espectros de RMN de ¹H e ¹³C, DEPT e IV do resíduo confirmou a redução da ligação dupla .

4.2.6 - Reação de epoxidação do lupeol

Esquema 19 : Reação de epoxidação do lupeol com m-CPBA

Uma mistura de lupeol (300 mg), NaHCO₃ (100 mg) e *m*-CPBA (150 mg) em 16 mL de acetona/CHCl₃ (1:1) ficou sob agitação magnética por 25 h. A mistura foi lavada com solução de NaHCO₃ saturada e solução de NaCl saturada. A fase orgânica foi seca, filtrada e o solvente eliminado sob vácuo. Obteve-se 250 mg de cristais brancos, 80 % de rendimento, que através da análise dos espectros de RMN de ¹H e ¹³C, DEPT e IV mostrou ser o epóxido desejado.

4.2.7 - Reação de abertura do epóxido do lupeol-EP

Esquema 20 : Reação de abertura do epóxido do lupeol-EP com LiAIH₄

Uma solução de lupeol-EP (250 mg) em THF anidro (3 mL) foi adicionada a uma suspensão de LiAlH₄ (270 mg) em THF anidro (4 mL) e a mistura reacional foi agitada por 2 h a temperatura ambiente. Após esse período, a reação foi neutralizada com água (0,5 mL) e NaOH 10% (0,4 mL). O solvente foi filtrado, seco e eliminado sob vácuo, obtendo-se 220 mg de produto impuro. A purificação do produto em coluna de sílica-gel (1 g) usando-se CHCl₃ como eluente forneceu 150 mg de lupeol-29-ol, cristais brancos, 72 % de rendimento, confirmado pela análise dos espectros de RMN de ¹H e ¹³C e IV.

Figura 19 : Espectro de IV da LLD-3 em pastilha de KBr~

Figura 20 : Espectro de IV da LLD-3 em pastilha de NaCl

Figura 21 : Espectro de RMN de ¹H (200 MHz) da LLD-3.

Figura 22 : Espectro de RMN de ¹H (200 MHz) do lupeol-H.

Figura 23 : Espectro de IV de lupeol em pastilha de KBr $\sqrt[4]{3}$

Figura 24 : Espectro de IV do lupeol-H em pastilha de KBr

Figura 25 : Espectro de RMN de ¹H (200 MHz) do lupeol.

Figura 25a : Expansão de 0,0 a 3,5 ppm do espectro de RMN de ¹H (200 MHz) do lupeol.

Figura 26 : Espectro de RMN de ¹H (200 MHz) do lupeol-H.

Figura 26a : Expansão da região 0,0 a 2,0 ppm do RMN de ¹H (200 MHz) do lupeol-H.

Figura 28 : Espectro de RMN de ¹³C (53 MHz) do lupeol.

Figura 29 : Espectro de RMN de ¹³C (53 MHz) do lupeol-H.

Figura 30 : Espectro do DEPT (θ = 135⁰) do RMN de ¹³C (53 MHz) do lupeol.

Figura 30a : Espectro do DEPT (θ = 90⁰) do RMN de ¹³C (53 MHz) do lupeol

Figura 31 : Espectro do DEPT (θ = 135⁰) do RMN de ¹³C (53 MHz) do lupeol-H.

Figura 31a : Espectro do DEPT (θ = 90⁰) do RMN de ¹³C (53 MHz) do lupeol-H.

Figura 32 : Espectro de HETCOR do lupeol.

Figura 33 : Espectro de HETCOR do lupeol-H.

Figura 34 : Espectro de IV do lupeol-EP em pastilha de KBr

Figura 35 : Espectro de RMN de ¹H (200 MHz) do lupeol-EP

Figura 35a : Expansão da região de 0,0 a 2,5 ppm do espectro de RMN de ¹H (200 MHz) do lupeol-EP.

Figura 37 : Espectro de RMN de ¹³C (50,3 MHz) do lupeol-EP.

Figura 38 : Espectro do DEPT (θ = 135⁰) do RMN de ¹³C (53 MHz) do lupeol-EP

Figura 39 : Espectro de IV do lupeol-20-ol em pastilha de KBr

.

Figura 41 : Espectro de RMN de ¹H (200 MHz) do lupeol-29-ol

Figura 42 : Espectro de RMN de ¹³C (50,3 MHz) do lupeol-29-ol.

Figura 43 : Espectro do DEPT (θ =90⁰) de RMN de ¹³C (50,3 MHz) do lupeol-29-ol.

(ppm)

Figura 44 : Espectro de DEPT (θ =135⁰) do RMN de ¹³C (50,3 MHz) do lupeol-29-ol.

REFERÊNCIAS BIBLIOGRÁFICAS

6 - REFERÊNCIAS BIBLIOGRÁFICAS

- 1- Champagne, D. E.; Koul, O.; Isman, M. B.; Scudder, G. G. E.; e Towers, G. H.
 N. : *Phytochemistry*, 31(2), 377-394, 1992.
- 2- Correa, P. : Dicionário de plantas úteis do Brasil e exóticas cultivadas, 1-6, Brasília : IBDF, 1984.
- 3- Maier, V. P. e Beverly, G. D. : J. Food Sci., 33, 488-492, 1968.
- 4- Bennett, R. D. e Hasegawa, S. : Tetrahedron, 37, 17-24, 1981.
- 5- Gray, A. I.; Bhandari, P. e Waterman, P. G. : *Phytochemistry*, **27**(6), 1805-1808, 1988.
- 6- Mondon, A.; Epe, B. e Oelbermann, U. : *Tetrahedron Lett.*, **23**(39), 4015-4016, 1982.
- 7- Jolad, S. D.; Hoffmann, J. J.; Schram, K. H. e Cole, J. R. : J. Org. Chem.,
 46, 4085-4088, 1981.
- 8- Gunning, P. J.; Jeffs, L. B.; Isman, M. B. e Towers, G. H. N.. : *Phytochemistry*, 36(5), 1245-1248, 1994.

- **9-** Mulholland, D. A.; Osborne, R.; Roberts, S. L. e Taylor, D. A. H. : *Phytochemistry*, **37**(5), 1417-1420, 1994.
- **10-** March, J.; *Advanced Organic Chemistry*, Fourth edition, cap. **18**, 1098-1099.
- 11- Mulholland, D. A e Taylor, D. A. H. : *Phytochemistry*, 27(6), 1741-1743, 1988.
- **12-** Kishi, K.; Yoshikawa, K. e Arihara, S. : *Phytochemistry*, **31**(4), 1335-1338, 1992.
- 13- Torto, B.; Hassanali, A.; Nyandat, E. e Bentley, M. D. : *Phytochemistry*, 42(4), 1235-1237, 1996.
- 14-. Musza, L. L.; Killar, L. M.; Speight, P.; Barrow, C. J.; Gillum, A. M. e Cooper,
 R. : *Phytochemistry*, 39(3), 621-624, 1995.
- 15- Sung, T. V.; Phuong, N. M.; kamperdick, C. e Adam, G. : *Phytochemistry*, 38(1), 213-215, 1995.
- 16- Koike, K.; Mitsunaga, K.; ishii, K.; Ohmoto, T.; Kawakami, Y.; Ikemoni, M. eSato, T. : *Tetrahedron*, 49, 2209, 1993.
- 17- Ayafor, J. F.; Kimbu, S. F.; Ngadjui, B. T.;.; Sondengam, B. L.; Connoly, J. D. e
 Rycroft, D. S. : *Tetrahedron*, 50(31), 9343-9354, 1994.
- 18- Dreyer, D. L.; : *Phytochemistry*, 19, 941-944, 1980.

- 19- Kraus, W.; Grimminger, W. e Sawitzki, G. : Angew. Chem. Int. Ed. Engl.,
 17(6), 452-453, 1978.
- **20-** Huang, R. C.; Tadera, K.; Yagi, F.; Minami, Y.; Okamura, H.; Iwagama, T. e Nakatani, M. : *Phytochemistry*, **43**(3), 581-583, 1996.
- **21-** Pettit, G.R.; Barton, D. H. R.; Herald, C. L.; Polonsky, J.; Schmidt, J. M. e Connolly, J. D. : *J. Nat. Prod.*, **43**(3), 379-390, 1983.
- **22-** Itokawa, H.; Qiao, Z.; Hirobe, C. e Takeya, K. : *Chem. Pharm. Bull.*, **43**(7), 1171-1175, 1995.
- 23- Abreu, H. S. : "Estudo químico da espécie Lophanthera lactescens Ducke (Malpighiaceae) ", Tese de mestrado, UFRRJ, 1985.
- 24- Neto, M. T. S.; Chagas, G. M.; Gomes, E. M.; Macharetti, H.; Souza, A. L. F.; e
 Abreu, H. S. e Rocha, F. F. : *Revista Brasileira de Toxicologia*, 10(2), 66, 1997.
- 25- Neto, M. T. S.; Chagas, G. M.; Gomes, E. M.; Macharetti, H.; Souza, A. L. F.; e Louzada, J. G. : Congresso da Sociedade Brasileira de Pesquisa Científica, julho, Natal - RN, Brasil, 1998.
- **26-** Aplin, R. T. e Halsall, T. G. : Fortschr. Chem. Org. Naturstoffr, **22**, 153-194, 1964.
- 27- Sobrinho, D. C.; Hauptli, M. B.; Apolinário, E. V.; Kollenz, C. L. M.; Carvalho, M.G. e Braz-Filho, R.: *J. Braz. Chem. Soc.*, 2(1), 15-20, 1991.

- 28- Moriarty, D. M.; Huang, J.; Yancey, C. A.; Zhanz, P.; Setzer, W. N.; Lawton, R. O.; bates, R. B. e Caldera, S. : *Planta Medica*, 64, 370-372, 1998.
- **29-** Malini, M. M.; Baskar, R. e Varalakshmi, P. : *Jpn. J. Med. Sci. Biol.*, **48**, 211-220, 1995
- **30-** Fujioka, T.; Kashiwada, Y.; Kilkuskie, R. E.; Cosentino, M.; Ballas, L. M.; Jiang, J. B.; janzen, W. P.; Chen, I. e Lee, K. : *J. Nat. Prod.*, **57**(2), 243-247, 1994.
- 31 Fetizon, M. e Sozzi, G. : Tetrahedron, 37, 61-68, 1981.
- 32 Reynolds, W. F.; McLean, S., Poplawski; Enriquez, R. G.; Escobar, L. I. e Leon, I. : *Tetrahedron*, 42 (13), 3419-3428, 1986.
- 33 Wenkert, E. Baddeley; G. V.; Burfitt, I. R. e Moreno, L. N. : Org. Magn. Res., 11(7), 337-343, 1978.
- **34** Utermoehlen, C. M.; Singh, M. e Lehr, R. E. : *J. Org. Chem.*, **52**, 5574-5582, 1987.
- **35 -** Siddiqui, S.; Siddiqui, B. S.; Faizi, S. e Mahmood, T. : *J. Nat. Prod.*, **51**(1), 30-43, 1988.
- **36** Khalid, S. A.; Farouk, A.; Geary, T. G. e Jensen, J. B. : *J. Etnopharm.*, **15**, 201-209, 1986.
- 37 Stork, G. e Burgrtahler, A. W. : J. Am. Chem. Soc., 77, 5068-5077, 1955.