UFRRJ INSTITUTO DE CIÊNCIAS EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM MODELAGEM MATEMÁTICA E COMPUTACIONAL

DISSERTAÇÃO

Avaliação de Métodos Iterativos Aplicados à Equação Não-Linear de Richards

Mario Jorge dos Reis Moura

UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE CIÊNCIAS EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM MODELAGEM MATEMÁTICA E COMPUTACIONAL

AVALIAÇÃO DE MÉTODOS ITERATIVOS APLICADOS À EQUAÇÃO NÃO-LINEAR DE RICHARDS

MARIO JORGE DOS REIS MOURA

Sob a Orientação do Professor Dr. Renan de Souza Teixeira e Co-orientação do Professor Dr. Wilian Jeronimo dos Santos

> Dissertação submetida como requisito parcial para obtenção do grau de **Mestre em Ciências**, no Curso de Pós-Graduação em Modelagem Matemática e Computacional, Área de Concentração em Modelagem Matemática e Computacional

Seropédica, RJ Março de 2022 Universidade Federal Rural do Rio de Janeiro Biblioteca Central / Seção de Processamento Técnico

Ficha catalográfica elaborada com os dados fornecidos pelo(a) autor(a)

Moura, Mario Jorge dos Reis, 1990-M929a Avaliação de métodos iterativos aplicados à equação não-linear de Richards / Mario Jorge dos Reis Moura. Duque de Caxias, 2022. 84 f.: il. Orientador: Renan de Souza Teixeira. Coorientador: Wilian Jeronimo dos Santos. Dissertação(Mestrado). -- Universidade Federal Rural do Rio de Janeiro, Programa de Pós-Graduação em Modelagem Matemática e Computacional (PPGMMC -UFRRJ), 2022. 1. Equação de Richards. 2. Dual-Time Stepping. 3. Métodos Numéricos. 4. Infiltração Hídrica. I. Teixeira, Renan de Souza, 1983-, orient. II. Santos, Wilian Jeronimo dos, 1984-, coorient. III Universidade Federal Rural do Rio de Janeiro. Programa de Pós Graduação em Modelagem Matemática e Computacional (PPGMMC - UFRRJ). IV. Título.

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE CIÊNCIAS EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM MODELAGEM MATEMÁTICA E COMPUTACIONAL

ATA Nº 1189/2022 - PPGMMC (12.28.01.00.00.01)

Nº do Protocolo: 23083.022524/2022-06

Seropédica-RJ, 12 de abril de 2022.

MARIO JORGE DOS REIS MOURA

Dissertação submetida como requisito parcial para a obtenção de grau de **Mestre**, no Programa de Pós-Graduação em Modelagem Matemática e Computacional - PPGMMC, área de Concentração em Modelagem Matemática e Computacional.

DISSERTAÇÃO APROVADA EM 31/03/2022

Conforme deliberação número 001/2020 da PROPPG, de 30/06/2020, tendo em vista a implementação de trabalho remoto e durante a vigência do período de suspensão das atividades acadêmicas presenciais, em virtude das medidas adotadas para reduzir a propagação da pandemia de Covid-19, nas versões finais das teses e dissertações as assinaturas originais dos membros da banca examinadora poderão ser substituídas por documento(s) com assinaturas eletrônicas. Estas devem ser feitas na própria folha de assinaturas, através do SIPAC, ou do Sistema Eletrônico de Informações (SEI) e neste caso a folha com a assinatura deve constar como anexo ao final da tese / dissertação.

Renan de Souza Teixeira Drº UFRRJ (Orientador, Presidente da Banca)

Carlos Andres Reyna Vera-Tudela Drº UFRRJ (membro interno)

Edivaldo Figueiredo Fontes Junior Drº UFRRJ(membro interno)

Daniel José Nahid Mansur Chalhub Drº UERJ (Externo à Instituição)

(Assinado digitalmente em 13/04/2022 08:54) CARLOS ANDRES REYNA VERA TUDELA PROFESSOR DO MAGISTERIO SUPERIOR DeptM (12.28.01.00.00.06.3) Matrícula: 2433643 (Assinado digitalmente em 12/04/2022 10:11) EDIVALDO FIGUEIREDO FONTES JUNIOR PROFESSOR DO MAGISTERIO SUPERIOR DeptM (12.28.01.00.00.06.3) Matrícula: 1864825 (Assinado digitalmente em 12/04/2022 10:14)

RENAN DE SOUZA TEIXEIRA

PROFESSOR DO MAGISTERIO SUPERIOR

DeptM (12.28.01.00.00.00.63)

Matrícula: 2375659

(Assinado digitalmente em 13/04/2022 11:40)

DANIEL JOSÉ NAHID MANSUR CHALHUB

ASSINANTE EXTERNO

CPF: 113.448.517-46

Para verificar a autenticidade deste documento entre em <u>https://sipac.ufrrj.br/public/documentos/index.jsp</u> informando seu número: **1189**, ano: **2022**, tipo: **ATA**, data de emissão: **12/04/2022** e o código de verificação: **2d3e5ff470**

AGRADECIMENTOS

Agradeço à minha família pelo apoio e suporte durante essa caminhada, principalmente nestes dois últimos anos, tempos difíceis de pandemia em que por muitas vezes me peguei desanimado.

Reconheço a importância dos meus orientadores, Renan e Wilian, pelas aulas dadas, pelos ensinamentos, por terem acreditado em mim. Sem dúvidas, me estimularam a ser um profissional melhor. São exemplos de motivação, paciência e boa vontade.

Sou grato a meus amigos, Gustavo, Danilo, Karolainy e Sérgio, que estiveram comigo nessa trajetória. Sempre que eu precisei descontrair, eu pude contar com eles, mesmo que fosse através da internet. Em qualquer momento eles estavam lá por mim.

Um salve à colega de curso, Nathalia, por ter compartilhado dicas e experiências acadêmicas em suas conversas.

Agradeço à professora Cláudia Mazza pelo seu ótimo trabalho feito na coordenação do programa, sempre atenta e pronta a resolver as demandas dos alunos. O mesmo posso dizer sobre o novo coordenador, o professor Carlos Reyna, muito atencioso e gentil.

Não posso esquecer do Márcio, secretário do programa, antenado com os problemas burocráticos dos alunos, nos ajudando a resolver problemas acadêmicos, além de fazer divulgações de eventos e outros assuntos.

Agradeço a CAPES por viabilizar a finalização desta dissertação. O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior — Brasil (CAPES) — Código de Financiamento 001.

Sou grato aos docentes do programa pelo aprendizado. Agradeço a Deus.

RESUMO

MOURA, Mario Jorge dos Reis. **Avaliação de métodos iterativos aplicados à equação não-linear de Richards**. Seropédica, 2022. Dissertação (Mestrado em Mode-lagem Matemática e Computacional). Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2022.

O presente trabalho tem como objetivo realizar uma simulação numérica para descrever o escoamento transiente unidimensional de água em solo não-saturado. O movimento da água no solo é descrito pela equação de Richards, obtida das equações de Darcy-Buckingham e da continuidade. Tal equação é não-linear, necessitando de tratamento computacional para obtenção de uma solução aproximada. Existem diversas técnicas para abordar o problema, como o método dos elementos finitos (MEF) e das diferenças finitas (MDF). Neste trabalho foi utilizado o método das diferenças finitas (MDF) para encontrar uma solução para a equação de Richards nas formas h e mista, usando dados de [1], com condições iniciais e de contorno previamente definidas, para diferentes passos de tempo e espaçamentos de malha. Foram comparados diferentes esquemas iterativos no processo de solução da equação de Richards. Além disso, um esquema de marcha dupla no tempo (DTS) foi empregado como uma alternativa aos esquemas tradicionais. Os resultados encontrados sugerem que o esquema DTS é um método capaz de resolver o problema com um aumento razoável no número de iterações. No entanto, para elevados níveis de saturação de solo o esquema DTS demonstrou a possibilidade de maior eficiência computational.

Palavras-chave: Equação de Richards; Ciência do Solo; Modelagem Matemática; Dual-Time Stepping Method; Diferenças Finitas.

ABSTRACT

MOURA, Mario Jorge dos Reis. **Evaluation of iterative methods applied to the nonlinear Richards' equation**. Seropédica, 2022. Dissertation (Master Science in Mathematical and Computational Modeling). Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2022.

The present work aims to perform a numerical simulation to describe the one-dimensional transient water flow in unsaturated soil. The movement of water into soil is described by Richards equation, obtained from both Darcy-Buckingham and continuity equations. Such equation is non-linear, requiring computational treatment to obtain an approximate solution. There are several techniques to approach the problem, such as finite element (FEM) and finite difference (FDM) methods. In order to find a solution in both h and mixed forms of Richards equation, finite difference method (FDM) was adopted, using data from [1], with previously defined initial and boundary conditions, for different time steps and mesh spacings. Different iterative schemes were compared in the process of solving Richards equation. In addition, a dual time stepping (DTS) scheme was employed as an alternative to traditional schemes. The obtained results suggest that DTS scheme is a capable method to solve the problem with a reasonable increase in the number of iterations. However, for high levels of soil saturation the DTS scheme demonstrated the possibility of greater computational efficiency.

Key Words: Richards' Equation; Soil Science; Mathematical Modeling; Dual-Time Stepping Method; Finite Differences.

LISTA DE FIGURAS

Figura	1:	Retenção da água por agregados do solo	18
Figura	2:	Perfil de conteúdo de água durante a infiltração	20
Figura	3:	Descontinuidade entre condição inicial e de contorno	22
Figura	4:	Gradiente de umidade no início da infiltração	22
Figura	5:	Gradiente de umidade com mais pontos na malha	22
Figura	6:	Gradiente de umidade para solo mais seco	23
Figura	7:	Arranjo experimental de Darcy	24
Figura	8:	Balanço de massa geral	25
Figura	9:	Balanço de massa sem geração ou consumo	25
Figura	10	: Balanço de massa num elemento com V constante	26
Figura	11	: Discretização espacial do domínio	32
Figura	12	: Discretização espacial do domínio com nós intermediários	34
Figura	13	: Discretização espacial para o método de Newton-Raphson	40
Figura	14	: Molécula computacional para o método de Crank-Nicolson	44
Figura	15	: Validação das simulações para os esquemas discretos	49
Figura	16	: Simulações para o esquema EI—P	50
Figura	17	: Simulações para o esquema EI—PM	52
Figura	18	: Simulações para o esquema EI—NR	53
Figura	19	: Estudo de otimização do parâmetro $\Delta \tau$	55
Figura	20	: Simulações para o esquema EI—EE	56
Figura	21	: Simulações para o esquema EI—RK4	58
Figura	22	: Simulações para o esquema CN—EE	59
Figura	23	: Simulações para o esquema CN—RK4	61
Figura	24	: Simulações para o caso 1	62
Figura	25	: Simulações para o caso 2	64
Figura	26	: Simulações para o caso 3	65
Figura	27	: Simulações para o caso 4	66
Figura	28	: Simulações para o caso 5	68
Figura	29	: Simulações para o caso 6	69
Figura	30	: Simulações para o caso 7	71

LISTA DE TABELAS

Tabela 1: Parâmetros do solo, condições de contorno e inicial de [1]	. 46
Tabela 2: Condiçoes dos problemas e parâmetros numéricos das simulações	. 48
Tabela 3: Esforço computacional para o esquema EI—P	. 51
Tabela 4: Esforço computacional para o esquema EI—PM	. 52
Tabela 5: Esforço computacional para o esquema EI—NR	54
Tabela 6: Esforço computacional para o esquema EI—EE	. 57
Tabela 7: Esforço computacional para o esquema EI—RK4	. 58
Tabela 8: Esforço computacional para o esquema CN—EE	. 60
Tabela 9: Esforço computacional para o esquema CN—RK4	. 61
Tabela 10: Esforço computacional para o caso 1	. 63
Tabela 11: Esforço computacional para o caso 2	. 64
Tabela 12: Esforço computacional para o caso 3	. 65
Tabela 13: Esforço computacional para o caso 4	. 67
Tabela 14: Esforço computacional para o caso 5	. 68
Tabela 15: Esforço computacional para o caso 6	. 70
Tabela 16: Esforço computacional para o caso 7	. 70
ANEXO 1: Total de iterações para o esquema EI—P	. 78
ANEXO 2: Total de iterações para o esquema EI—PM	. 79
ANEXO 3: Total de iterações para o esquema EI—NR	. 80
ANEXO 4: Total de iterações para o esquema EI—EE	81
ANEXO 5: Total de iterações para o esquema EI—RK4	. 82
ANEXO 6: Total de iterações para o esquema CN—EE	. 83
ANEXO 7: Total de iterações para o esquema CN—RK4	. 84

LISTA DE ABREVIAÇÕES E SÍMBOLOS

- K: função de condutividade hidráulica
- h: carga hidráulica
- $V_a\colon$ volume de amostra de solo
- $V{:}$ volume de amostra de solo
- $\theta_r:$ conteúdo de água em solo seco
- $\theta_s:$ conteúdo de água na saturação
- $\psi :$ potencial mátrico
- T: temperatura
- $P{:}$ pressão
- m: massa
- g: aceleração da gravidade
- C:função de capacidade de umidade específica
- $N_p:$ número de pontos na malha espacial
- Q:vazão de água
- A: área de seção transversal
- L: comprimento de coluna de solo
- $\vec{q}:$ fluxo de água
- Δt : passo de tempo
- $\Delta z:$ espaçamento da malha espacial
- $\Delta\tau:$ passo no pseudotempo
- z: coordenada vertical
- $\alpha:$ parâmetro de entrada de ar de Haverkamp
- β : parâmetro de porosidade de Haverkamp
- $K_s:$ parâmetro de condutividade hidráulica de saturação de Haverkamp
- $\gamma:$ parâmetro porosidade de Haverkamp
- n: nível de iteração no tempo
- m:nível de iteração para as técnicas de linearização tradicionais
- p: nível de iteração no pseudotempo para as técnicas DTS
- H:aproximação para a carga hidráulica h
- R:resíduo associado
- $\lambda:$ parâmetro adimensional para os esquemas DTS
- K^+ : íon potássio
- Ca^{2+} : íon cálcio
- Mg^{2+} : íon magnésio
- $Cl^-{:}$ íon cloreto
- NO_3^- : íon nitrato
- SO_4^{2-} : íon sulfato
- N_2 : gás nitrogênio
- O_2 : gás oxigênio
- H_2O : vapor d'água
- CO_2 : dióxido de carbono
- $\theta :$ umidade ou conteúdo de água
- $\psi_t:$ potencial total da água
- ψ_P : potencial piezométrico da água

 ψ_T : potencial térmico ψ_n : potencial osmótico ψ_a : potencial gravitacional ψ_m : potencial matricial — dado em termos de pressão h: carga hidráulica h_t : carga hidráulica total h_{q} : contribuição da gravidade para a carga hidráulica total h_m : contribuição da matriz do solo para a carga hidráulica total L: comprimento da coluna de solo θ_m : potencial matricial — dado em termos de umidade h_t : condição de contorno no topo da coluna de solo h_0 : condição inicial de umidade no solo (ou nível de saturação) N_p : número de pontos na malha espacial h_1 : carga piezométrica no topo da coluna h_2 : carga piezométrica no fundo da coluna ψ_{t1} : potencial matricial total no topo da coluna ψ_{t2} : potencial matricial total no fundo da coluna $\vec{q_x}$: fluxo de água na direção x $\vec{q_y}$: fluxo de água na direção y $\vec{q_z}$: fluxo de água na direção z k: versor k Δx : incremento na direção x Δy : incremento na direção y Δz : incremento na direção z V_{sol} : volume de água num elemento infinitesimal de solo t: tempo τ : pseudotempo h_f : condição de contorno no fundo da coluna de solo *i*: nó da malha espacial F_i^{n+1} : fluxo hidráulico G: função de iteração para o método de Runge-Kutta de 4^a ordem explícito N: função de iteração para o método de Runge-Kutta de 4^a ordem explícito $k_i, i = 1, 2, 3, 4$: inclinações para o método de Runge-Kutta de 4^a ordem explícito d_i : diagonal principal para os esquemas EI—P e EI—PM l_i : diagonal inferior para os esquemas EI—P e EI—PM

 u_i : diagonal superior para os esquemas EI—P e EI—PM

 v_i : vetor independente do sistema a ser resolvido nos esquemas EI—P e EI—PM

J: matriz Jacobiana para o esquema EI—NR

SUMÁRIO

1 INTRODUÇÃO	12
1.1 Motivação Geral	. 12
1.2 Revisão Bibliográfica	. 14
1.3 Justificativa	. 16
1.4 Objetivos	. 16
1.4.1 Objetivos específicos	.16
2 O PROCESSO DE INFILTRAÇÃO HÍDRICA	.18
2.1 O Solo e Suas Características	.18
2.2 Conteúdo de Água no Solo	. 19
2.3 Potenciais da Água no Solo	.19
2.4 Carga Hidráulica	. 20
2.5 Infiltração e Perfis de Umidade	. 20
2.6 Condutividade Hidráulica	. 21
2.7 Curvas de Retenção e Capacidade de Umidade Específica	.21
2.8 Gradiente de Umidade	. 21
2.9 Lei de Darcy	. 23
2.10 Equação de Darcy-Buckingham	. 24
2.11 Equação da Continuidade	. 25
3 METODOLOGIA	28
3.1 Modelo Matemático	. 28
3.1.1 Equação de Richards	. 28
3.1.2 Modelo de condutividade hidráulica	. 31
3.2 Métodos Numéricos	. 32
3.2.1 Esquemas tradicionais	. 33
3.2.1.1 Euler implícito — Picard	. 33
3.2.1.2 Euler implícito — Picard modificado	. 36
3.2.1.3 Euler implícito — Newton-Raphson	.40
3.2.2 Metodologia Dual-Time Stepping (DTS)	. 43
3.2.2.1 Método de Euler explícito no pseudotempo	. 44
3.2.2.2 Método RK4 explícito no pseudotempo	. 45
4 RESULTADOS	46
4.1 Validação das Simulações e Apresentação dos Casos	. 48
4.2 Esquemas Tradicionais	. 50
4.2.1 EI — P	. 50
4.2.2 EI — PM	. 51
4.2.3 EI — NR	.53
4.3 Metodologia Dual-Time Stepping (DTS)	.54
4.3.1 Estudo preliminar do $\Delta \tau$ ótimo	.55
$4.3.2 \text{ EI} - \text{EE} \dots$. 55
4.3.3 EI — RK4	. 57
4.3.4 CN — EE	. 59
4.3.5 CN — RK4	. 60
4.4 Comparações Entre Esquemas	. 62
4.4.1 Caso 1	. 62

63
64
65
67
69
70
72
74
78
78
10
79
79 80
79 80 81
 79 80 81 82
 79 80 81 82 83

CAPÍTULO I INTRODUÇÃO

1.1 Motivação Geral

Escoamentos em meios porosos possuem inúmeras aplicações nas diversas áreas científicas, como engenharias, física e química. O fenômeno de irrigação em solos nãosaturados é uma aplicação relevante deste tipo de escoamento, e tem um papel fundamental na qualidade da produção agrícola e industrial [2]. Os estudos científicos deste fenômeno tem um impacto significativo no uso dos recursos hídricos na agricultura em geral, além de contribuirem para melhorar o manejo do recurso promordial para a vida humana.

A água também é necessária em outras atividades, como geração de energia elétrica, pesca, e consumo humano. Como recurso natural finito indispensável à vida, é importante pensar de forma sustentável sobre o uso da água, uma vez que as gerações futuras dependem das iniciativas tomadas nos dias de hoje. Com o crescimento populacional, a humanidade se vê obrigada a usar a maior quantidade possível de solo agricultável, tanto em regiões úmidas quanto áridas, impulsionando o uso da irrigação [3].

Embora o Brasil esteja em uma situação privilegiada em relação a outros países, com 13.8% da água doce disponível no mundo, o país por muito tempo permaneceu sem dar a devida importância ao uso e à preservação de seus recursos hídricos e, conseqüentemente, muitas providências deixaram de ser tomadas, como a proteção dos ecossistemas, recuperação de áreas degradadas, minimização do processo de desertificação, proteção das nascentes e aquíferos e educação ambiental [4].

Em adição, o setor agrícola tem grande importância na economia brasileira. Em 2005, toda a cadeia do agronegócio gerou 28% do PIB nacional, e o Brasil é um dos maiores produtores mundiais neste setor, com grande potencial de crescimento, e por isto demanda grande quantidade de água consumida [5].

Desta forma, o manejo racional da irrigação é importante, pois há a disponibilização de quantidades ideais de água às plantas no momento correto. A não adoção de métodos de controle de irrigação pode fazer o produtor rural utilizar água em demasia, sob a justificativa de evitar estresse hídrico nas culturas, causando desperdício de água e energia. Além disso, parte da água usada na irrigação não retorna a seu curso original, acarretando em diminuição da disponibilidade em mananciais, e nos casos em que há retorno de água, a qualidade é inferior àquela que foi captada inicialmente [3].

De fato, segundo [6], diversas culturas de vegetais possuem diferentes necessidades de umidade no solo, como, por exemplo, couve e pepino, nas faixas de -60 a -70 e -100 a -300 kPa, respectivamente. Portanto, a previsão da quantidade de água ideal a ser usada nos sistemas de irrigação é uma alternativa consciente para otimizar o uso da água.

Os valores de umidade anteriormente citados são dados em termos de potenciais matriciais para solos não-saturados, isto é, solos que não possuem os poros totalmente preenchidos com água. Pode ser interpretado como a força de adesão da água nas partículas sólidas do solo. Tal potencial é uma medida indireta de água disponível, e é obtida experimentalmente a partir de tensiômetros, equipamentos que medem a tensão com que a água é retida nos espaços porosos do solo. Basicamente, fenômenos de capilaridade proporcionam o movimento da água, e com isto é gerada uma pressão negativa (matricial) na inferface entre a água e a matriz do solo (parte sólida). Quanto mais úmido for o solo, maior será o seu potencial matricial [7].

Por outro lado, o avanço na tecnologia computacional, iniciado nas décadas de 80 e 90, proporcionou o desenvolvimento de computadores mais potentes, popularizando o uso destas ferramentas como fonte de pesquisa e análise em diversas áreas. Com isso, o estudo computacional da solução de modelos matemáticos passou a ocupar uma gama significativa das pesquisas científicas [8]. Logo, os estudos numéricos do escoamento em meios porosos não-saturados são uma alternativa nesta área. A modelagem associada ao fenômeno de irrigação em solos não saturados normalmente envolve a resolução de equações diferenciais parciais não-lineares, algumas vezes com domínios complexos [2].

Apesar dos grandes avanços em modelagem em solos nas últimas décadas, tais modelos continuam, de certa forma, segregados dos serviços ambientais, gerando predições que não são efetivamente satisfatórias. É preciso uma abordagem integrando processos físicos, químicos e biológicos para preencher lacunas concernentes ao entendimento dos processos que ocorrem no solo, com a finalidade de entender a troca existente entre solo, clima e plantas [9].

O estudo do movimento da água no solo sob condições isotérmicas teve início com a contribuição do engenheiro hidráulico Henry Darcy, em 1856. A equação de Darcy descreve a dinâmica da água sob condições de saturação. Mais tarde, em 1907, Buckingham descreveu matematicamente o movimento da água em solos saturados e insaturados. Em 1931, Richards deduziu a equação que leva seu nome, desenvolvendo a teoria geral do movimento da água em solos, fazendo uso das equações da continuidade e a de Darcy-Buckingham [10].

A equação de Richards pode ser vista como uma simplificação da formulação padrão de escoamento de um sistema bifásico água-gás em um meio poroso, onde o gradiente de pressão necessário para direcionar o fluxo da fase gasosa é ignorado, devido à grande diferença de mobilidade entre as fases líquida e gasosa. Apesar da fácil dedução, a equação de Richards é uma equação diferencial parcial parabólica e não-linear. Além disso, a solução depende de dois parâmetros não-lineares: a função de condutividade hidráulica K(h) e o conteúdo de água $\theta(h)$, o que dificulta sua resolução [11].

Pela não-linearidade da equação e dos parâmetros, não é possível obter soluções analíticas, exceto em casos especiais. Portanto, aproximações numéricas são normalmente utilizadas para resolver a equação de Richards. As aproximações aplicadas ao domínio espacial são os métodos das diferenças finitas ou dos elementos finitos. Estes são tradicionalmente acoplados com o método de Euler implícito de passo único. Para qualquer outro método de Euler que não seja o explícito, equações não-lineares são geradas e, então, procedimentos de linearização ou iterativos devem ser usados para resolver as equações discretizadas. Como técnicas iterativas pode-se citar os métodos de Picard, Picard modificado e de Newton-Raphson [12].

Como alternativa para resolução de problemas não-lineares, pode-se citar o método Dual-Time Stepping (DTS), inicialmente aplicado em engenharia aeroespacial, com o objetivo de recuperar soluções transientes. Alguns escoamentos envolvem tanto regimes compressíveis quanto incompressíveis, e em tais situações, abordagens DTS podem ser adotadas [13].

Esta metodologia consiste em adicionar uma derivada no pseudotempo, e, assim, o sistema de equações é linearizado. Em seguida, a equação resultante é resolvida no pseu-

dotempo iterativamente até que se atinja estado estacionário, em cada passo de tempo. Em outras palavras, um sistema de equações não-lineares é artificialmente transformado em uma equação, cuja resolução é dada de forma mais simples. O processo iterativo no pseudotempo deve convergir para que haja acurácia no tempo [14].

Como descrito acima, a não-linearidade da equação de Richards exige a linearização dos sistemas através de métodos iterativos para obtenção de soluções. Portanto, este trabalho tem por objetivo avaliar diferentes esquemas iterativos na predição de soluções numéricas da equação de Richards [12]. Além disso, empregar as metodologias DTS (Dual Time Stepping) como métodos iterativos alternativos na solução da equação de Richards e estudar a sua eficiência, fazendo comparações com os métodos desenvolvidos por [12], através do perfil de carga hidráulica no solo, taxa de convergência e número de iterações.

1.2 Revisão Bibliográfica

O estudo do escoamento em meios porosos teve início em 1856, com as contribuições de Darcy para fluxo de água em meios saturados, sendo sequenciado por Buckingham, buscando descrever o movimento da água em solos não-saturados [10]. Mais tarde, os estudos de Richards contribuiram fortemente para a consolidação da equação que leva seu nome, desenvolvendo a teoria que retrata a dinâmica da água no sistema solo-água-planta [15].

No século passado, estudos experimentais foram realizados com o objetivo de quantificar o conteúdo de água no solo. A câmara de pressão de Richards é um instrumento de laboratório que serve para medir o conteúdo de água em função do potencial mátrico (que pode ser dado em termos de pressão ou da carga hidráulica). Basicamente, amostras de solo, com a menor altura possível, são saturadas com água destilada e, em seguida, colocadas dentro da câmara, aplicando-se uma pressão de ar por um período de 24 horas. Com isto, há o gotejamento de solução até que se atinja uma situação de equilíbrio. Como desvantagens, o alto custo do equipamento e o tempo de espera são citados [10]. Para contornar tais desvantagens, vários modelos empíricos de condutividade hidráulica foram propostos, como os de [16], [17] e [1], que representam analiticamente a umidade do solo, a condutividade hidráulica e o potencial matricial. O presente trabalho faz uso do modelo de [1].

Com o avanço da computação nas últimas décadas, o estudo de [12] contribuiu para os avanços na área de Ciência do Solo, resolvendo a equação de Richards pelos métodos das diferenças finitas e elementos finitos. Tal equação pode ser escrita em 3 formas distintas: h, θ e mista, sendo que esta última apresenta boa conservação de massa em relação às demais. [18] reporta que a não conservação de massa inerente à forma h da equação de Richards está atrelada à função não-linear C(h). O trabalho de [12] é citado por outros autores, como [11], [19], [20], [21], [22], [23] e [24], e será usado como base nesta dissertação.

A equação de Richards depende do conteúdo de água no solo, além da condutividade hidráulica e do potencial mátrico. Tais parâmetros são altamente não-lineares, sendo necessário encontrar relações entre eles para se encontrar uma solução da equação diferencial [12]. O perfil de umidade guarda a relação existente entre a carga hidráulica (ou *pressure head*) e a profundidade do solo em sistemas insaturados, enquanto que curva de condutividade hidráulica relaciona a condutividade hidráulica com a carga hidráulica ou o conteúdo de água [23].

O trabalho de [2] resolve a equação de Richards eficientemente, usando esquemas baseados em elementos finitos (método de Galerkin) no espaço e método de Euler implícito no tempo, linearizando os sistemas de equações discretizadas pelos métodos de Picard, Picard modificado e Newton-Raphson, comparando as soluções e fazendo análises de convergência, propondo também uma metodologias híbridas entre as técnicas, melhorando os resultados obtidos.

Os trabalhos de [12], [25] e [26] resolveram numericamente a forma mista da equação de Richards. Os algoritmos usam aproximações espaciais por diferenças finitas. Os dois últimos autores chamam suas aproximações de método *Quasi-Newton*, enquanto que [12] se referiu à sua técnica como *método iterativo de Picard Modificado*. Ambos demonstraram boa conservação de massa em suas soluções numéricas.

Os trabalhos de [22], [23] e [24] são importantes, pois resolvem a equação de Richards pelo método das diferenças finitas, fazendo discussões sobre estabilidade, eficiência e convergência das soluções em diferentes formas. Uma revisão completa de soluções numéricas da equação de Richards pode ser encontrada em [11].

Por outro lado, na área de engenharia aeroespacial, com o intuito de resolver as equações compressíveis de Navier-Stokes com número de Mach arbitrário (Ma << 0,3), surgiu a necessidade da adição de um outro termo transiente nas equações. Este procedimento é conhecido como passo de tempo duplo ou *Dual Time Stepping* (DTS) [27]. Neste contexto, a metodologia DTS possibilita a combinação de procedimentos de aceleração de convergência para o regime permanente, como o pré-condicionamento, com a predição de soluções transientes. Portanto, em cada etapa do processo de solução no tempo físico, marcha-se para uma solução de regime permanente no pseudotempo, recuperando a solução transiente original [28, 29].

Na década passada, a técnica DTS foi utilizada com o objetivo de adaptar códigos computacionais transientes, a fim de gerar soluções em regime permanente para escoamentos absolutamente e convectivamente instáveis [30]. Este mecanismo é conhecido como método de amortecimento na marcha temporal (*physical-time damping* — PTD) [29, 31]. O método consiste no emprego da técnica de marcha dupla no tempo (DTS) para alterar o esquema temporal de um código transiente pelo método de Euler implícito, empregando suas propriedades dissipativas para amortecer as perturbações e atingir o regime permanente sem afetar a resolução espacial [32, 33]. No entanto, para métodos originalmente implícitos esta alteração não é necessária [29].

Recentemente, [34] propôs esquemas de passo de tempo duplo baseados no método de Runge-Kutta implícito para resolver um problema de escoamento transiente, modelado de forma acoplada pelas equações de Euler e de Navier-Stokes modificada. Para cada tempo implícito, o problema foi tratado como um estado estacionário modificado, e resolvido pela marcha no pseudotempo. Os resultados obtidos estão atrelados à menores custos computacionais, além de serem competitivos com esquemas tradicionais implícitos, com a vantagem adicional de melhorar a precisão no tempo nas simulações. Em adição, [14] resolveram um problema modelado pela equação de difusão-advecção unidimensional através de um esquema DTS modificado, cuja novidade era uma derivada de segunda ordem no pseudotempo. A performance do esquema DTS foi consideravelmente aumentada, melhorando as propriedades de convergência para as soluções em estado estacionário, reduzindo consideravelmente a rigidez do problema, exigindo, para isto, um número de iterações muito menor para convergência quando se compara com técnicas DTS convencionais.

No âmbito de Ciência do Solo, não foram encontrados trabalhos que fazem uso da metodologia de passo de tempo duplo para modelar a infiltração hídrica em meios porosos.

Com isto, é proposta a aplicação da técnica DTS como esquema para a linearização das equações não-lineares de Richards, visando manter o emprego de esquemas implícitos no termo transiente e um esquema explicito no pseudotransiente. Esta adaptação permite a manutenção da estabilidade numérica dos métodos implícitos sem a necessidade de resolver sistemas acoplados.

1.3 Justificativa

Na literatura, existem muitos estudos relacionados à dinâmica da água no solo, envolvendo aproximações por elementos finitos e diferenças finitas, como os de [12], [1], [25] e [26], com a finalidade de descrever o perfil de água no solo em função da profundidade. Devido à complexidade de implementação de esquemas implícitos tradicionais, que envolvem a linearização das equações com métodos iterativos e posterior solução de sistemas lineares acoplados à cada iteração da linearização, é proposto o emprego da metodologia DTS para resolver numericamente a equação não-linear de Richards para diferentes níveis de saturação, com o intuito de manter esquemas implícitos no tempo físico, facilitando a implementação e negligenciando os sistemas lineares acoplados, pois caso contrário os processos iterativos seriam implícitos.

Tais simulações são justificáveis, pois de acordo com [6], diversas culturas de vegetais possuem diferentes necessidades de umidade no solo, como, por exemplo, couve e pepino, nas faixas de -60 a -70 e -100 a -300 kPa, respectivamente. Desta forma, as soluções, que representam o conteúdo de água em diferentes profundidades de uma coluna de solo, após certo tempo de infiltração, e em diferentes níveis de saturação, podem auxiliar os sistemas de irrigação no que se refere à otimização do uso da água na agricultura.

Portanto, o conteúdo desta dissertação irá contribuir para os estudos em Ciência do Solo, no sentido de apresentar uma metodologia nova para descrever matematicamente a infiltração hídrica em meios porosos, problema relevante nos dias atuais, além de, futuramente, propor melhorias para os resultados obtidos.

1.4 Objetivos

Resolver a equação de Richards, que descreve o movimento da água em solos nãosaturados (caso unidimensional), usando dados de [1] reportados por [12], considerando diferentes condições iniciais de umidade, ou seja, diferentes níveis de saturação, através dos esquemas iterativos clássicos, como os métodos de Picard, Picard modificado e Newton-Raphson, além dos esquemas DTS.

1.4.1 Objetivos específicos

 Avaliar esquemas iterativos aplicados às equações discretas não-lineares, associadas à equação de Richards nas formas h e mista, baseados em diferenças finitas como aproximação espacial, e os métodos de Euler implícito e Crank-Nicolson como aproximação temporal. Para linearização dos sistemas de equações discretizadas implícitas, foram adotados os métodos de Picard, Picard Modificado e Newton-Raphson, enquanto que os métodos de Euler explícito e de Runge-Kutta de 4^{a} ordem são adotados para linearizar as equações discretizadas explícitas através da metodologia Dual-Time Stepping (DTS);

 Realização de estudo paramétrico extenso do processo de umidificação do solo, através de análises numéricas comparativas envolvendo diferentes níveis de saturação, variações nos passos de tempo físico e na malha espacial para os diferentes métodos, abordando análises do número de iterações em função dos tempos físicos, comportamento do decaimento do erro para os primeiros passos de tempo físico e o total de iterações para o processo de convergência;

CAPÍTULO II O PROCESSO DE INFILTRAÇÃO HÍDRICA

2.1 O Solo e Suas Características

[10] define o solo como um material sólido e poroso, cuja parte sólida consiste principalmente de partículas minerais e de substâncias orgânicas de diferentes formas e tamanhos, chamada de matriz do solo, além de uma parte porosa, que consiste em poros interconectados, que é a parte não ocupada pela matriz. Os poros do solo abrigam em seu interior uma solução aquosa chamada água ou solução no solo, que possui vários eletrólitos, como Na^+ , K^+ , Ca^{+2} , Mg^{+2} , Cl^- , NO_3^- , SO_4^{-2} , etc, além de uma solução gasosa, composta por N_2 , O_2 , H_2O , CO_2 e outros gases.

A formação do solo está relacionada à combinação de fatores físicos, químicos, biológicos e antropogênicos que agem desde os tempos remotos. Atividades humanas, muitas vezes relacionadas à agricultura, contribuem fortemente para a formação do solo a curto prazo, causando agregação, compactação, lixiviação, migração, salinização e mudanças no estoque de carbono [9].

Um solo dito saturado é aquele em que o espaço poroso esteja totalmente cheio de água. Caso a água seja drenada, há a entrada de ar para substituí-la no espaço poroso, e o solo em tal situação é chamado de não-saturado. O autor define solo não-saturado como aquele cujo espaço poroso é parcialmente preenchido com água e ar [35].

Figura 1: Retenção da água por agregados do solo. Fonte: [10]

Quando ocorre infiltração em um solo, há a retenção de água, e tal processo ocorre devido a dois fatores: retenção nos microporos (associada às forças capilares) e na superfície dos sólidos (devido às forças de adsorção, as quais estão relacionadas à campos elétricos e interações intermoleculares de London —- Van der Waals). A ação conjunta destas duas forças na matriz do solo é chamada de forças mátricas, que originam o potencial mátrico [10]. Um perfil de solo é uma seção vertical de solo, com camadas aproximadamente paralelas à superfície de um terreno, as quais são chamadas horizontes, que podem variar em termos de cor, espessura, tipo de estrutura, etc. [36].

2.2 Conteúdo de Água no Solo

Segundo [38], o conteúdo de água é uma medida da quantidade de água no solo. E definida como a fração que diz quanto do volume de uma amostra de solo corresponde a volume de água, a saber,

$$\theta = \frac{V_a}{V},\tag{1}$$

onde V é o volume de uma amostra de solo e V_a é o volume ocupado pela água (solução do solo) na amostra. Em adição, este parâmetro é adimensional $\left(\frac{m^3}{m^3}\right)$.

Pode-se considerar situações extremas, que podem ser o teor de água retido em um solo seco, θ_r , e o teor de água na saturação, θ_s .

2.3 Potenciais da Água no Solo

Para o entendimento do movimento da água no solo, é preciso conhecer seu estado de energia [37]. A água no solo pode apresentar diferentes formas de energia, podendo ser classificada em duas formas principais: cinética (considerada desprezível, já que a velocidade de escoamento da água é baixa, e a energia cinética é proporcional ao quadrado da velocidade) e potencial (devido à posição ou condição interna, sendo esta determinante no estado de energia da água no solo). A água tende a se movimentar no sentido de maior potencial para o de menor potencial [38].

Os principais fatores que alteram o potencial total da água (ψ_t) são os potenciais térmico $(\psi_T = \psi(T))$; piezométrico $(\psi_P = \psi(P))$, relacionado à diferença de pressão atuantes entre um ponto e a referência, não sendo levado em conta para solos não-saturados; osmótico $(\psi_n = \psi(n))$, associado à concentração de solução no solo e ação de membranas semipermeáveis; gravitacional $(\psi_g = \psi(z))$, inerente à ação do campo gravitacional; e matricial $(\psi_m = \psi(\theta))$, relacionado à interação entre a matriz do solo e a água retida neste [38]. Logo,

$$\psi_t(T, P, n, z, \theta) = \psi_T + \psi_P + \psi_n + \psi_q + \psi_m, \tag{2}$$

onde T é a temperatura, P é a pressão, n é o número de moles de água, z é a altura e θ é a umidade. Considerando situação isotérmica, baixa concentração de solução e ausência de membranas semipermeáveis, ausência de coluna de água exercendo pressão sobre um ponto a ser avaliado (solo não-saturado), tem-se que ψ_T , ψ_n e ψ_P são, respectivamente, iguais a zero. Portanto, de acordo com [10],

$$\psi_t = \psi_g + \psi_m. \tag{3}$$

2.4 Carga Hidráulica

A carga hidráulica [m] é a energia potencial [Nm] por unidade de peso [N] [10]. Portanto, o potencial total da água pode ser descrito como *carga hidráulica total* h_t , e segue que

$$h_t = \frac{\psi_t}{P} = \frac{\psi_t}{mg} = \frac{\psi_g}{mg} + \frac{\psi_m}{mg} = h_g + h_m.$$

$$\tag{4}$$

Sua unidade de medida não deve ser vista como altura, mas como metros (ou centímetros) de coluna d'água [38]. A carga hidráulica também pode ser chamada de pressão negativa ou capilar [35].

2.5 Infiltração e Perfis de Umidade

Para [10], infiltração é um processo descrito pela entrada de água através da superfície do solo, e acontecendo tanto vertical quanto horizontalmente, de acordo com o tipo de solo. A taxa de infiltração é relacionada à quantidade de água que atravessa a área de superfície do solo por unidade de tempo. Para um perfil de solo homogêneo seco, conforme o tempo passa, a taxa de infiltração diminui, chegando em um valor constante.

O perfil de conteúdo de água (ou perfil de umidade) durante o processo de infiltração é um gráfico do conteúdo de água no solo θ ou da carga hidráulica h em função da profundidade z. Portanto, a distribuição da água em uma coluna de solo uniforme, com uma carga hidráulica constante no topo é representada pelo gráfico da Figura 2, que possui regiões ou zonas distintas [35]:

Figura 2: Perfil de conteúdo de água durante a infiltração. Fonte: [10]

Primeiramente, a zona de saturação é zona onde o solo está completamente saturado. Mais abaixo está a zona de transição, em que há uma rápida diminuição da umidade; Em contrapartida, a umidade varia muito pouco na zona de transmissão, e tal região tende a ser variável, aumentando ao longo do processo de infiltração enquanto houver umidade na superfície. Já na zona de umedecimento, ocorre uma rápida variação no conteúdo de água, enquanto que na frente de molhamento há uma variação brusca na umidade, representando o limite visível de penetração de água no solo [35].

2.6 Condutividade Hidráulica

A condutividade hidráulica K é o volume de fluido que atravessa, por unidade de tempo, 1 unidade de área de solo sob um gradiente de potencial total de 1 unidade de força/volume, o que quer dizer que esta grandeza expressa a facilidade com que a água é transportada através de um meio poroso, dependendo de propriedades do meio, como distribuição de tamanho e forma das partículas, porosidade, etc. [9].

2.7 Curvas de Retenção e Capacidade de Umidade Específica

Segundo [38], a relação existente entre o teor de água no solo θ e o potencial matricial θ_m é chamada **curva de retenção** de água no solo. A mesma é típica para cada tipo de solo e é empregada na modelagem de água no solo, sendo avaliada medindo o potencial mátrico ψ_m para vários valores de teor de água θ .

Para a resolução da Equação de Richards é preciso encontrar as funções constitutivas hidráulicas dos solos, que são as curvas de retenção da água θ e a função condutividade hidráulica K, sendo esta última uma relação entre o potencial matricial e permeabilidade do solo. Para fluxo não-saturado em solos, tanto o teor de água θ quanto a condutividade hidráulica K são funções do potencial mátrico, ou seja, $\theta = \theta(\psi_m)$ e $K = K(\psi_m)$. Como o teor de água θ é dependente do potencial mátrico ψ_m , então a capacidade hidráulica Ktambém é função do teor de água θ [10, 12].

A equação de Richards também detém o termo C, chamado de **capacidade de umi**dade específica, definida na curva de retenção como

$$C(\psi_m) = \frac{\partial \theta}{\partial \psi_m},\tag{5}$$

que nos diz como varia o teor de água do solo devido à mudanças no potencial mátrico.

2.8 Gradiente de Umidade

Considerando-se uma infiltração hídrica hipotética em uma coluna de solo seco, com umidade inicial (ou nível de saturação) h_0 e condição no topo h_t , a Figura 3 mostra a descontinuidade entre a condição inicial e de contorno imediatamente antes da água penetrar no solo.

Com a finalidade de gerar uma solução numérica para o problema em questão, é necessário definir o domínio discreto que será trabalhado. Para tal, uma discretização é requerida, que consiste basicamente em dividir o domínio espacial contínuo em pontos (ou

Figura 3: Descontinuidade entre condição inicial e de contorno

nós). A solução será aproximada em cada ponto da malha. Quanto mais pontos forem utilizados, a solução será mais precisa, contudo os custos computacionais irão aumentar. Portanto, levando-se em conta uma malha hipotética contendo uma quantidade de pontos N_p para a coluna de solo, o gradiente de umidade no início da infiltração é o segmento de reta representado pela cor verde, indicado na Figura 4.

Figura 4: Gradiente de umidade no início da infiltração

Conforme N_p aumenta, o gradiente de umidade no início da infiltração se torna mais íngreme, de acordo com a Figura 5.

Figura 5: Gradiente de umidade com mais pontos na malha

Fica claro pela Figura 6 que se as condições anteriores forem mantidas e o solo tenha um nível de saturação h_0 menor (solo mais seco), o gradiente de umidade no início da infiltração se torna mais íngreme ainda.

Figura 6: Gradiente de umidade para solo mais seco

De fato, segundo [11], a infiltração em solos secos muitas vezes leva à frentes de umedecimento que resultam em grandes gradientes de umidade, o que dificultam o projeto e a análise de esquemas numéricos para a equação de Richards.

2.9 Lei de Darcy

Em 1856, Henry Darcy desenvolveu a primeira equação para descrever o movimento da água no solo. O experimento envolveu a infiltração vertical de água em colunas de areia sob condições de saturação. A equação que leva seu nome estabelece que, a partir do momento em que a vazão Q não variava mais com o tempo, a vazão Q que atravessa a coluna por unidade de tempo é proporcional à área seção transversal A, proporcional à diferença entre as cargas piezométricas que atuam nas extremidades da coluna, e inversamente proporcional ao comprimento L da coluna. Logo, segundo [10],

$$Q \propto \frac{A(h_1 - h_2)}{L}.$$
(6)

Transformando a relação 6 em uma igualdade inserindo a constante de proporcionalidade K, tem-se a Lei de Darcy, a saber

$$Q = KA \frac{h_1 - h_2}{L}.$$
(7)

A constante de proporcionalidade é a condutividade hidráulica K, devido ao fato de o fluido utilizado no experimento ter sido a água, e a mesma se traduz na rapidez com que determinado líquido atravessa um determinado meio. Tal equação pode ser generalizada em termos dos potenciais da solução. Em relação à Figura 7, as cargas piezométricas $h_1 e h_2$ são equivalentes aos potenciais totais da solução $\psi_{t_1} e \psi_{t_2}$ no topo e no fundo da coluna, respectivamente. Em adição, sob condições de saturação, vale $\psi_t = \psi_p + \psi_g$. Logo,

(8)

Figura 7: Arranjo experimental de Darcy. Fonte: [10]

Segundo [10], a expressão 8 pode ser interpretada como o gradiente do potencial total da solução na direção vertical. No limite em que $\Delta z \rightarrow 0$ e considerando seu caráter vetorial, a mesma pode ser escrita como $\frac{\partial \psi_t}{\partial z}\hat{k}$, sendo esta a força que atua no fluido, fazendo-o mover.

Também, dividindo ambos os membros da Lei de Darcy pela área de seção transversal A, define-se o vetor $\overrightarrow{q_z}$ de módulo Q/A como **densidade de fluxo**. Em adição, considera-se que o meio seja **isotrópico** em relação a K, o que quer dizer que a condutividade hidráulica não depende da direção dentro do meio. Pontua-se também que os vetores $\overrightarrow{q_z}$ e $\frac{\partial \psi_t}{\partial z} \hat{k}$ possuem módulo e direção iguais, porém sentidos opostos. Portanto, a Lei de Darcy pode ser escrita como

$$\overrightarrow{q_z} = -K \frac{\partial \psi_t}{\partial z} \hat{k}.$$
(9)

Para o caso em que todas as direções precisem ser consideradas,

$$\overrightarrow{q} = -K\overrightarrow{\nabla}\psi_t.$$
(10)

2.10 Equação de Darcy-Buckingham

A lei de Darcy é aplicada somente para meios saturados. Em 1907, Buckingham trabalhou em cima da lei de Darcy, com a finalidade de descrever o movimento da água em

meios onde os poros não estejam sempre saturados. As considerações anteriores continuam válidas, porém agora o meio é isotrópico em relação a $K(\theta)$ e

$$\overrightarrow{q} = -K(\theta) \overrightarrow{\nabla} \psi_t, \tag{11}$$

sendo esta a equação de Darcy-Buckingham. Na verdade, a lei de Darcy é um caso particular da equação de Darcy-Buckingham, já que sob condições de saturação, $\theta = \theta_s$ (conteúdo de água de saturação) e $K(\theta_s) = K_s$ (condutividade hidráulica para solo saturado) [10].

2.11 Equação da Continuidade

De acordo com [10], a equação de Darcy-Buckingham é aplicada em estado estacionário, isto é, uma situação cujas grandezas não variam com o tempo. A grande maioria dos fenômenos que ocorrem na natureza são transientes (que variam com o tempo). Portanto, para descrever tais situações, é necessária a Equação da continuidade, que diz que a massa não pode ser criada e nem destruída, respeitando o conceito de **conservação de massa**.

Um balanço de massa transiente pode ser feito de acordo com a Figura 8:

Figura 8: Balanço de massa geral. Fonte: Autor

Supondo que não haja reação química (ou seja, no problema não há geração ou consumo de massa), então o balanço de massa transiente em questão pode ser simplificado segundo o esquema da Figura 9:

Figura 9: Balanço de massa sem geração ou consumo. Fonte: Autor

A Figura 10 esquematiza um elemento de solo infinitesimal retangular de volume $dV = \Delta x \Delta y \Delta z$ constante, por onde atravessa entre suas paredes um fluxo de água em todas as direções x, y e z:

Figura 10: Balanço de massa num elemento com V constante. Fonte: [37], adaptado

Dimensionalmente, fluxo = vazão/área e vazão = volume/tempo. Aplicando um balanço de massa no esquema da Figura 10:

$$q_x(x)\Delta y\Delta z + q_y(y)\Delta x\Delta z + q_z(z)\Delta x\Delta y - q_x(x+\Delta x)\Delta y\Delta z - q_y(y+\Delta y)\Delta x\Delta z - q_z(z+\Delta z)\Delta x\Delta y = \frac{\partial V_{sol}}{\partial t}$$

onde $\frac{\partial V_{sol}}{\partial t}$ é o acúmulo de água neste elemento infinitesimal de solo. Rearranjando:

$$\begin{aligned} q_x(x)\Delta y\Delta z - q_x(x+\Delta x)\Delta y\Delta z + q_y(y)\Delta x\Delta z - q_y(y+\Delta y)\Delta x\Delta z + q_z(z)\Delta x\Delta y - q_z(z+\Delta z)\Delta x\Delta y &= \frac{\partial V_{sol}}{\partial t} \end{aligned}$$

Considerando $\theta = \frac{V_{sol}}{dV} = \frac{V_{sol}}{\Delta x \Delta y \Delta z}$, então

$$q_x(x)\Delta y\Delta z - q_x(x+\Delta x)\Delta y\Delta z + q_y(y)\Delta x\Delta z - q_y(y+\Delta y)\Delta x\Delta z + q_z(z)\Delta x\Delta y - q_z(z+\Delta z)\Delta x\Delta y = \frac{\partial\theta\Delta x\Delta y\Delta z}{\partial t} = \Delta x\Delta y\Delta z\frac{\partial\theta}{\partial t}$$

Dividindo ambos os membros da última igualdade pelo volume de solo infinitesimal $\Delta x \Delta y \Delta z$ e tomando o limite quando $\Delta x, \Delta y, \Delta z \rightarrow 0$:

$$\lim_{(\Delta x, \Delta y, \Delta z) \to 0} \left[\frac{q_x(x) - q_x(x + \Delta x)}{\Delta x} \right] + \lim_{(\Delta x, \Delta y, \Delta z) \to 0} \left[\frac{q_y(y) - q_y(y + \Delta y)}{\Delta y} \right] +$$

$$\lim_{(\Delta x, \Delta y, \Delta z) \to 0} \left[\frac{q_z(z) - q_z(z + \Delta z)}{\Delta z} \right] = \lim_{(\Delta x, \Delta y, \Delta z) \to 0} \frac{\Delta x \Delta y \Delta z}{\Delta x \Delta y \Delta z} \frac{\partial \theta}{\partial t}$$

Rearranjando,

$$-\lim_{(\Delta x,\Delta y,\Delta z)\to 0} \left[\frac{q_x(x+\Delta x)-q_x(x)}{\Delta x}\right] - \lim_{(\Delta x,\Delta y,\Delta z)\to 0} \left[\frac{q_y(y+\Delta y)-q_y(y)}{\Delta y}\right] -$$

$$\lim_{(\Delta x, \Delta y, \Delta z) \to 0} \left[\frac{q_z(z + \Delta z) - q_z(z)}{\Delta z} \right] = \lim_{(\Delta x, \Delta y, \Delta z) \to 0} \frac{\Delta x \Delta y \Delta z}{\Delta x \Delta y \Delta z} \frac{\partial \theta}{\partial t}$$

Como $\overrightarrow{q} = \overrightarrow{q}(x, y, z)$ e considerando a definição de derivadas parciais, então

$$-\left(\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + \frac{\partial q_z}{\partial z}\right) = \frac{\partial \theta}{\partial t},$$

que na forma compacta se reduz a

$$\frac{\partial \theta}{\partial t} = -\overrightarrow{\nabla}.\overrightarrow{q}.$$
(12)

A equação 12 é a **equação da continuidade** na forma diferencial, e a mesma pode ser traduzida como: "a variação no teor de água num certo intervalo de tempo, em um determinado comprimento de solo, pode ser determinada pela diferença entre a densidade de fluxo da solução que entra em uma das extremidades deste comprimento e a densidade de fluxo da solução que abandona a outra extremidade no intervalo de tempo considerado." [10].

CAPÍTULO III METODOLOGIA

A investigação realizada nesta dissertação tem caráter comparativo. Foram geradas as soluções da equação unidimensional de Richards nas formas h e mista para diferentes esquemas numéricos iterativos. O método das diferenças finitas foi aplicado como aproximação espacial, usando diferenças divididas centradas, e como aproximação temporal foram usados os métodos de Euler implícito ou Crank-Nicolson. No processo de linearização das equações discretas nao-lineares de Richards foram empregados os métodos iterativos de Picard e Picard modificado descritos em [12], além do método tradicional de Newton-Raphson e o esquema de marcha dupla no tempo (DTS). O termo pseudotransiente obtido através dos esquemas DTS será aproximado com os métodos explícitos de Euler e Runge-Kutta de 4^a ordem.

Cada subseção discrimina o método abordado para aproximação no tempo físico e a técnica de linearização, respectivamente. Com exceção do esquema baseado no método de Picard modificado (que é aplicado à forma *mista* da equação de Richards), todos os outros esquemas são aplicados à forma h.

Em relação aos esquemas DTS, a linearização das equações são feitas nas aproximações no pseudotempo, sendo desenvolvidas quatro implementações diferentes, aplicando-se os métodos de Euler explícito ou Runge Kutta de 4^a ordem no pseudotempo, e os métodos de Euler implícito ou Crank-Nicolson no tempo físico.

Os códigos foram desenvolvidos e implementados pelo autor desta dissertação, em linguagem FORTRAN, sem a utilização de pacotes.

Este capítulo contém os modelos matemáticos trabalhados, além do modelo de condutividade hidráulica adotado e os esquemas numéricos discretos.

3.1 Modelo Matemático

3.1.1 Equação de Richards

Como foi visto nas seções anteriores, o potencial total da água ψ_t pode ser escrito como

$$\psi_t = \psi_g + \psi_m \tag{13}$$

A Equação de Darcy-Buckingham pode ser reescrita em termos dos potenciais acima:

$$\overrightarrow{q} = -K(\theta) \overrightarrow{\nabla} \psi_t = -K(\theta) \overrightarrow{\nabla} (\psi_g + \psi_m)$$
(14)

Considerando o caso unidimensional (direção vertical):

$$\overrightarrow{q_z} = -K(\theta)\frac{\partial}{\partial z}\left(\psi_g + \psi_m\right)\hat{k} = -\left[K(\theta)\frac{\partial\psi_m}{\partial z} + K(\theta)\frac{\partial\psi_g}{\partial z}\right]\hat{k}$$
(15)

Como o potencial mátrico ψ_m é uma função do teor de água θ (curva de retenção de água no solo) e $\theta = \theta(z, t)$, segue que, pela regra da cadeia:

$$\overrightarrow{q_z} = -\left[K(\theta)\frac{\partial\psi_m}{\partial\theta}\frac{\partial\theta}{\partial z} + K(\theta)\frac{\partial\psi_g}{\partial z}\right]\hat{k}$$
(16)

De acordo com [10], o produto $K(\theta) \frac{\partial \psi_m}{\partial \theta}$ é chamado de coeficiente de difusão ou simplesmente **difusividade** da solução no solo $D(\theta)$. Logo,

$$\overrightarrow{q_z} = -\left[D(\theta)\frac{\partial\theta}{\partial z} + K(\theta)\frac{\partial\psi_g}{\partial z}\right]\hat{k}$$
(17)

Expressando o potencial gravitacional ψ_g em termos de energia por peso, segue que $\frac{\partial \psi_g}{\partial z} = 1$, uma vez que $\frac{\psi_g}{P} = \frac{mgz}{mg} = z$. Então

$$\overrightarrow{q_z} = -\left[D(\theta)\frac{\partial\theta}{\partial z} + K(\theta)\right]\hat{k}.$$
(18)

Para o caso multidimensional:

$$\overrightarrow{q} = -\left[D(\theta)\overrightarrow{\nabla}\theta + K(\theta)\hat{k}\right],\tag{19}$$

onde $\frac{\partial \psi_g}{\partial x} = \frac{\partial \psi_g}{\partial y} = 0.$

A Equação de Darcy-Buckingham também pode ser escrita em termos da carga hidráulica total:

$$\overrightarrow{q} = -K(h_m)\overrightarrow{\nabla}h_t = -K(h_m)\overrightarrow{\nabla}(h_m + h_g)$$
(20)

Para o caso unidimensional:

$$\overrightarrow{q_z} = -K(h_m)\frac{\partial}{\partial z} \left(h_m + h_g\right)\hat{k} = -K(h_m)\left(\frac{\partial h_m}{\partial z} + \frac{\partial h_g}{\partial z}\right)\hat{k}$$
$$\overrightarrow{q_z} = -K(h_m)\left(\frac{\partial h_m}{\partial z} + 1\right)\hat{k}$$
(21)

A equação de Richards pode ser obtida substituindo-se a equação de Darcy-Buckingham na equação da continuidade. Existem três tipos distintos da equação de Richards. Considerando caso unidimensional, com eixo z orientado para cima:

a) Forma mista

Substituindo (21) em (12):

$$\frac{\partial\theta}{\partial t} = -\overrightarrow{\nabla} \cdot \left[-K(h_m) \left(\frac{\partial h_m}{\partial z} + 1 \right) \hat{k} \right] = \frac{\partial}{\partial z} \left[K(h_m) \left(\frac{\partial h_m}{\partial z} + 1 \right) \right]$$
$$\frac{\partial\theta}{\partial t} = \frac{\partial}{\partial z} \left[K(h_m) \frac{\partial h_m}{\partial z} + K(h_m) \right]$$
(22)

Vetorialmente,

$$\frac{\partial \theta}{\partial t} = \overrightarrow{\nabla} \cdot \left[K(h_m) \overrightarrow{\nabla} h_m \right] + \frac{\partial K(h_m)}{\partial z}$$

Reescrevendo:

$$\frac{\partial \theta}{\partial t} - \overrightarrow{\nabla} \cdot \left[K(h_m) \overrightarrow{\nabla} h_m \right] - \frac{\partial K(h_m)}{\partial z} = 0$$

$$h_m(L,t) = h_t \quad \text{e} \quad h_m(0,t) = h_f$$

$$h_m(z,0) = h_0$$
(23)

A equação 23 é a forma mista da equação de Richards, onde z [L] é a coordenada vertical, positiva para cima , t [T] é o tempo , $h_m [L]$ é a carga hidráulica, $K(h_m) [LT^{-1}]$ é a função de condutividade hidráulica, $\theta [L^3L^{-3}]$ é a umidade, h_0 é a condição inicial de umidade do solo, $h_t \in h_f$ são as condições de contorno no topo e no fundo da coluna de solo. A equação na forma mista gera perfis de umidade com a mesma relação entre carga hidráulica h_m e profundidade z.

b) Forma h

Segundo [10], o teor de água θ depende da carga hidráulica mátrica h_m e $h_m = h_m(z, t)$. Dessa forma,

$$\frac{\partial\theta}{\partial t} = \frac{\partial\theta}{\partial h_m} \frac{\partial h_m}{\partial t} \tag{24}$$

É sabido que

$$C(\psi_m) = \frac{\partial \theta}{\partial \psi_m}.$$
(25)

Em termos de carga hidráulica mátrica,

$$C(h_m) = \frac{\partial \theta}{\partial h_m}.$$
(26)

Substituindo (26) em (24) e levando a expressão resultante de $\frac{\partial \theta}{\partial t}$ em (23):

$$C(h_m)\frac{\partial h_m}{\partial t} - \overrightarrow{\nabla} \cdot \left[K(h_m)\overrightarrow{\nabla} h_m \right] - \frac{\partial K(h_m)}{\partial z} = 0$$

$$h_m(L,t) = h_t \quad \text{e} \quad h_m(0,t) = h_f$$

$$h_m(z,0) = h_0$$

$$(27)$$

A equação 27 é a equação de Richards na forma h_m , onde z [L] é a coordenada vertical, positiva para cima , t [T] é o tempo , $h_m [L]$ é a carga hidráulica, $C(h_m) = \partial \theta / \partial h_m [L^{-1}]$ é a função de capacidade de mistura específica, $K(h_m) [LT^{-1}]$ é a função de condutividade hidráulica, $\theta [L^3L^{-3}]$ é a umidade, h_0 é a condição inicial de umidade do solo, $h_t \in h_f$ são as condições de contorno no topo e no fundo da coluna de solo.

c) Forma θ

A forma- θ da equação de Richards apresenta o termo de difusividade $D(\theta)$, vindo da equação de Darcy-Buckingham. Substituindo (19) em (12):

$$\frac{\partial \theta}{\partial t} = -\overrightarrow{\nabla} \cdot \left\{ -\left[D(\theta) \overrightarrow{\nabla} \theta + K(\theta) \hat{k} \right] \right\}$$

$$\frac{\partial \theta}{\partial t} = \overrightarrow{\nabla} . D(\theta) \overrightarrow{\nabla} \theta + \frac{\partial K(\theta)}{\partial z}$$

Rearranjando,

$$\frac{\partial\theta}{\partial t} - \overrightarrow{\nabla} . D(\theta) \overrightarrow{\nabla}\theta - \frac{\partial K(\theta)}{\partial z} = 0$$
(28)

A equação 28 é a equação de Richards na forma θ .

Nesta dissertação serão usadas as formas $h \in mista$. Também, a partir daqui, h_m será considerado simplesmente como h.

3.1.2 Modelo de condutividade hidráulica

As duas funções constitutivas que aparecem na equação de Richards, $\theta(\psi_m)$ e $K(\psi_m)$ são necessárias para a resolução da equação. Segundo [12], os métodos disponíveis para determinação empírica da capacidade hidráulica K em solos não-saturados demandam tempo e são caros, além de serem aplicadas hipóteses simplificadoras. Como alternativa, existem modelos disponíveis na literatura, como o de [1], que descreve a relação existente entre θ e K como funções da carga hidráulica h, e que será usado neste trabalho:

$$\theta(h) = \frac{\alpha \left(\theta_s - \theta_r\right)}{\alpha + |h|^{\beta}} + \theta_r \tag{29}$$

е

$$K(h) = K_s \frac{A}{A + |h|^{\gamma}},\tag{30}$$

onde α , β , γ e A são constantes empíricas e K_s é a condutividade hidráulica do solo saturado.

3.2 Métodos Numéricos

Segundo [11] e [12], a Equação de Richards é uma equação diferencial parcial nãolinear parabólica bastante complexa, de forma que uma solução analítica não é possível de ser obtida, já que seus parâmetros também são não-lineares. Portanto, são necessárias aproximações numéricas para descrever o teor de água para diferentes profundidades.

Equações diferenciais parciais parabólicas podem ser resolvidas substituindo-se as derivadas por diferenças divididas finitas, considerando variações no espaço e no tempo. O domínio deve ser discretizado convenientemente, e deve ser escolhida a abordagem de solução: forma explícita ou implícita [39].

O domínio (caso unidimensional) é representado de forma particionada, onde a solução é avaliada de forma pontual. Cada ponto desse domínio é chamado nó, e a distância entre eles será Δz . Esse conjunto discreto de nós é chamado de malha.

Figura 11: Discretização espacial do domínio

O espaçamento Δz pode ser calculado através da fórmula

$$\Delta z = \frac{b-a}{N_p - 1} = \frac{L}{N_p - 1},$$
(31)

onde N_p é o número de nós na malha e L = b - a é o comprimento da coluna de solo.

3.2.1 Esquemas tradicionais

3.2.1.1 Euler implícito — Picard

De acordo com o esquema proposto por [12], aplicando o método de Euler implícito como aproximação temporal em (27), segue que

$$C^{n+1}\frac{H^{n+1} - H^n}{\Delta t} - \nabla K^{n+1}\nabla H^{n+1} - \frac{\partial K^{n+1}}{\partial z} = 0.$$
 (32)

O método iterativo de Picard envolve estimativas sequenciais da variável desconhecida H^{n+1} usando a última estimativa de C^{n+1} e K^{n+1} . Se m é o nível de iteração, então o esquema de Picard pode ser escrito como

$$C^{n+1,m} \frac{H^{n+1,m+1} - H^n}{\Delta t} - \nabla K^{n+1,m} \nabla H^{n+1,m+1} - \frac{\partial K^{n+1,m}}{\partial z} = 0,$$
(33)

onde H^n denota o valor aproximado de h no n-esimo nível de discretização de tempo $(t = t^n), \Delta t = t^{n+1} - t^n$ é o passo de tempo, e C^{n+1} e K^{n+1} denotam a capacidade específica de mistura e a condutividade hidráulica avaliadas usando H^{n+1} , respectivamente, e a solução é admitida conhecida no nível de tempo n e desconhecida no nível de tempo n + 1.

Reescrevendo a equação (33), vem

$$C^{n+1,m} \frac{H^{n+1,m+1}}{\Delta t} - C^{n+1,m} \frac{H^n}{\Delta t} - \nabla K^{n+1,m} \nabla H^{n+1,m+1} - \frac{\partial K^{n+1,m}}{\partial z} = 0.$$
(34)

Somando e subtraindo o termo $C^{n+1,m}\frac{H^{n+1,m}}{\Delta t}$ no primeiro membro,

$$C^{n+1,m} \frac{H^{n+1,m+1}}{\Delta t} - C^{n+1,m} \frac{H^n}{\Delta t} - C^{n+1,m} \frac{H^{n+1,m}}{\Delta t} + C^{n+1,m} \frac{H^{n+1,m}}{\Delta t} - \nabla K^{n+1,m} \nabla H^{n+1,m+1} - \frac{\partial K^{n+1,m}}{\partial z} = 0.$$
 (35)

Agrupando o primeiro e terceiro termos, e passando o segundo e quarto termos para o segundo membro, fatorando quando conveniente, segue que

$$C^{n+1,m} \frac{H^{n+1,m+1} - H^{n+1,m}}{\Delta t} - \nabla K^{n+1,m} \nabla H^{n+1,m+1} - \frac{\partial K^{n+1,m}}{\partial z}$$
$$= -C^{n+1,m} \frac{H^{n+1,m} - H^n}{\Delta t}.$$
(36)

Somando e subtraindo o termo $\nabla.K^{n+1,m}\nabla H^{n+1,m}$ no primeiro membro, a equação 36 fica

$$C^{n+1,m} \frac{H^{n+1,m+1} - H^{n+1,m}}{\Delta t} + \nabla .K^{n+1,m} \nabla H^{n+1,m} - \nabla .K^{n+1,m} \nabla H^{n+1,m}$$
$$-\nabla K^{n+1,m} \nabla H^{n+1,m+1} - \frac{\partial K^{n+1,m}}{\partial z} = -C^{n+1,m} \frac{H^{n+1,m} - H^n}{\Delta t}.$$
 (37)

Agrupando o segundo e quarto termos, e passando o terceiro termo para o segundo membro, levando em conta propriedades do operador divergente, finalmente

$$C^{n+1,m} \frac{H^{n+1,m+1} - H^{n+1,m}}{\Delta t} - \nabla K^{n+1,m} \nabla \left(H^{n+1,m+1} - H^{n+1,m} \right) - \frac{\partial K^{n+1,m}}{\partial z}$$
$$= -C^{n+1,m} \frac{H^{n+1,m} - H^n}{\Delta t} + \nabla K^{n+1,m} \nabla H^{n+1,m} = R_P^{n+1,m}, \tag{38}$$

onde, de acordo com [12], o lado direito representa uma medida do quanto as equações discretizadas não satisfazem a *m*-ésima estimativa de $H^{n+1,m}$, e, desta forma, $R_P^{n+1,m}$ representa o resíduo associado ao método de Picard. Em termos de convergência, conforme acontecem as iterações, tanto R_P quanto a diferença $H^{n+1,m+1} - H^{n+1,m}$ se aproximam de zero.

Em termos de discretização, retornando em (33) e reescrevendo a equação, segue que

$$C^{n+1,m}\frac{H^{n+1,m+1} - H^n}{\Delta t} = \frac{\partial}{\partial z} \left[K^{n+1,m} \left(\frac{\partial H^{n+1,m+1}}{\partial z} + 1 \right) \right]$$
(39)

Fazendo $w = K^{n+1,m} \left(\frac{\partial H^{n+1,m+1}}{\partial z} + 1 \right)$, é possível aproximar $\frac{\partial w}{\partial z}$ por diferenças divididas centradas, considerando nós intermediários entre $z_{i-1}, z_i \in z_{i+1}$, ou seja, $z_{i-\frac{1}{2}} \in z_{i+\frac{1}{2}}$, truncando o erro cometido.

Figura 12: Discretização espacial do domínio com nós intermediários

Portanto,

$$\left. \frac{\partial w}{\partial z} \right|_i \approx \frac{w|_{i+\frac{1}{2}} - w|_{i-\frac{1}{2}}}{2\left(\frac{\Delta z}{2}\right)} \approx \frac{w|_{i+\frac{1}{2}} - w|_{i-\frac{1}{2}}}{\Delta z}.$$
(40)

Então,

$$w|_{i+\frac{1}{2}} \approx K^{n+1,m} \left(\frac{\partial H^{n+1,m+1}}{\partial z} + 1 \right) \Big|_{i+\frac{1}{2}}$$
$$w|_{i+\frac{1}{2}} \approx K^{n+1,m}_{i+\frac{1}{2}} \frac{H^{n+1,m+1}_{i+1} - H^{n+1,m+1}_{i}}{\Delta z} + K^{n+1,m}_{i+\frac{1}{2}}$$
(41)

Também,

$$w|_{i-\frac{1}{2}} \approx K^{n+1,m} \left(\frac{\partial H^{n+1,m+1}}{\partial z} + 1 \right) \Big|_{i-\frac{1}{2}}$$
$$w|_{i-\frac{1}{2}} \approx K^{n+1,m}_{i-\frac{1}{2}} \frac{H^{n+1,m+1}_{i} - H^{n+1,m+1}_{i-1}}{\Delta z} + K^{n+1,m}_{i-\frac{1}{2}}$$
(42)

Substituindo (41) e (42) em (40), tem-se a discretização de $\frac{\partial w}{\partial z}$ por diferenças divididas centradas.

$$\frac{\partial w}{\partial z}\Big|_{i} \approx \frac{K_{i+\frac{1}{2}}^{n+1,m} \left(H_{i+1}^{n+1,m+1} - H_{i}^{n+1,m+1}\right) - K_{i-\frac{1}{2}}^{n+1,m} \left(H_{i}^{n+1,m+1} - H_{i-1}^{n+1,m+1}\right)}{(\Delta z)^{2}} + \frac{K_{i+\frac{1}{2}}^{n+1,m} - K_{i-\frac{1}{2}}^{n+1,m}}{\Delta z} \tag{43}$$

Substituindo (43) em (39),

$$\frac{C_{i}^{n+1,m} \frac{H_{i}^{n+1,m+1} - H_{i}^{n}}{\Delta t}}{K_{i+\frac{1}{2}}^{n+1,m} \left(H_{i+1}^{n+1,m+1} - H_{i}^{n+1,m+1}\right) - K_{i-\frac{1}{2}}^{n+1,m} \left(H_{i}^{n+1,m+1} - H_{i-1}^{n+1,m+1}\right)}{(\Delta z)^{2}} + \frac{K_{i+\frac{1}{2}}^{n+1,m} - K_{i-\frac{1}{2}}^{n+1,m}}{\Delta z} \tag{44}$$

De acordo com [12], $\delta_i^m = H_i^{n+1,m+1} - H_i^{n+1,m}$ representa a variável dependente do sistema a ser resolvido. Através de rearranjos e manipulações algébricas, a aproximação por diferenças finitas é

$$C_{i}^{n+1,m} \frac{\delta_{i}^{m}}{\Delta t} - \frac{1}{\left(\Delta z\right)^{2}} \left[K_{i+\frac{1}{2}}^{n+1,m} (\delta_{i+1}^{m} - \delta_{i}^{m}) - K_{i-\frac{1}{2}}^{n+1,m} (\delta_{i}^{m} - \delta_{i-1}^{m}) \right]$$

$$= \frac{1}{(\Delta z)^2} \left[K_{i+\frac{1}{2}}^{n+1,m} (H_{i+1}^{n+1,m} - H_i^{n+1,m}) - K_{i-\frac{1}{2}}^{n+1,m} (H_i^{n+1,m} - H_{i-1}^{n+1,m}) \right] \\ + \frac{K_{i+\frac{1}{2}}^{n+1,m} - K_{i-\frac{1}{2}}^{n+1,m}}{\Delta z} - C_i^{n+1,m} \frac{H_i^{n+1,m} - H_i^n}{\Delta t} = (R_i^{n+1,m})_{RDF},$$
(45)

onde o lado direito da equação anterior é agora uma medida do quanto a *m*-ésima iteração falha em satisfazer a aproximação por diferenças finitas. O resíduo $(R_i^{n+1,m})_{RDF}$ é uma medida do erro para a aproximação espacial por diferenças finitas acoplada com o método de Picard.

Ainda, pela equação anterior, a aproximação por diferenças finitas distribui espacialmente a aproximação temporal em somente um nodo z_i (avalia a derivada temporal em z_i). Também, $K_{i\pm\frac{1}{2}}$ é definido como a média aritmética entre K_i e $K_{i\pm1}$, sendo bastante utilizada na literatura [12].

Para cada passo no tempo, um sistema de equações tridiagonal é resolvido iterativamente, onde

$$d_{i} = \frac{C_{i}^{n+1,m}}{\Delta t} + \frac{1}{\left(\Delta z\right)^{2}} \left(K_{i-\frac{1}{2}}^{n+1,m} + K_{i+\frac{1}{2}}^{n+1,m} \right),$$
(46)

$$u_i = -\frac{1}{(\Delta z)^2} K_{i+\frac{1}{2}}^{n+1,m},\tag{47}$$

$$l_i = -\frac{1}{(\Delta z)^2} K_{i-\frac{1}{2}}^{n+1,m},\tag{48}$$

$$v_i = (R_i^{n+1,m})_{RDF} \tag{49}$$

são, respectivamente, as diagonais principal, superior e inferior da matriz do problema, e v_i é o vetor independente do sistema a ser resolvido, para $i = 1, 2, 3, ..., N_p$.

3.2.1.2 Euler implícito — Picard modificado

De acordo com o esquema também proposto por [12], aplicando o método de Euler implícito como aproximação temporal em (23), segue que

$$\frac{\theta^{n+1} - \theta^n}{\Delta t} - \nabla K^{n+1} \nabla H^{n+1} - \frac{\partial K^{n+1}}{\partial z} = 0.$$
(50)

O esquema iterativo de Picard modificado envolve estimativas sequenciais da variável desconhecida H^{n+1} usando a última estimativa de C^{n+1} e K^{n+1} . Se *m* é o nível de iteração, então o método de Picard modificado pode ser escrito como

$$\frac{\theta^{n+1,m+1} - \theta^n}{\Delta t} - \nabla K^{n+1,m} \nabla H^{n+1,m+1} - \frac{\partial K^{n+1,m}}{\partial z} = 0,$$
(51)

onde H^n denota o valor aproximado de h no n-esimo nível de discretização de tempo $(t = t^n), \Delta t = t^{n+1} - t^n$ é o passo de tempo, e C^{n+1} e K^{n+1} denotam a capacidade específica

de mistura e a condutividade hidráulica avaliadas usando H^{n+1} , respectivamente, e a solução é admitida conhecida no nível de tempo n e desconhecida no nível de tempo n+1.

Expandindo $\theta^{n+1,m+1}$ em uma série de Taylor com respeito a H, ao redor de $H^{n+1,m}$, desconsiderando todos os termos de ordem maior ou igual a 2, truncando o erro, segue que

$$\theta^{n+1,m+1} \approx \theta^{n+1,m} + \left. \frac{\partial \theta}{\partial h} \right|^{n+1,m} \left(H^{n+1,m+1} - H^{n+1,m} \right).$$
(52)

Substituindo (52) em (51),

$$\frac{1}{\Delta t} \left[\theta^{n+1,m} + \frac{\partial \theta}{\partial h} \right|^{n+1,m} \left(H^{n+1,m+1} - H^{n+1,m} \right) \right] - \frac{\theta^n}{\Delta t} - \nabla \cdot k^{n+1,m} \nabla H^{n+1,m+1} - \frac{\partial k^{n+1,m}}{\partial z} = 0.$$
(53)

De (26), reescrevendo, vem

$$C^{n+1,m}\frac{H^{n+1,m+1} - H^{n+1,m}}{\Delta t} + \frac{\theta^{n+1,m} - \theta^n}{\Delta t} - \nabla K^{n+1,m}\nabla H^{n+1,m+1} - \frac{\partial K^{n+1,m}}{\partial z} = 0.$$
(54)

Levando o segundo e o quarto termos para o outro lado da igualdade, somando e subtraindo o termo $\nabla K^{n+1,m} \nabla H^{n+1,m}$ no primeiro membro de (54),

$$C^{n+1,m} \frac{H^{n+1,m+1} - H^{n+1,m}}{\Delta t} + \nabla K^{n+1,m} \nabla H^{n+1,m} - \nabla K^{n+1,m} \nabla H^{n+1,m} - \nabla K^{n+1,m} \nabla H^{n+1,m} - \nabla K^{n+1,m} \nabla H^{n+1,m} = \frac{\partial K^{n+1,m}}{\partial z} - \frac{\theta^{n+1,m} - \theta^n}{\Delta t}.$$
 (55)

Agrupando o segundo e quarto termos, e levando o terceiro termo para o outro membro,

$$C^{n+1,m} \frac{H^{n+1,m+1} - H^{n+1,m}}{\Delta t} - \nabla .K^{n+1,m} \nabla \left(H^{n+1,m+1} - H^{n+1,m} \right) = \nabla .K^{n+1,m} \nabla H^{n+1,m} + \frac{\partial K^{n+1,m}}{\partial z} - \frac{\theta^{n+1,m} - \theta^n}{\Delta t}.$$
 (56)

Assim como no método de Picard, é possível reescrever a equação anterior em função do incremento na iteração $\delta^m = H^{n+1,m+1} - H^{n+1,m}$, gerando, assim, o esquema de Picard modificado proposto por [12].

$$C^{n+1,m}\frac{\delta^m}{\Delta t} - \nabla K^{n+1,m}\nabla \delta^m = \nabla K^{n+1,m}\nabla H^{n+1,m} + \frac{\partial K^{n+1,m}}{\partial z}$$

$$-\frac{\theta^{n+1,m}-\theta^n}{\Delta t}.$$
(57)

Em relação à discretização espacial, a equação 51 pode ser rearranjada como segue,

$$\frac{\theta^{n+1,m+1} - \theta^n}{\Delta t} = \frac{\partial}{\partial z} \left[K^{n+1,m} \left(\frac{\partial H^{n+1,m+1}}{\partial z} + 1 \right) \right]$$
(58)

É evidente a equivalência entre os segundos membros de (58) e (39). Portanto, fazendo as mesmas considerações da subseção anterior, levando (43) em (58), a discretização por diferenças divididas centradas fica

$$\frac{\frac{\theta_{i}^{n+1,m+1} - \theta_{i}^{n}}{\Delta t}}{K_{i+\frac{1}{2}}^{n+1,m} \left(H_{i+1}^{n+1,m+1} - H_{i}^{n+1,m+1}\right) - K_{i-\frac{1}{2}}^{n+1,m} \left(H_{i}^{n+1,m+1} - H_{i-1}^{n+1,m+1}\right)}{(\Delta z)^{2}} + \frac{K_{i+\frac{1}{2}}^{n+1,m} - K_{i-\frac{1}{2}}^{n+1,m}}{\Delta z}$$
(59)

Levando (52) em (59),

$$\frac{\frac{1}{\Delta t} \left[\theta_{i}^{n+1,m} + \frac{\partial \theta}{\partial h} \Big|_{i}^{n+1,m} \left(H_{i}^{n+1,m+1} - H_{i}^{n+1,m} \right) \right] - \frac{\theta_{i}^{n}}{\Delta t} = \frac{K_{i+\frac{1}{2}}^{n+1,m} \left(H_{i+1}^{n+1,m+1} - H_{i}^{n+1,m+1} \right) - K_{i-\frac{1}{2}}^{n+1,m} \left(H_{i}^{n+1,m+1} - H_{i-1}^{n+1,m+1} \right)}{(\Delta z)^{2}} + \frac{K_{i+\frac{1}{2}}^{n+1,m} - K_{i-\frac{1}{2}}^{n+1,m}}{\Delta z} \tag{60}$$

Substituindo (26) na equação anterior e reorganizando termos,

$$\frac{C_{i}^{n+1,m} \frac{H_{i}^{n+1,m+1} - H_{i}^{n+1,m}}{\Delta t}}{\sum t} = \frac{K_{i+\frac{1}{2}}^{n+1,m} \left(H_{i+1}^{n+1,m+1} - H_{i}^{n+1,m+1}\right) - K_{i-\frac{1}{2}}^{n+1,m} \left(H_{i}^{n+1,m+1} - H_{i-1}^{n+1,m+1}\right)}{(\Delta z)^{2}} + \frac{K_{i+\frac{1}{2}}^{n+1,m} - K_{i-\frac{1}{2}}^{n+1,m}}{\Delta z} - \frac{\theta_{i}^{n+1,m} - \theta_{i}^{n}}{\Delta t}}{\Delta t}$$
(61)

Assim como na subseção anterior, segundo [12], $\delta^m_i = H^{n+1,m+1}_i - H^{n+1,m}_i$ representa a variável dependente do sistema a ser resolvido. Através de rearranjos e manipulações algébricas, a aproximação por diferenças finitas é

$$C_{i}^{n+1,m} \frac{\delta_{i}^{m}}{\Delta t} - \frac{1}{(\Delta z)^{2}} \left[K_{i+\frac{1}{2}}^{n+1,m} (\delta_{i+1}^{m} - \delta_{i}^{m}) - K_{i-\frac{1}{2}}^{n+1,m} (\delta_{i}^{m} - \delta_{i-1}^{m}) \right]$$

$$= \frac{1}{(\Delta z)^{2}} \left[K_{i+\frac{1}{2}}^{n+1,m} (H_{i+1}^{n+1,m} - H_{i}^{n+1,m}) - K_{i-\frac{1}{2}}^{n+1,m} (H_{i}^{n+1,m} - H_{i-1}^{n+1,m}) \right]$$

$$+ \frac{K_{i+\frac{1}{2}}^{n+1,m} - K_{i-\frac{1}{2}}^{n+1,m}}{\Delta z} - \frac{\theta_{i}^{n+1,m} - \theta_{i}^{n}}{\Delta t} = (R_{i}^{n+1,m})_{RDFPM},$$
(62)

onde o lado direito da equação anterior mensura quanto a m-ésima iteração falha em satisfazer a aproximação por diferenças finitas.

O resíduo $(R_i^{n+1,m})_{RDFPM}$ é uma medida do erro para a aproximação espacial por diferenças finitas acoplada com o método de Picard modificado. Em termos de convergência, conforme acontecem as iterações, tanto R_{PM} quanto a diferença $H^{n+1,m+1} - H^{n+1,m}$ se aproximam de zero.

Assim como na subseção anterior, a aproximação por diferenças finitas distribui espacialmente a aproximação temporal em somente um nodo z_i (avaliando a derivada temporal em z_i). Em adição, [12] define $K_{i\pm\frac{1}{2}}$ como a média aritmética entre K_i e $K_{i\pm 1}$.

Para cada passo no tempo, um sistema de equações tridiagonal é resolvido iterativamente, onde

$$d_{i} = \frac{C_{i}^{n+1,m}}{\Delta t} + \frac{1}{\left(\Delta z\right)^{2}} \left(K_{i-\frac{1}{2}}^{n+1,m} + K_{i+\frac{1}{2}}^{n+1,m} \right),$$
(63)

$$u_i = -\frac{1}{\left(\Delta z\right)^2} K_{i+\frac{1}{2}}^{n+1,m},\tag{64}$$

$$l_i = -\frac{1}{\left(\Delta z\right)^2} K_{i-\frac{1}{2}}^{n+1,m},\tag{65}$$

$$v_i = (R_i^{n+1,m})_{RDFPM} \tag{66}$$

são, respectivamente, as diagonais principal, superior e inferior da matriz do problema, e v_i é o vetor independente do sistema a ser resolvido, para $i = 1, 2, 3, ..., N_p$.

È importante pontuar que, de acordo com [12], o esquema em diferenças finitas acoplado com o método de Picard não goza da propriedade de conservação de massa, e isto ocorre devido à presença de um produto entre a função não linear C e uma aproximação temporal de derivada em (45). Tal efeito se torna mais pronunciado conforme o passo de tempo Δt aumenta. Por outro lado, o esquema iterativo de Picard modificado possui perfeita conservação de massa para diferentes passos de tempo, já que, por inspeção, como as equações (45) e (62) não são exatamente iguais, segue que em (62) não há a função C multiplicando a aproximação temporal de derivada. Entretanto, boa conservação de massa não garante soluções monotônicas e bons resultados numéricos. Desta forma, a equação de Richards na forma h tende a ser mais utilizada [40].

3.2.1.3 Euler implícito — Newton-Raphson

Seguindo inicialmente o esquema proposto por [12], aplicando o método de Euler implícito como aproximação temporal em (27), segue que

$$C^{n+1}\frac{H^{n+1} - H^n}{\Delta t} - \nabla K^{n+1}\nabla H^{n+1} - \frac{\partial K^{n+1}}{\partial z} = 0,$$
(67)

onde H^n denota o valor aproximado de h no n-esimo nível de discretização de tempo $(t = t^n), \Delta t = t^{n+1} - t^n$ é o passo de tempo, e C^{n+1} e K^{n+1} denotam a capacidade específica de mistura e a condutividade hidráulica avaliadas usando H^{n+1} , respectivamente, e a solução é admitida conhecida no nível de tempo n e desconhecida no nível de tempo n + 1. Reescrevendo,

$$C^{n+1}\frac{H^{n+1} - H^n}{\Delta t} = \frac{\partial}{\partial z} \left[K^{n+1} \left(\frac{\partial H^{n+1}}{\partial z} + 1 \right) \right].$$
(68)

Apesar da semelhança entre (68) e (39), nesta subseção a discretização será feita de forma diferente. Fazendo $y_i \approx K_i^{n+1} \left(\frac{H_{i+1}^{n+1} - H_{i-1}^{n+1}}{2\Delta z} + 1\right)$, é possível aproximar $\frac{\partial y_i}{\partial z}$ por diferenças divididas centradas, considerando os nós $z_{i\pm 1}$, truncando o erro cometido.

$$\frac{\partial y_i}{\partial z} \approx \frac{y_i|_{i+1} - y_i|_{i-1}}{2\Delta z}.$$
(69)

Então,

$$y_{i}|_{i+1} \approx K_{i}^{n+1} \left(\frac{H_{i+1}^{n+1} - H_{i-1}^{n+1}}{2\Delta z} + 1 \right) \Big|_{i+1}$$
$$y_{i}|_{i+1} \approx K_{i+1}^{n+1} \left(\frac{H_{i+2}^{n+1} - H_{i}^{n+1}}{2\Delta z} + 1 \right).$$
(70)

Figura 13: Discretização espacial para o método de Newton-Raphson

Também,

$$y_{i}|_{i-1} \approx K_{i}^{n+1} \left(\frac{H_{i+1}^{n+1} - H_{i-1}^{n+1}}{2\Delta z} + 1 \right) \Big|_{i-1}$$
$$y_{i}|_{i-1} \approx K_{i-1}^{n+1} \left(\frac{H_{i}^{n+1} - H_{i-2}^{n+1}}{2\Delta z} + 1 \right).$$
(71)

Substituindo (70) e (71) em (69),

$$\frac{\partial y_i}{\partial z} \approx \frac{K_{i+1}^{n+1} \left(\frac{H_{i+2}^{n+1} - H_i^{n+1}}{2\Delta z} + 1\right) - K_{i-1}^{n+1} \left(\frac{H_i^{n+1} - H_{i-2}^{n+1}}{2\Delta z} + 1\right)}{2\Delta z}.$$
 (72)

Reorganizando, segue que

$$\frac{\partial y_i}{\partial z} \approx \frac{K_{i+1}^{n+1} \left(H_{i+2}^{n+1} - H_i^{n+1}\right) - K_{i-1}^{n+1} \left(H_i^{n+1} - H_{i-2}^{n+1}\right)}{4(\Delta z)^2} + \frac{K_{i+1}^{n+1} - K_{i-1}^{n+1}}{2\Delta z}.$$
 (73)

Levando (73) em (68),

$$\frac{C_i^{n+1} \frac{H_i^{n+1} - H_i^n}{\Delta t}}{4(\Delta z)^2} = \frac{K_{i+1}^{n+1} \left(H_{i+2}^{n+1} - H_i^{n+1}\right) - K_{i-1}^{n+1} \left(H_i^{n+1} - H_{i-2}^{n+1}\right)}{4(\Delta z)^2} + \frac{K_{i+1}^{n+1} - K_{i-1}^{n+1}}{2\Delta z}.$$
(74)

A equação (74) pode ser reescrita como

$$C_{i}^{n+1} \left(H_{i}^{n+1} - H_{i}^{n}\right) - \frac{\Delta t}{4(\Delta z)^{2}} \left[K_{i+1}^{n+1} \left(H_{i+2}^{n+1} - H_{i}^{n+1}\right) - K_{i-1}^{n+1} \left(H_{i}^{n+1} - H_{i-2}^{n+1}\right)\right] - \frac{\Delta t}{2\Delta z} \left[K_{i+1}^{n+1} - K_{i-1}^{n+1}\right] = 0.$$
(75)

É possível perceber que a equação discretizada 75 está escrita na forma $\vec{F} = 0$, onde $\vec{F} = \vec{F} \left(H_{i-2}^{n+1}, H_{i-1}^{n+1}, H_{i+1}^{n+1}, H_{i+2}^{n+1} \right)$. Para o esquema iterativo de Newton-Raphson, é necessário definir a matriz Jacobiana J, que nesta formulação é pentadiagonal, onde

$$\frac{\partial \vec{F}}{\partial H_{i-2}^{n+1}} = -\frac{\Delta t}{4(\Delta z)^2} K_{i-1}^{n+1},\tag{76}$$

$$\frac{\partial \vec{F}}{\partial H_{i-1}^{n+1}} = \frac{\Delta t}{2\Delta z} \frac{\partial K_{i-1}^{n+1}}{\partial H_{i-1}^{n+1}} \left(\frac{H_i^{n+1} - H_{i-2}^{n+1}}{2\Delta z} + 1 \right),\tag{77}$$

$$\frac{\partial \vec{F}}{\partial H_i^{n+1}} = \frac{\partial C_i^{n+1}}{\partial H_i^{n+1}} \left(H_i^{n+1} - H_i^n \right) + C_i^{n+1} + \frac{\Delta t}{4(\Delta z)^2} \left(K_{i+1}^{n+1} + K_{i-1}^{n+1} \right), \tag{78}$$

$$\frac{\partial \vec{F}}{\partial H_{i+1}^{n+1}} = -\frac{\Delta t}{2\Delta z} \frac{\partial K_{i+1}^{n+1}}{\partial H_{i+1}^{n+1}} \left(\frac{H_{i+2}^{n+1} - H_i^{n+1}}{2\Delta z} + 1 \right), \tag{79}$$

$$\frac{\partial \vec{F}}{\partial H_{i+2}^{n+1}} = -\frac{\Delta t}{4(\Delta z)^2} K_{i+1}^{n+1} \tag{80}$$

são, respectivamente, as duas diagonais inferiores, a diagonal principal e as duas superiores.

Para computar a matriz Jacobiana, são necessárias as expressões das derivadas das funções não lineares $C \in K$. De acordo com [41], quando se trabalha com solos não saturados, a carga hidráulica h assume valores negativos, e cresce conforme o conteúdo de água θ aumenta. Portanto, a partir de (26), (29) e (30),

$$\frac{\partial C}{\partial h} = \alpha \beta \left(\theta_s - \theta_r\right) (-h)^{\beta - 2} \left\{ \frac{(\beta - 1) \left[\alpha + (-h)^{\beta}\right] - 2\beta (-h)^{\beta}}{\left[\alpha + (-h)^{\beta}\right]^3} \right\}$$
(81)

е

$$\frac{\partial K}{\partial h} = \frac{K_s A \gamma (-h)^{\gamma - 1}}{\left[A + (-h)^{\gamma}\right]^2}.$$
(82)

Para cada passo de tempo, dado um chute inicial H^0 , um sistema pentadiagonal da forma

$$J(H^m)\Delta H = -\vec{F}(H^m) \tag{83}$$

é resolvido iterativamente, sendo m = 0, 1, 2, ... o nível de iteração, e $\Delta H = H^{m+1} - H^m$ o incremento na iteração, donde $H^{m+1} = H^m + \Delta H$, e o novo chute será $H^0 = H^{m+1}$. Quando houver convergência, segue que $H^{n+1} = H^{m+1}$, e conforme acontecem as iterações, tanto a diferença $H^{n+1,m+1} - H^{n+1,m}$ quanto \vec{F} se aproximam de zero.

O esquema iterativo de Newton-Raphson tem convergência quadrática, requerendo um número pequeno de iterações para produzir uma solução numérica de qualidade. Entretanto, método é localmente convergente, o que quer dizer que o chute inicial H^0 deve ser suficientemente próximo da solução, pois caso contrário, ele diverge [42].

3.2.2 Metodologia Dual-Time Stepping (DTS)

A partir de (68) e usando as mesmas considerações para a discretização do termo espacial que constam na subseção 3.2.1.3, vem

$$C_{i}^{n+1} \frac{H_{i}^{n+1} - H_{i}^{n}}{\Delta t} = F_{i}^{n+1}$$

$$\equiv \frac{K_{i+1}^{n+1} \left(H_{i+2}^{n+1} - H_{i}^{n+1}\right) - K_{i-1}^{n+1} \left(H_{i}^{n+1} - H_{i-2}^{n+1}\right)}{4(\Delta z)^{2}} + \frac{K_{i+1}^{n+1} - K_{i-1}^{n+1}}{2\Delta z}, \quad (84)$$

onde F_i^{n+1} pode ser entendido como o fluxo hidráulico.

Reearranjando,

$$\frac{H_i^{n+1} - H_i^n}{\Delta t} = \frac{F_i^{n+1}}{C_i^{n+1}}.$$
(85)

O método numérico de marcha dupla (DTS) consiste na adição de um termo pseudotransiente em (85). Tal termo é uma derivada no pseudotempo τ , que pode ser visto como um tempo arbitrário, imaginário, de convergência, não possuindo significado físico. Para cada tempo físico t, o problema é resolvido iterativamente no pseudotempo τ , funcionando como uma técnica de linearização das equações discretizadas [13]. Isto é,

$$\frac{H_i^{n+1} - H_i^n}{\Delta t} + \frac{\partial h}{\partial \tau} = \frac{1}{C_i^{n+1}} \left[\lambda F(H_i^{n+1}) + (1-\lambda)F(H_i^n) \right],\tag{86}$$

onde λ é o parâmetro de controle do esquema transiente a ser empregado, ou seja, quando $\lambda = 1$ tem-se o método de Euler implícito no tempo, para $\lambda = 1/2$ o esquema de Crank-Nicolson é aplicado, e com $\lambda = 0$ o método de Euler explícito é adotado (nesta dissertação, não será trabalhado o esquema com $\lambda = 0$ no tempo físico). De fato, quando $\frac{\partial h}{\partial \tau}$ tende para zero, recupera-se a equação original. Portanto, para cada passo no tempo físico, a versão discretizada da equação de Richards é iterada no pseudotempo até a derivada $\frac{\partial h}{\partial \tau}$ ser reduzida na magnitude de um erro arbitrário próximo de zero. Isolando a derivada no pseudotempo em (86),

$$\frac{\partial h}{\partial \tau} = \frac{1}{C_i^{n+1}} \left[\lambda F(H_i^{n+1}) + (1-\lambda)F(H_i^n) \right] - \frac{H_i^{n+1} - H_i^n}{\Delta t}.$$
(87)

Quando o regime permanente é atingido no pseudotempo, a derivada $\frac{\partial h}{\partial \tau}$ converge para zero. Ou seja, quando $p \to \infty$, segue que $n \to n + 1$ e $H^p \to H^{n+1}$, retornando, assim, à equação discretizada original. Em outras palavras, conforme o processo iterativo no pseudotempo ocorre, a diferença entre H^{p+1} e H^p se aproxima de zero e, portanto, H^p é usado como novo chute no próximo nível de tempo físico n + 1, o que quer dizer que a solução da iteração no tempo físico n + 1 é aproximada pela iteração no pseudotempo p. Aplicando a aproximação mencionada e esquemas explícitos no termo pseudotransiente $(\frac{\partial h}{\partial \tau})$ na equação 87, obtém-se um método iterativo de linearização sem o custo adicional de um sistema matricial acoplado:

$$H_{i}^{p+1} = H_{i}^{p} + \Delta \tau \left\{ \frac{1}{C_{i}^{p}} \left[\lambda F(H_{i}^{p}) + (1 - \lambda) F(H_{i}^{n}) \right] - \frac{H_{i}^{p} - H_{i}^{n}}{\Delta t} \right\}.$$
 (88)

Analisando (88), é possível perceber que H_i^{p+1} (desconhecido) é dado em termos de $H_i^p, F(H_i^p), C_i^p, F(H_i^n)$ e H_i^n (conhecidos). Para cada passo de tempo transiente t, é resolvido no pseudotempo τ um problema em estado estacionário. É necessário fazer convergir esse problema de pseudotempo em cada tempo físico. As iterações são feitas até que a equação pare de variar [34].

Esta metodologia transforma artificialmente um sistema de equações em apenas uma equação linearizada explícita, sendo resolvida de forma mais fácil. Desta forma, do ponto de vista computacional por iteração, é esperado que a equação discretizada seja resolvida mais rapidamente, quando se compara com sistemas de equações tradicionais [43]. A linearização é feita através da convergência do processo iterativo no pseudotempo. Como critério de parada, adota-se $|H^{p+1} - H^p| < \varepsilon$, onde ε é uma tolerância pré-fixada.

3.2.2.1 Método de Euler explícito no pseudotempo

Se for considerado $\lambda = 1 \text{ em } (87)$, os métodos de Euler implícito e Euler explícito serão adotados como aproximações no tempo e no pseudotempo, respectivamente, e o esquema em questão fica

$$H_i^{p+1} = H_i^p + \Delta \tau \left[\frac{F(H_i^p)}{C_i^p} - \frac{H_i^p - H_i^n}{\Delta t} \right],\tag{89}$$

Por outro lado, se $\lambda = 1/2$ na equação 87, serão empregados, respectivamente, os métodos de Crank-Nicolson e Euler explícito como aproximações no tempo e no pseudo-tempo, a saber

$$H_i^{p+1} = H_i^p + \Delta \tau \left\{ \frac{1}{2C_i^p} \left[F(H_i^p) + F(H_i^n) \right] - \frac{H_i^p - H_i^n}{\Delta t} \right\}.$$
 (90)

Ou seja, para o método de Crank-Nicolson, a derivada no espaço é determinada no ponto médio, bastando para isto tomar a média da aproximação por diferenças centradas no início e no final do incremento de tempo.

Figura 14: Molécula computacional para o método de Crank-Nicolson. Fonte: [39]

3.2.2.2 Método RK4 explícito no pseudotempo

Partindo-se de (87) com $\lambda = 1$ e considerando o segundo membro como $G(H_i^n, H_i^{n+1})$, tem-se o esquema baseado nos métodos de Euler implícito e Runge-Kutta de 4^{*a*} ordem explícito como aproximações no tempo e no pseudotempo, respectivamente:

$$H_i^{p+1} = H_i^p + \frac{\Delta \tau}{6} \left(k_1 + 2k_2 + 2k_3 + k_4 \right), \tag{91}$$

em que

$$k_1 = G\left(H_i^n, H_i^p\right) \tag{92}$$

$$k_2 = G\left(H_i^n + \frac{1}{2}\Delta\tau, H_i^p + \frac{1}{2}k_1\Delta\tau\right)$$
(93)

$$k_3 = G\left(H_i^n + \frac{1}{2}\Delta\tau, H_i^p + \frac{1}{2}k_2\Delta\tau\right)$$
(94)

$$k_4 = G\left(H_i^n + \Delta\tau, H_i^p + k_3 \Delta\tau\right) \tag{95}$$

onde p é o nível de pseudotempo τ e k_1, k_2, k_3 e k_4 são as inclinações calculadas em vários pontos no intervalo $[H^p, H^{p+1}]$.

Já se $\lambda = 1/2$ em (87) e fazendo o segundo membro como $N(H_i^n, H_i^{n+1})$, chega-se no esquema em que se tem os métodos de Crank-Nicolson e Runge-Kutta de 4^{*a*} ordem explícito como aproximações no tempo e no pseudotempo, respectivamente, como segue:

$$H_i^{p+1} = H_i^p + \frac{\Delta\tau}{6} \left(k_1 + 2k_2 + 2k_3 + k_4\right), \tag{96}$$

em que

$$k_1 = N\left(H_i^n, H_i^p\right) \tag{97}$$

$$k_2 = N\left(H_i^n + \frac{1}{2}\Delta\tau, H_i^p + \frac{1}{2}k_1\Delta\tau\right)$$
(98)

$$k_3 = N\left(H_i^n + \frac{1}{2}\Delta\tau, H_i^p + \frac{1}{2}k_2\Delta\tau\right)$$
(99)

$$k_4 = N\left(H_i^n + \Delta\tau, H_i^p + k_3 \Delta\tau\right) \tag{100}$$

CAPÍTULO IV RESULTADOS

Neste capítulo serão apresentados os resultados numéricos dos seguintes esquemas: método de Euler implícito — Picard (EI-P), Euler implícito — Picard modificado (EI-PM), Euler implícito — Newton-Raphson (EI-NR), Euler implícito — Euler explícito (EI-EE), Euler implícito — Runge-Kutta de 4^a ordem (EI-RK4), Crank-Nicolson — Euler explícito (CN-EE) e Crank-Nicolson — Runge-Kutta de 4^a ordem (CN-RK4) como aproximações no tempo físico e técnica de linearização das equações. Os três primeiros esquemas se referem às metodologias tradicionais, enquanto que os esquemas DTS são os quatro últimos.

Para ser possível a simulação, foram necessários os parâmetros do solo, além das condições iniciais e de contorno.

Tabela 1: Parâmetros do solo, condições de contorno e inicial de [1]

α	θ_s	θ_r	β	K_s^*	A	γ	L^{**}	h_0^{**}	h_t^{**}	h_{f}^{**}
$1,611.10^{6}$	0,287	0,075	3,96	0,00944	$1,175.10^{6}$	4,74	40	-61,5	-20,7	-61,5

Nota:	^k A unidade de medida é dada e	$em \ cm/s$
Nota: **	As unidades de medidas são da	idas em cm

De acordo com a Tabela 1, segue que α , θ_s , θ_r , β , K_s , $A \in \gamma$ são parâmetros que se traduzem como propriedades do solo. Também, L é a profundidade da coluna de solo, h_0 é a condição inicial de umidade (ou nível de saturação), $h_t \in h_f$ são as condições de contorno no topo e no fundo da coluna, respectivamente. O tempo de simulação foi de 360 segundos.

As simulações para os diferentes esquemas foram avaliadas de forma qualitativa, através de um software que captura os pontos das figuras contendo as soluções obtidas por [12], e em seguida foi feita uma comparação com os resultados obtidos neste trabalho.

Foram escolhidos sete casos a serem estudados, que variam entre si com respeito ao espaçamento da malha Δz , passo de tempo físico Δt e nível de saturação do solo h_0 . Tais casos foram catalogados de forma simplificada na Tabela 1, que resume uma fração do estudo. Nesta dissertação, para os sete casos que corroboram a discussão, são mostrados os gráficos de número de iterações por passo de tempo físico, além da solução do problema e decaimento do erro à nível de precisão de máquina para o primeiro passo de tempo físico. Entretanto, nos Anexos 1, 2, 3, 4, 5, 6 e 7 constam inúmeros outros estudos, com o total de iterações para outras combinações de parâmetros numéricos, de onde os sete casos trabalhados foram selecionados.

Cada esquema numérico foi separado em uma subseção, onde são mostrados os casos em que houve convergência, além de discussões sobre a qualidade das soluções, número de iterações e decaimento do erro. Em seguida, cada caso foi separado em uma subseção, e foi aplicado cada um dos sete esquemas discretos, com o objetivo de avaliar a competitividade e a viabilidade em produzir as soluções.

Em adição, foi feito um estudo prévio do passo no pseudotempo $\Delta \tau$ a ser adotado nas metodologias DTS, com o objetivo de encontrar o $\Delta \tau$ ótimo que minimiza o total de iterações, para cada conjunto h_0 , $\Delta z \in \Delta t$. Para as soluções simuladas e o número de iterações para o processo de convergência, o critério de parada adotado foi uma tolerância de 10^{-8} . Para a análise do erro, foi considerado um número máximo de iterações (200) para o primeiro passo de tempo físico. Tais figuras traduzem a facilidade ou dificuldade na qual os esquemas conseguem lidar com o gradiente de umidade no início da infiltração. Em outras palavras, foram feitas análises das taxas de convergência para o primeiro passo de tempo físico, com o objetivo de verificar o número de iterações mínimo para que o erro decaia a nível de precisão de máquina no início da infiltração. O cálculo do erro foi feito considerando o máximo entre as normas infinitas da carga hidráulica e do resíduo em relação à iteração anterior.

A avaliação do esforço computacional foi feita majoritariamente pelo total de iterações, não sendo possível fazer comparações em termos de tempo computacional objetivamente, pois os códigos implementados para as metodologias DTS foram escritos de forma diferente daqueles códigos referentes aos esquemas tradicionais. Para os métodos explícitos no pseudotempo, são empregados módulos, o que alteram a velocidade de execução dos códigos, aumentando, consequentemente, o tempo computacional. Já para os esquemas tradicionais, os códigos estão, cada um, implementados em um único script. Portanto, a forma de avaliar os custos computacionais está diretamente relacionada ao total de iterações após 360 segundos de infiltração, levando-se em consideração que os esquemas DTS são explícitos, e que os esquemas tradicionais são resolvidos através de sistemas implícitos. Apesar disso, os tempos computacionais para os sete casos foram catalogados como forma subjetiva de comparar o esforço computacional.

4.1 Validação das Simulações e Apresentação dos Casos

Com a finalidade de validar as simulações, as soluções geradas para cada um dos sete esquemas foram comparadas com aquelas reportadas por [12], considerando-se, em todas as situações, espaçamento de malha $\Delta z = 1 \ cm$, nível de saturação $h_0 = -61, 5 \ cm$, condições de contorno $h_t = -20, 7 \ cm$ e $h_f = -61, 5 \ cm$, tempo de simulação de 360 segundos, para vários passos de tempo Δt .

Os pontos da soluções de [12] foram capturados por um software, onde as escalas dos eixos horizontal e vertical foram definidos. Tal estratégia foi adotada pois os autores do artigo não disponibilizaram os códigos de forma pública, não sendo possível, portanto, aplicar nenhuma métrica para avaliar os desvios entre as soluções reportadas e as simulações aqui feitas. Com isto, a avaliação é qualitativa.

De acordo com as Figuras 15(a), (b), (c), (d), (e), (f) e (g), que representam os perfis de carga hidráulica do solo em função da profundidade, nas situações em que houve convergência, as soluções conseguiram capturar os pontos dos perfis de umidade gerados por [12], o que demonstra a viabilidade das simulações em descrever o movimento da água com os parâmetros dados, para diferentes passos de tempo Δt .

A seguir, a Tabela 2 mostra os sete casos que serão discutidos neste trabalho, representando uma fração do estudo que foi feito. Nela constam os diferentes espaçamentos de malha Δz , passos de tempo físico Δt , níveis de saturação h_0 e condições de contorno no fundo (h_f) e no topo (h_t) da coluna de solo que foram trabalhados.

	Caso 1	Caso 2	Caso 3	Caso 4	Caso 5	Caso 6	Caso 7
h_0^*	-61,5	-61,5	-61,5	-200	-400	-400	-400
h_t^*	-20,7	-20,7	-20,7	-20,7	-20,7	-20,7	-20,7
h_f^*	-61,5	-61,5	-61,5	-200	-400	-400	-400
Δt^{**}	0,25	0,25	1	1	0,001	0,001	1
Δz^*	0,5	1	1	1	0,5	1	1

Tabela 2: Condições dos problemas e parâmetros numéricos das simulações

Nota: * As unidades de medidas são dadas em cmNota: ** A unidade de medida é dada em s

Os conjuntos de parâmetros dos sete casos foram propositalmente selecionados, pois possuem valores estratégicos que indicam influências importantes na modelagem matemática da infiltração hídrica transiente em meios porosos, apresentando entre si, variações importantes no passo de tempo físico, nível de saturação e espaçamento de malha. Tais variações se refletem, portanto, nos resultados das análises numéricas.

Nos Anexos 1, 2, 3, 4, 5, 6 e 7 constam várias outras simulações, com o total de iterações para outras combinações de parâmetros numéricos e níveis de saturação, de onde os sete casos abordados foram selecionados, para cada um dos sete esquemas.

Figura 15: Validação das simulações para os esquemas discretos

4.2 Esquemas Tradicionais

Nesta seção, são apresentadas análises da eficiência dos esquemas tradicionais EI—P, EI—PM e EI—NR.

4.2.1 EI - P

Segundo a Figura 16(a), os casos em que houve convergência foram aqueles envolvendo o maior nível de saturação de solo (1, 2 e 3). Foi evidenciado que o método de Picard é muito rígido, pois quando se considera o conjunto de parâmetros dos casos 4, 5, 6 e 7, não houve convergência. Apesar disto, não é correto afirmar que este esquema não funciona para simular a infiltração em solos mais secos, pois de acordo com as tabelas do Anexo 1, foi possível obter soluções numéricas com outros conjuntos de parâmetros.

(c) Decaimento do erro para o primeiro passo de tempo físico

Figura 16: Simulações para o esquema EI—P

De fato, para outras situações envolvendo solos com níveis de saturação intermediários, foi possível gerar soluções para $h_0 = -200$ e -400 cm para pequenos Δt . Ainda, para o nível de saturação $h_0 = -400$ cm, houve convergência para 21 pontos na malha, indicando que existe uma grande influência do gradiente de umidade no início da infiltração conforme o nível de saturação diminui, onerando gradativamente o processo iterativo. Também, em tais situações, os problemas de conservação de massa inerentes à forma h da equação de Richards se tornam mais pronunciados. Em termos do número de iterações por passo de tempo físico, o gráfico da Figura 16(b) mostra que o melhor resultado foi obtido no caso 2, que trabalha com o menor passo de tempo e com menos pontos na malha, tornando o gradiente de umidade no início da infiltração menos íngreme, o que também explica a taxa de convergência melhor do caso 2 em relação ao casos 1 e 3.

No que se refere ao decaimento do erro para o primeiro passo de tempo (Figura 16(c)), foi observado que quanto menores forem o número de pontos na malha e o passo de tempo, maior é a taxa de convergência, e mais uma vez o caso 2 apresentou os melhores resultados.

Os custos computacionais para o esquema EI—P são mostrados na Tabela 3. Foi observado que o menor tempo computacional está atrelado ao caso 3, que trabalha com o menor número de pontos na malha e o maior passo de tempo, e mesmo pode ser dito sobre o caso 3 no tocante ao total de iterações, não sendo percebidos valores discrepantes em nenhum dos casos trabalhados.

		Esforço d	computaci	ional — E	squema 1	(EI—P)	
	Caso 1	Caso 2	Caso 3	Caso 4	Caso 5	Caso 6	Caso 7
Total de iterações	8811	7467	2696				
Tempo computacional (s)	0,86	$0,\!48$	$0,\!17$				

Tabela 3: Esforço computacional para o esquema EI—P.

4.2.2 EI - PM

A diferença entre os métodos de Picard e Picard modificado é que o primeiro é aplicado à equação de Richards na forma h, avaliando a carga hidráulica (que é uma medida indireta de umidade) para diferentes profundidades em diversos instantes de tempo, enquanto que o método de Picard modificado está associado à equação de Richards na forma mista, que é uma mistura entre as formas $h \in \theta$, avaliando em cada instante a umidade θ em diferentes profundidades.

Em adição, inspecionando (45), é possível perceber a presença do produto da função de capacidade de umidade específica C(h), que é não-linear, por uma aproximação de derivada. Tal produto é a fonte da não conservação de massa inerente à equação de Richards na forma h, ao passo que na forma mista a conservação de massa é perfeita, pois não apresenta este produto, fazendo com que as taxas de convergência para o primeiro passo de tempo sejam melhores, tanto para os sete casos presentes na Tabela 1, quanto para outros conjuntos de parâmetros presentes nas três tabelas do Anexo 2, hão havendo nenhuma situação em que o esquema EI—PM não tenha apresentado convergência.

Em termos dos custos computacionais indicados na Tabela 4, os resultados obtidos para os casos 1, 2 e 3 são muito semelhantes em relação ao esquema EI—P no que se refere ao total de iterações. O mesmo pode ser dito quando se compara outras configurações de parâmetros com nível de saturação $h_0 = -61, 5cm$ presentes na primeira tabela dos Anexos 1 e 2.

Ainda na Tabela 4, mantendo-se o passo de tempo e o espaçamento da malha constantes, conforme o solo se torna gradativamente mais seco (casos 4 e 7), o esforço computacional variou muito pouco, mostrando que o método de Picard modificado lida muito bem

(a) Soluções (360 segundos)

(b) Número de iterações em função dos passos de tempo físico

(c) Decaimento do erro para o primeiro passo de tempo físico

i igula i i simulações para o esquema Er i i	-T TAT
--	--------

Tabela 4: Es	sforço com	putacional	para o	esquema	EI—	-PM.
--------------	------------	------------	--------	---------	-----	------

		Esforço o	computaci	ional — E	zsquema 2 ((EI—PM)		
	Caso 1	Caso 2	Caso 3	Caso 4	Caso 5	Caso 6	Caso 7	
Total de iterações	8801	7458	2666	2803	1087135	1083202	2922	
Tempo computacional (s)	computational (s) $1,17$ $0,66$ $0,20$ $0,28$ $170,75$ 97							

com o problema do gradiente de umidade no início da infiltração, prevendo de forma acurada a umidade em diferentes profundidades, se valendo da propriedade de conservação de massa.

Conclusões semelhantes são válidas em relação ao número de iterações em funçao dos tempos físicos. A Figura 17(b) mostra que no início do processo de infiltração o número de iterações não ultrapassou 10 unidades, mesmo para o caso com menor nível de saturação e maior quantidade de pontos na malha. Em todos os casos, as curvas de iterações se estabilizaram para valores menores ou iguais àqueles do método de Picard.

Analisando o decaimento do erro para o primeiro passo de tempo físico pela Figura 17(c), mesmo nos menores níveis de saturação de solo e com mais pontos na malha, as taxas de convergência são superiores às do esquema EI—P, necessitando de 30 iterações ou menos para o erro chegar à nivel de precisão de máquina. As soluções tornam-se menos precisas conforme aumenta-se o nível de saturação. Já para a condição de solo mais úmido, os casos 1, 2 e 3 apresentaram as soluções mais precisas. É importante pontuar que os casos 4 e 7 apresentaram taxas de convergência ligeiramente piores, já que o passo de

tempo em tais situações são maiores.

4.2.3 EI - NR

A Figura 18(a) indica que dentre os casos selecionados, o método de Newton-Raphson não foi capaz de gerar soluções para aqueles com menor nível de saturação, já que apesar de convergência quadrática, o método possui convergência condicionada a passos de tempo pequenos conforme o número de pontos na malha aumenta (influência gradativa do gradiente de umidade no início da infiltração). Contudo, para outras combinações de parametros contidos na segunda tabela do Anexo 3, é possível perceber que o esquema EI—NR é capaz de convergir para solos mais secos. Nos casos em que há convergência, apresenta, em geral, resultados excelentes.

Ainda em relação às tabelas do Anexo 3, no que se refere ao total de iterações, a malha espacial deve ter um tipo de refinamento que é proporcional ao passo de tempo. Em outras palavras, existe uma barreira de estabilidade para o método de Newton-Raphson, o que quer dizer que há um ponto a partir do qual não há mais convergência, dado pelo número de Courant.

(b) Número de iterações em função dos passos de tempo físico

(c) Decaimento do erro para o primeiro passo de tempo físico

Figura 18: Simulações para o esquema EI—NR

Em adição, de acordo com os dados da segunda tabela no Anexo 3, houve muita dificuldade em gerar soluções para o nível de saturação $h_0 = -800 \ cm$, só sendo possível considerando 41 pontos na malha e passo de tempo pequeno. Tal fato ocorreu devido à condição inicial do método de Newton-Raphson, que faz com que o esquema divirja. Para situações envolvendo gradientes de umidade muito íngremes, o chute inicial deve ser muito preciso, pois caso contrário o esquema EI—NR diverge.

		Esforço o	omputaci	onal — E	squema 3	(EI—NR)	
	Caso 1	Caso 2	Caso 3	Caso 4	Caso 5	Caso 6	Caso 7
Total de iterações	5023	4884	1461			1080498	—
Tempo computacional (s)	1,22	$0,\!69$	$0,\!22$			$120,\!14$	

Tabela 5: Esforço computacional para o esquema EI—NR.

O comportamento do decaimento do erro para o primeiro passo de tempo, indicado na Figura 18(c), é mais regular, sem oscilações, e foi observado que quanto maior o passo de tempo, mais baixa é a taxa de convergência. Entretanto, mesmo em condição de solo mais seco e com passo de tempo maior (caso 6), o número de iterações mínimo para se ter erro à nivel de precisão de máquina foi menor que 15 para todos espaçamentos de malha em que houve convergência. Não foi percebida grandes variações nas taxas de convergência quando se compara solos mais e menos secos, evidenciando o poder do método de Newton-Raphson como técnica de linearização nos casos em que converge.

Ainda sobre o erro, conforme o nível de saturação diminui, as soluções se tornam ligeiramente menos precisas, mas comparando com aquelas de outros esquemas, são mais precisas.

Em termos do total de iterações, a primeira tabela do Anexo 3 e a Tabela 5 evidenciam que os resultados obtidos são bem menores quando se compara com todos os esquemas. Conforme aumenta-se o número de pontos na malha, essa diferença tende a ser menor, mas mesmo assim os valores são mais baixos. Para passo de tempo fixado, o total de iterações variou muito pouco conforme aumenta-se o número de pontos na malha, comportamento também percebido no esquema EI—PM. Isto é indicativo que o método de Newton-Raphson lida bem com a influência do gradiente de umidade no início da infiltração, nos casos em que converge.

Em termos do número de iterações em função dos tempos físicos (Figura 18(b)), mesmo considerando baixos níveis de saturação, os valores começam abaixo de 20, e rapidamente decaem, se estabilizando com valores entre 3 e 5. No geral, os resultados para os casos em que houve convergência são bastante similares entre si.

4.3 Metodologia Dual-Time Stepping (DTS)

Uma diferença considerável quando se trabalha com as metodologias DTS em detrimento dos esquemas tradicionais é a simplicidade de implementação, pois apesar dos esquemas EI—EE, EI—RK4, CN—EE e CN—RK4 também serem implícitos no tempo físico, agora as equações são resolvidas explicitamente no pseudotempo, sendo este um novo parâmetro numérico para as simulações. Sendo assim, uma breve discussão é sugerida, como segue.

4.3.1 Estudo preliminar do $\Delta \tau$ ótimo

Para as metodologias DTS, é preciso se preocupar com mais um parâmetro, $\Delta \tau$, que representa o passo no pseudotempo. O esforço computacional foi otimizado, de acordo com o $\Delta \tau$ fixado. Foram empregadas nas simulações o $\Delta \tau$ que minimizou o total de iterações. Para isto, para cada conjunto de Δz e Δt , variou-se $\Delta \tau$ em três valores diferentes, e em seguida foi feito um fit, com o objetivo de encontrar o $\Delta \tau$ ótimo, que minimiza o total de iterações após 360 segundos de infiltração. As Figuras 19(a), (b) e (c) mostram exemplos desta esquemática.

Figura 19: Estudo de otimização do parâmetro $\Delta \tau$

Inspecionando as tabelas dos Anexos 4, 5, 6 e 7 e as Figuras 19(a), (b) e (c), foi observado $\Delta \tau_{\acute{o}timo} = \Delta t$ ou $\Delta \tau_{\acute{o}timo} < \Delta t$ em algumas situações, e $\Delta \tau_{\acute{o}timo} << \Delta t$ em outras. Também, para Δz e Δt fixados, quanto menor for $\Delta \tau$, o esforço computacional aumenta.

Em adição, foi percebido que quanto maior Δt , maior é o desvio em relação a $\Delta \tau$. Este efeito é mais pronunciado para solos com menores níveis de saturação.

Nos Anexos 4, 5, 6 e 7 constam os valores de passo no pseudotempo ótimos para os vários conjuntos de parâmetros numéricos, para todos os esquemas DTS.

4.3.2 EI - EE

O método de Euler explícito no pseudotempo torna o processo iterativo lento quando se considera níveis de saturação intermediários ou baixos, sendo bastante rígido para convergir em tais situações, aumentando, consequentemente, o esforço computacional, vide Tabelas 6, 8 e Anexos 4 e 6. Apesar disso, a Figura 20(a) indica que foi possível obter soluções numéricas em todos os sete casos selecionados, o que mostra que o esquema EI—EE é mais robusto frente ao tradicional esquema EI—P.

Para os casos envolvendo solo mais úmido (1, 2 e 3), o esquema foi competitivo com os esquemas tradicionais em termos do número de iterações por tempo físico (Figuras 16(b), 17(b), 18(b) e 20(b)), total de iterações e tempo computacional (Tabelas 3, 4, 5 e 6), enquanto que as taxas de convergência são consideravelmente piores (Figuras 16(c), 17(c), 18(c) e 20(c)), com exceção do caso 2, que demandou pouco mais de 80 iterações para que o erro se estabilizasse à nível de precisão de máquina.

(a) Soluções (360 segundos)

(b) Número de iterações em função dos passos de tempo físico

(c) Decaimento do erro para o primeiro passo de tempo físico

Figura 20: Simulações para o esquema EI—EE

Já para os casos 4, 5, 6 e 7, que trabalham com menores níveis de saturação, há uma grande influencia do gradiente de umidade formado no início da infiltração, englobando mais erros no processo iterativo, diminuindo, portanto, a taxa de convergência consideravelmente. Entretanto, o caso 6 tem taxa ligeiramente mais alta por trabalhar com passo de tempo menor.

Em adição, as curvas de iterações para os casos 4 e 7 não foram mostradas na Figura 20(b), já que os valores médios foram, respectivamente, 6245 e 125894 iterações por passo de tempo físico. Apesar disto, o esquema EI—EE pode ser uma opção viável para gerar soluções para o caso 4, já que o tempo computacional não é significantemente maior que o apresentado no esquema EI—PM. É importante reiterar que este é um esquema explícito e o nível de saturação no caso 4 é intermediário.

Foi observado que conforme aumenta-se o número de pontos na malha e diminuem-se o passo de tempo físico e o nível de saturação no solo, o número de iterações por tempo físico e o total de iterações aumentam consideravelmente, elevando, consequentemente, o tempo computacional (Figura 20(b) e Tabela 6).

		Esforço computacional — Esquema 4 (EI—EE)									
	Caso 1	Caso 2	Caso 3	Caso 4	Caso 5	Caso 6	Caso 7				
Total de iterações	16382	7948	4483	2248129	160890000	50509000	45321600				
Tempo computacional (s)	5,52	2,84	0,94	138,93	18929,55	3675,73	2782,50				

Tabela 6: Esforço computacional para o esquema EI—EE.

As Figuras 20(b) e (c) destacam que ao variar-se o nível de saturação entre os casos 3 e 4, o número de iterações aumenta muito (e a taxa de convergência diminui bastante). Portanto, para solos mais secos e/ou com muitos pontos na malha, estratégias para acelerar a convergência são desejáveis.

De acordo com as tabelas dos Anexos 1, 2, 3 e 4, em termos do total de iterações e considerando condição de solo mais úmido, o esquema EI—EE é competitivo com os outros esquemas tradicionais quando se considera número de pontos na malha menores ou iguais a 81, e intervalo de passo de tempo compreendido entre 0,1 e 5 segundos, enquanto que para solos mais secos, o esquema EI—EE tende a ser competitivo quando se considera h_0 = -200 cm, número de pontos na malha menores ou iguais a 41 e passo de tempo menores ou iguais a 0,0005 s.

Para nenhuma metodologia DTS foram gerados resultados para $h_0 < -400cm$, pois os códigos nestas situações demoraram muito para convergir. De fato, os gradientes de umidade são mais íngremes para tais níveis de saturação, tornando os tempos de execução consideravelmente maiores do que quando $h_0 = -400cm$.

4.3.3 EI - RK4

Considerando a Figura 21(a), o esquema EI - RK4 não foi capaz de gerar soluções para o caso 7, que possui configuração de parâmetros associado à solo mais seco e com maior passo de tempo.

Ao avaliar o impacto nas taxas de convergência do processo iterativo no pseudotempo pelos esquemas EI—EE e EI — RK4 (Figuras 20(c) e 21(c)), o método de Runge-Kutta de 4^a ordem explícito é uma ótima técnica, já que as taxas de convergência dos casos 1, 2 e 3 aumentaram bastante, demandando, respectivamente, 40, 30 e 60 iterações para que o erro chegue à nivel de precisão de máquina, representando uma opção viável frente aos esquemas tradicionais em tais casos. Em relação ao caso 6, houve melhora considerável na taxa de convergência, onde a curva do erro foi decaindo à ordem de 10^{-11} com 200 iterações, sem ter se estabilizado ainda. Entretanto, para os casos 4 e 5 não houve melhora significativa, pois as taxas de convergência variaram muito pouco até a 200^a iteração. Isto se reflete na Tabela 7 e na Figura 21(b), com os altos números de iteração por passo de tempo físico e total de iterações em tais casos. Com isto, a adoção do método de Runge-Kutta de 4^a ordem como técnica de linearização das equações discretas melhorou, no geral, a precisão no pseudotempo, já que o método de Euler explícito é de primeira ordem. Além disso, a estabilidade do método de Runge-Kutta de 4^a ordem é maior.

Em termos de solução final, quando se tem mais precisão (caso 5, com menor passo de tempo e mais pontos na malha) a solução é melhor, ao passo que ao considerarmos o

(c) Decaimento do erro para o primeiro passo de tempo físico

Figura 21: Simulações para o esquema EI—RK4

caso 6, onde o número de pontos na malha é menor, a solução piora (fatos evidenciados na Figura 21(a)).

Já a Figura 21(b) mostra o número de iterações em função dos passos de tempo físico, cujos resultados são semelhantes em relação ao esquema anterior. A curva de iterações do caso 4 não foi mostrada pois apresentou média de 4300 iterações por passo de tempo.

É importante pontuar que em termos de esforço computacional, os resultados dos sete casos presentes na Tabela 7 são um pouco piores do que aqueles vindos do esquema EI—EE, principalmente no que se referem à tempo computacional (Tabela 6). Para algumas combinações de parâmetros presentes nas tabelas do Anexo 5, o total de iterações é comparável ao dos esquemas anteriores, entretanto os resultados do esquema EI — RK4 demoraram mais para serem produzidos. Isto é esperado, pois em cada iteração no pseudotempo, o método de Runge-Kutta de 4^a ordem executa os cálculos em 4 etapas, tornando os custos computacionais mais caros, principalmente quando se trabalha com solos mais secos.

Tabela 7: Esforço computacional para o esquema EI—RK4.

		Esforço computacional — Esquema 5 (EI—RK4)									
	Caso 1	Caso 2	Caso 3	Caso 4	Caso 5	Caso 6	Caso 7				
Total de iterações	35821	23570	12107	1548083	162150000	46079000					
Tempo computacional (s)	19,80	8,14	3,62	382,56	76284,07	11959,22					

Continuando a avaliar as tabelas do Anexo 5, considerando o menor nível de sa-

turação, os códigos não convergiram para passos de tempo maiores ou iguais a 1 segundo e número de pontos na malha maiores que 21. Nestas situações o gradiente de umidade vai se tornando mais íngreme, e pelo passo de tempo ser relativamente grande, mais erros são incorporados ao processo iterativo no início da infiltração. Já para o nível de saturação intermediário e passos de tempo pequenos, o total de iterações é muito discrepante em relação ao esquema anterior, mesmo considerando poucos pontos na malha. Tais evidências são indicativos que o esquema EI — RK4 é mais influenciado pelo gradiente de umidade no início do processo de infiltração hídrica.

4.3.4 CN - EE

Comparando com o esquema EI—EE, agora o método no pseudotempo é fixado, e a técnica adotada no tempo físico muda. É esperado que o método de Crank-Nicolson melhore tanto a precisão no tempo físico quanto as taxas de convergência, já que, frente ao método de Euler implicito, esta é uma técnica de segunda ordem no tempo.

(c) Decaimento do erro para o primeiro passo de tempo físico

Figura 22: Simulações para o esquema CN—EE

O método de Crank-Nicolson é condicionalmente estável, enquanto que o método de Euler implícito é incondicionalmente estável, ou seja, teoricamente, para problemas lineares, o método de Euler implícito poderia gerar solução para qualquer Δt , entretanto, na prática, é sabido que isso não acontece, já que o problema a ser resolvido é não-linear

e, portanto, vai ter uma barreira de estabilidade. Em adição, o método de Crank-Nicolson depende de uma configuração de parâmetros favorável para que ele seja estável e funcione, tendo uma região de estabilidade mais limitada do que o método de Euler implícito, sendo esperado não haver convergência de soluções para números de pontos na malha muito grandes e passos de tempo relativamente grandes. De fato, inspecionando as tabelas do Anexo 6, quando se considera nível de saturação $h_0 = -61, 5 \ cm$, houve convergência para $\Delta z \leq 0,125 \ cm$ somente para passos de tempo menores que 10^{-2} , sendo possível perceber também que à medida em que se aumenta Δz , o passo no tempo Δt também aumenta proporcionalmente, pois o número de Courant precisa ser menor que um limite máximo. No geral, o método de Crank-Nicolson melhorou os resultados de total de iterações, além da taxa de convergência de alguns dos sete casos, quando compara-se com o esquema EI—EE (vide Tabelas 6 e 8; Figuras 20(c) e 22(c)).

A Figura 22(a) indica que houve convergência em todos os sete casos, e os resultados obtidos são melhores do que aqueles vindos do esquema EI—EE, evidenciando que o método de Crank-Nicolson como aproximação no tempo físico melhora os resultados.

A avaliação do número de iterações em função dos passos de tempo físico (Figura 22(b)) mostra uma pequena melhora somente para o caso 6, não sendo perceptível para os outros casos. A curva de iterações para os casos 4 e 7 não foram representadas, pois os valores médios de iterações por passo de tempo físico foram, respectivamente, 6127 e 123166.

		Esforço computacional — Esquema 6 (CN—EE)								
	Caso 1	Caso 2	Caso 3	Caso 4	Caso 5	Caso 6	Caso 7			
Total de iterações	14628	6634	3691	2205867	160880000	44578000	44340000			
Tempo computacional (s)	5,23	2,75	0,87	136,28	19494,46	3293,62	2722,03			

Tabela 8: Esforço computacional para o esquema CN—EE.

Em relação às taxas de convergência para o primeiro passo de tempo físico, mostradas na Figura 22(c), houve melhora significativa para os casos 1, 2, 3 e 6, onde para os três primeiros, foram necessários, respectivamente, 150, 60 e 170 iterações para o que o erro decaia à nível de precisão de máquina. Para o caso 6, o erro não conseguiu se estabilizar com 200 iterações, porém a solução é mais precisa do que aquela vinda do esquema EI—EE. Para os outros casos, não houve mudanças significativas, pois o conjunto de parâmetros não favoreceu tais melhorias.

Falando em esforço computacional, ao analisar a Tabela 8 é possível perceber que os resultados do esquema CN—EE são ligeiramente melhores que aqueles do esquema EI—EE, o que corrobora e justifica a utilização do método de Crank-Nicolson como aproximação no tempo em detrimento do método de Euler implícito.

4.3.5 CN - RK4

A adoção do método de Runge-Kutta de 4^{*a*} ordem no pseudotempo melhora bastante as taxas de convergência de alguns casos trabalhados quando se compara com o esquema CN—EE. Em adição, em comparação ao esquema EI—RK4, aqui tem-se um esquema mais robusto, pois foi capaz de gerar solução numérica para o caso 7.

Na Figura 23(c) é apresentado o comportamento do decaimento do erro para o primeiro passo de tempo físico. Para os casos 1, 2 e 3 o número de iterações mínimo decaiu para

valores menores ou iguais a 40, e para o caso 6, a taxa de convergência melhorou bastante, chegando à ordem de 10^{-11} com 200 iterações. Para os outros casos, não houve melhora significativa nas taxas de convergência.

(b) Número de iterações em função dos passos de tempo físico

(c) Decaimento do erro para o primeiro passo de tempo físico

Figura 23: Simulações para o esquema CN—RK4

Tabela 9: Esforço computacional para o esquema CN—RK4.

		Esforço computacional — Esquema 7 (CN—RK4)									
	Caso 1	Caso 2	Caso 3	Caso 4	Caso 5	Caso 6	Caso 7				
Total de iterações	33944	23556	8463	1519212	162140000	46077000	39871000				
Tempo computacional (s)	19,22	8,21	2,81	378,13	73818,72	12085,97	9875,71				

Como foi dito, o método de Runge-Kutta de 4^a ordem torna o processo iterativo mais caro, já que o tempo computacional aumenta frente ao método de Euler explícito, entretanto o total de iterações não necessariamente aumenta devido a isto, como consta nas Tabelas 6, 7, 8 e 9.

Novamente, devido ao fato do método de Crank-Nicolson ser condicionalmente estável, uma rápida inspeção às tabelas do Anexo 7 mostra que, a depender do conjunto de parâmetros escolhidos, o esquema nao converge. Em relação ao número de iterações em função dos passos de tempo físico presentes na Figura 23(b), as curvas de iterações para os casos 4 e 7 não foram mostradas, pois apresentaram média de iterações por passo de tempo físico de, respectivamente, 4220 e 110752.

4.4 Comparações Entre Esquemas

Com o objetivo de verificar diretamente a viabilidade e a competitividade entre os esquemas, serão mostrados rapidamente os gráficos de soluções, iterações por passo de tempo físico, decaimento do erro para o primeiro passo de tempo, além das tabelas com total de iterações e tempo computacional para cada um dos sete casos selecionados.

4.4.1 Caso 1

Todos os esquemas convergiram com o conjunto de parâmetros do caso 1, estando as soluções muito próximas umas das outras, evidência ilustrada na Figura 24(a).

(a) Soluções (360 segundos)

(b) Número de iterações em função dos passos de tempo físico

(c) Decaimento do erro para o primeiro passo de tempo físico

Figura 24: Simulações para o caso 1

Os esquemas EI—EE e CN—EE foram os que tiveram as piores taxas de convergência, segundo a Figura 24(c). Entretanto, o esquema CN—EE conseguiu estabilizar o erro com menos de 200 iterações, pois trabalha com passo de tempo menor. Já os esquemas EI—PM e EI—NR apresentaram as melhores taxas de convergência. Os esquemas EI—RK4 e CN—RK4 tiveram comportamentos semelhantes neste aspecto, entretanto o esquema EI—RK4 gerou a solução mais precisa de todas, pois faz uso do método de Runge-Kutta de 4^a ordem no pseudotempo.

É interessante pontuar que os esquemas EI—RK4 e CN—RK4 apresentaram resultados melhores do que o tradicional esquema EI—P no que se refere ao decaimento do erro para o primeiro passo de tempo, apesar de terem sido os esquemas que demandaram os maiores números de iterações por passo de tempo físico.

A Figura 24(c) também mostra que os esquemas EI—EE e CN—EE, que possuem em comum o método de Euler explícito como aproximação no pseudotempo, apresentaram um alto número de iterações no início da infiltração até atingirem a tolerância estipulada, ou seja, tais esquemas tiveram maior dificuldade em lidar com o gradiente de umidade neste instante. Para o esquema EI—EE, por exemplo, foram necessárias 350 iterações para que o erro se estabilizasse à nivel de precisão de máquina para o primeiro passo de tempo, e em relação ao segundo passo de tempo, com 32 iterações o erro já estava estabilizado.

Em relação ao esforço computacional, todos os esquemas da Tabela 10 apresentaram bons resultados, não havendo valores muito discrepantes entre si.

Portanto, para o caso 1, que trabalha com solo mais úmido, maior número de pontos na malha e menor passo de tempo, todos os esquemas são indicados para resolvê-lo, principalmente quando se considera os esquemas explícitos EI—RK4 e CN—RK4 em detrimento do tradicional esquema EI—P.

	$\operatorname{Esforço\ computational\ }-\operatorname{Caso\ }1$						
	EI—P	EI—PM	EI—NR	EI—EE	EI—RK4	CN-EE	CN—RK4
Total de iterações	8811	8801	5023	16382	35821	14628	33944
Tempo computacional (s)	0,86	1,17	1,22	5,52	19,80	5,23	19,22

Tabela 10: Esforço computacional para o caso 1.

4.4.2 Caso 2

Novamente, todos os esquemas foram capazes de gerar soluções (vide Figura 25(a)). Quando se compara com o caso 1, a única diferença reside no fato de que o caso 2 possui metade dos pontos na malha. Isto fez a diferença, principalmente no que se refere ao decaimento do erro para o primeiro passo de tempo mostrado na Figura 25(c), aumentando a taxa de convergência de todos os métodos no geral. Contudo, o esquema EI—EE foi o que mais se beneficiou, melhorando consideravelmente o comportamento do erro, apresentando, entretanto, a pior das taxas de convergência pela segunda vez. Dentre as metodologias DTS, os esquemas EI—RK4 e CN—RK4 foram o que mais se destacaram nesse aspecto.

Avaliando a Figura 25(b), que contém o número de iterações em função dos passos de tempo físicos, os esquemas EI—RK4 e CN—RK4 também apresentaram os maiores valores. Também, os esquemas EI—EE e CN—EE apresentaram valores de iterações mais altos no início da infiltração, assim como no caso 1, entretanto como o número de pontos aqui é menor, o gradiente de umidade não é tão íngreme quanto no caso anterior. Apesar disso, rapidamente as curvas de iterações destes esquemas decaem e se estabilizam, apresentando, a partir daí, resultados semelhantes aos esquemas implícitos tradicionais EI—P, EI—PM e EI—NR.

Falando de esforço computacional, os resultados da Tabela 11 não são muito discrepantes entre si, já que o nível de saturação aqui é associado à solo mais úmido e o número

(c) Decaimento do erro para o primeiro passo de tempo físico

Figura 25: Simulações para o caso 2

Tabela 11:	Esforco	computational	para o	caso	2.

	Esforço computacional — Caso 2						
	EI—P	EI—PM	EI—NR	EI—EE	EI—RK4	CN—EE	CN—RK4
Total de iterações	7467	7458	4884	7948	23570	6634	23556
Tempo computacional (s)	0,48	$0,\!66$	$0,\!69$	2,84	8,14	2,75	8,21

de pontos na malha não é grande. Diante disto, todos os esquemas numéricos são recomendados para encontrar uma solução para o caso 2, e mais uma vez os esquemas EI—RK4 e CN—RK4 apresentaram resultados melhores no que se refere às melhores taxas de convergência frente ao tradicional esquema EI—P (Figura 25(c)).

4.4.3 Caso 3

Pela Figura 26(a), todos os esquemas foram capazes de gerar soluções. Em relação ao caso 2, aqui o passo de tempo é maior, afetando mais as taxas de convergência presentes na Figura 4.26 inferior, tornando-as piores, de forma mais acentuada nos esquemas EI—EE e CN—EE.

Ainda, apesar do menor número de pontos na malha, o passo de tempo maior engloba mais erros durante o processo iterativo, de forma que os esquemas EI—EE e CN—EE apresentaram maior dificuldade em convergir para o primeiro passo de tempo físico, apresentando altos valores de iterações no início do processo de infiltração. Para o esquema

(c) Decaimento do erro para o primeiro passo de tempo físico

EI—EE, foram necessárias 270 iterações para que o erro estabilizasse à nivel de precisão de máquina. Dentre os esquemas DTS, o esquema CN—RK4 apresentou a melhor taxa de convergência.

Observando o número de iterações em função dos passos de tempo fisicos pela Figura 26(b), o comportamento dos esquemas foi semelhante aos outros casos anteriores. Já quando se considera esforço computacional, a Tabela 12 sugere que todos os esquemas são indicados para gerarem soluções para o caso 3, com destaque para o esquema CN—RK4, que apresentou a solução mais precisa.

Tabela 12: Esforço computacional para o caso 3.

	Esforço computacional — Caso 3						
	EI—P	EI—PM	EI—NR	EI—EE	EI—RK4	CN—EE	CN—RK4
Total de iterações	2696	2666	1461	4483	12107	3691	8463
Tempo computacional (s)	0,17	0,20	0,22	0,94	$3,\!62$	0,87	2,81

4.4.4 Caso 4

Neste caso, tem-se um solo inicialmente mais seco, com nível de saturação intermediário, que é uma condição mais adversa e desafiadora, pois a descontinuidade existente entre as condições inicial de umidade e a de contorno no topo da coluna de solo é maior. Os esquemas tradicionais EI—P e EI—NR não foram capazes de gerar soluções com a configuração de parâmetros do caso 3, devido aos problemas de conservação de massa da equação de Richards na forma h e ao chute no método de Newton-Raphson. Apesar disso, de acordo com a Figura 27(a), todos os esquemas DTS geraram soluções numéricas para o caso em questão.

Devido ao fato dos esquemas EI—EE, EI—RK4, CN—EE e CN—RK4 serem explícitos no pseudotempo, os resultados obtidos são muito discrepantes em relação ao tradicional esquema EI—PM em todos os aspectos. Tal evidência pode ser constatada pelas Figuras 27(a), (b) e (c), e também pela Tabela 13. Sem dúvidas, focando no número de iterações em função dos passos de tempo físicos, os esquemas EI—EE e CN—EE e os esquemas EI—RK4 e CN—RK4, entre si, tiveram comportamentos semelhantes, mas a adoção do método de Runge-Kutta de 4^a ordem no pseudotempo para os esquemas EI—RK4 e CN—RK4 e CN—RK4 e CN—RK4 fez com que o número de iterações por passo de tempo fossem aproximadamente 50% menores. Neste contexto, o esquema CN—RK4 apresentou o melhor resultado, mostrando mais uma vez que o método de Crank-Nicolson no tempo pode proporcionar melhorias nos resultados.

(c) Decaimento do erro para o primeiro passo de tempo físico

Figura 27: Simulações para o caso 4

Pela Figura 27(c), as curvas do erro para o primeiro passo de tempo físico para os esquemas EI—EE, EI—RK4, CN—EE e CN—RK4 apresentaram taxas de convergência todas muito baixas. De fato, o número de iterações para estabilização do erro no primeiro passo de tempo físico para tais esquemas foi, respectivamente, 12418, 8316, 12579 e 8509, e para o segundo passo de tempo, 12738, 8632, 12603 e 8543. Tais resultados podem

ser explicados pelo fato de que além do nível de saturação ser menor, o passo de tempo adotado é maior.

	Esforço computacional — Caso 4						
	EI—P	EI—PM	EI—NR	EI—EE	EI—RK4	CN—EE	CN—RK4
Total de iterações		2803		2248129	1548083	2205867	1519212
Tempo computacional (s)		0,28		$138,\!93$	382,56	136,28	$378,\!13$

Tabela 13: Esforço computacional para o caso 4.

Em termos de esforço computacional, pela Tabela 13 é perceptível que diferenças os entre esquemas começam a se tornar mais pronunciadas. Fazendo comparações entre os esquemas EI—EE e CN—EE e os esquemas EI—RK4 e CN—RK4, eles apresentaram entre si resultados similares, e aqueles com o método de Euler explícito como aproximação no pseudotempo apresentaram os menores tempos de execução, apesar de requererem totais de iterações maiores, o que reforça o fato de que o método de Runge-Kutta de 4^a ordem no pseudotempo tende a elevar os custos computacionais, já que demandam um menor número de iterações às custas de mais tempo de execução, e como este caso envolve uma situação mais desafiadora, a diferença entre os esquemas EI—RK4 e CN—RK4 e os esquemas tradicionais começa a se tornar mais pronunciada.

Para o caso 3, o esquema EI—PM teve indiscutivelmente o melhor desempenho em todos os aspectos, já que é aplicado à equação de Richards na forma mista, que goza da propriedade de conservação de massa.

Em resumo, comparando com os esquemas EI—P e EI—NR, qualquer esquema DTS leva vantagem, pelo simples fato de terem conseguido gerar soluções numéricas. Em geral, os esquemas EI—PM, EI—EE e CN—EE são opcões viáveis para o caso 4, já que as soluções estão muito próximas umas das outras, e o tempo de execução não é demasiadamente longo.

4.4.5 Caso 5

Tem-se agora um problema com passo de tempo menor, com duas vezes mais pontos na malha, e o nível de saturação é associado a um solo duas vezes mais seco em relação ao caso anterior.

Estes dois últimos fatores, juntos, fazem com que o gradiente de umidade se torne bastante íngreme, e, portanto, são esperados resultados associados à uma convergencia lenta, além de um alto número de iterações no processo iterativo. Entretanto, como o passo de tempo é menor, são previstas taxas de convergência ligeiramente melhores que as do caso anterior.

De fato, ao analisar a Tabela 14, com exceção do esquema tradicional EI—PM, que gerou solução em pouco menos de 3 minutos, os esquemas explícitos EI—EE e CN—EE demoraram pouco mais de 5 horas, enquanto que os esquemas EI—RK4 e CN—RK4 demandaram quase 21 horas de simulação. A Tabela 14 também indica que o total de iterações dos esquemas EI—EE, EI—RK4, CN—EE e CN—RK4 são muito semelhantes, entretanto os esquemas EI—RK4 e CN—RK4 tiveram tempos de processamento aproximadamente 4 vezes maiores do que os tempos dos esquemas EI—EE e CN—EE. Isto evidencia que em situações mais adversas, a utilização do método de Runge-Kutta de 4^a ordem no pseudotempo eleva os custos computacionais consideravelmente. Em adição,

(c) Decaimento do erro para o primeiro passo de tempo físico

Figura 28: Simulações para o caso 5

pelos mesmos motivos comentados na subseção anterior, não foi possível gerar soluções usando os esquemas EI—P e EI—NR.

Em termos do número de iterações por tempo físico, a Figura 28(b) deixa claro que todos os quatro esquemas explícitos no pseudotempo tiveram comportamentos muito semelhantes, já que as curvas de iterações estão praticamente umas em cima das outras. Já o esquema EI—PM teve um ótimo desempenho, apresentando uma média de 3 iterações por passo de tempo físico.

	Esforço computacional — Caso 5							
	EI—P	EI—PM	EI—NR	EI—EE	EI—RK4	CN-EE	CN—RK4	
Total de iterações	—	1087135		160890000	162150000	160880000	162140000	
Tempo computacional (s)		170,75		18929,55	76284,07	19494,46	73818,72	

Tabela 14: Esforço computacional para o caso 5.

Falando de decaimento do erro no primeiro passo de tempo físico (Figuras 27(c) e 28(c)), as taxas de convergência para os esquemas EI—EE, EI—RK4, CN—EE e CN— RK4 estão ligeiramente maiores do que aquelas do caso 4, mas ainda estão muito ruins. Entre si, os esquemas EI—EE e CN—EE e os EI—RK4 e CN—RK4 tiveram comportamentos próximos, com maiores taxas para aqueles com o método de Euler explícito no pseudotempo. O número de iterações para que o erro se estabilizasse à nivel de precisão de máquina para os esquemas EI—EE, EI—RK4, CN—EE e CN—RK4 foram, respectivamente, 753, 1291, 1019 e 1289, e para o segundo passo de tempo, 1350, 1364, 1346 e 1360. Por outro lado, o esquema EI—PM apresentou uma taxa de convergência bastante alta, estabilizando a curva do erro com 20 iterações para o primeiro passo de tempo físico.

Considerando solos muito secos e com muitos pontos na malha, os esquemas EI— EE, EI—RK4, CN—EE e CN—RK4 não são recomendados aqui, pois a convergência neste caso é muito lenta. Entretanto, em detrimento dos esquemas EI—P e EI—NR, os esquemas explícitos são mais robustos, pois foram capazes de gerar soluções. Por fim, o esquema EI—PM teve um desempenho excelente para o conjunto de parâmetros do caso 5.

4.4.6 Caso 6

(c) Decaimento do erro para o primeiro passo de tempo físico

Figura 29: Simulações para o caso 6

Somente o tradicional esquema EI—P não foi capaz de gerar soluções, vide Figura 29(a). Em comparação com o caso 5, a única modificação é o número de pontos na malha, que caiu pela metade. Com isto, é esperado que o total de iterações, o tempo computacional e o número de iterações por passo de tempo físico diminuam, principalmente nos esquemas EI—EE, EI—RK4, CN—EE e CN—RK4, aumentando possívelmente as taxas de convergência para o primeiro passo de físico.

De fato, segundo as Figuras 29(b) e (c), em relação ao número de iterações em função dos tempos físicos e decaimento do erro para o primeiro passo de tempo, foi observado que o esquema CN—EE apresentou resultados ligeiramente melhores quando comparados com
os esquemas EI—EE, EI—RK4 e CN—RK4. Entretanto, nenhum dos esquemas DTS foi capaz de estabilizar o erro à nível de precisão de máquina com 200 iterações, requerendo para tal, respectivamente, 294, 271, 240 e 332 iterações, e para o segundo passo de tempo, 367, 334, 319 e 331, valores menores do que aqueles do caso 5.

O esquema CN—EE se destacou no número de iterações por tempo físico, no total de iterações, no menor tempo computacional e na maior taxa de convergência quando se compara com os outros esquemas explícitos, mas apesar disso, os resultados de tempo computacional são altos, sendo necessário aguardar quase 55 minutos para que a solução numérica seja gerada, enquanto que os esquemas EI—PM e EI—NR demandaram tempos computacionais de, respectivamente, 97 e 120,14 segundos (Tabela 15).

		Esforço computacional — Caso 6						
	EI—P	EI—PM	EI—NR	EI—EE	EI—RK4	CN—EE	CN—RK4	
Total de iterações		1083202	1080498	50509000	46079000	44578000	46077000	
Tempo computacional (s)	—	97	120,14	3675,73	11959,22	3293,62	12085,97	

Tabela 15: Esforço computacional para o caso 6.

A Figura 29(c) ilustra o fato de que a solução mais precisa foi gerada pelo esquema EI—NR, além de ter a melhor taxa de convergência, juntamente com o esquema EI—PM, e para os esquemas DTS, eles só são competitivos com o esquema EI—P, que nao foi capaz de gerar solução.

4.4.7 Caso 7

Segundo a Figura 30(a), não foi possível obter soluções numéricas usando os esquemas EI—P, EI—NR e EI—RK4. No caso 7, a diferença significativa em relação ao caso 6 é que agora o passo de tempo é maior. O esquema EI—RK4 não foi capaz de gerar soluções, já que ao considerarmos nível de saturação $h_0 = -400$ cm e 41 pontos na malha, só houve convergência para $\Delta t < 1s$, conforme a segunda tabela do Anexo 5.

Em termos do total de iterações, não houve uma variação significativa em relação ao caso 6 (Tabelas 15 e 16). Porém, isto causou impacto no número de iterações por nível de tempo físico, que ficou acima de 100000 nos esquemas EI—EE, CN—EE e CN— RK4, pois em comparação com o caso 5, agora o passo de tempo é maior. O esquema CN—RK4 apresentou os melhores resultados neste aspecto. Comparando os esquemas EI—EE e CN—EE, o método de Crank-Nicolson como aproximação no tempo novamente proporcionou ligeira melhora no resultado de iterações por tempo físico, fato retratado na Figura 30(b).

No caso 5, as soluções obtidas pelos esquemas EI—EE, CN—EE e CN—RK4 estão ligeiramente distanciadas da solução do esquema EI—PM. Isto pode ser explicado pelo baixo nível de saturação do solo e passo de tempo relativamente alto, o que faz com que as taxas de convergência de tais esquemas sejam extremamente baixas, englobando mais erros durante o processo iterativo (Figuras 30(a) e (c)).

Esforço computacional -- Caso 7 EI—PM CN-RK4 EI—P EI-EI—EE EI-RK4 CN-EE -NRTotal de iterações 2922 45321600 44340000 39871000 Tempo computacional (s) 0,31 2782,50 2722.03 9875,71

Tabela 16: Esforço computacional para o caso 7.

(c) Decaimento do erro para o primeiro passo de tempo físico

Figura 30: Simulações para o caso 7

Para estabilizar o erro no primeiro passo de tempo à nivel de precisão de máquina, foram necessárias 274424, 272497 e 273491 iterações para os esquemas EI—EE, CN—EE e CN—RK4, respectivamente, e para o segundo passo de tempo, 276905, 280485 e 280496.

Em termos de tempo computacional, a Tabela 16 mostra que os esquemas EI—EE e CN—EE demoraram pouco mais de 45 minutos para gerarem uma solução, enquanto que o esquema CN—RK4 levou quase 3 horas para terminar a simulação.

Novamente, os esquemas DTS com o método de Euler explícito no pseudotempo apresentaram os melhores resultados no que se referem à esforço computacional, e, no geral, os esquemas explícitos só são competitivos quando as comparações são feitas com os esquemas EI—P, EI—NR e EI—RK4, que não foram capazes de gerar soluções quando se considera essa combinação de parâmetros.

CAPÍTULO V CONCLUSÕES

Os esquemas tradicionais EI—P, EI—PM e EI—NR encontrados na literatura apresentam, em geral, resultados satisfatórios. Este trabalho trouxe simulações envolvendo tais esquemas, inclusive para diferentes níveis de saturação no solo, e, de fato, os resultados são bastante satisfatórios no que se referem a esforço computacional e decaimento do erro.

Entretanto, quatro outros esquemas explícitos foram apresentados (EI—EE, EI—RK4, CN—EE e CN—RK4), e foi avaliada a viabilidade de se produzir soluções em diferentes níveis de saturação, fazendo uma discussão com o objetivo de saber até que ponto os esquemas DTS podem ser competitivos com as técnicas tradicionais. Como estes esquemas são explícitos no pseudotempo, era esperado que o esforço computacional fosse maior, principalmente em condições mais adversas.

As simulações dos 7 casos proporcionaram um panorama de aplicabilidade de tais esquemas. Para os três primeiros casos, todos os esquemas explícitos se mostraram competitivos com as técnicas implícitas tradicionais.

Entretanto, conforme o nível de saturação do solo aumenta, o esforço computacional tende a aumentar, e, com isto, a competitividade se torna menos acirrada. Para o caso 4, que representa um nível de saturação intermediário com um número não muito grande de pontos na malha, ainda assim os esquemas EI—EE, EI—RK4, CN—EE e CN—RK4 se mostraram competentes frente aos esquemas EI—P, EI—PM e EI—NR.

Já para os casos 5, 6 e 7, os esquemas EI—EE, EI—RK4, CN—EE e CN—RK4 não se mostraram eficientes em produzir soluções, já que os efeitos da diminuição no nível de saturação e do aumento do número de pontos na malha prejudicaram a convergência, aumentando significativamente o esforço computacional. Em adição, as maiores variações nos tempos computacionais são percebidas quando se muda do nível de saturação intermediário para o mais baixo, indicativo de que os esquemas DTS desenvolvidos neste trabalho de dissertação não são recomendados quando o solo está inicialmente muito seco, exceto nos casos em que não houve convergência nos esquemas tradicionais EI—P, EI—PM e EI—NR.

Em geral, o método de Runge Kutta de 4^a ordem como aproximação no pseudotempo eleva os custos computacionais quando comparamos com o método de Euler explícito. Tal efeito é mais pronunciado quando o nível de saturação é muito baixo. Em adição, a adoção do método de Runge-Kutta de 4^a ordem melhorou bastante as taxas de convergência dos casos 1, 2 e 3 em detrimento do método de Euler explícito. Também, o método de Crank-Nicolson como aproximação no tempo físico gera resultados ligeiramente melhores quando compara-se com o método de Euler implícito.

É preciso pontuar que, de acordo com as tabelas dos Anexos 4, 5, 6 e 7, as simulações para as técnicas DTS envolvendo solos mais secos só foram feitas até nível de saturação $h_0 = -400$ cm, já que houve grande demora em gerar os resultados. Portanto, para os esquemas explícitos, técnicas para acelerar a convergência são desejáveis, principalmente quando se trabalha com baixos níveis de saturação no solo, com o objetivo de tornar tais esquemas mais competitivos frente às técnicas implícitas tradicionais. Pode-se citar como possíveis melhorias a utilização de métodos híbridos para melhorar o chute inicial (possivelmente sendo viável também para o esquema EI—NR), ou a reformulação dos esquemas EI—EE, EI—RK4, CN—EE e CN—RK4, fazendo uso da equação de Richards na forma mista, que, de acordo com os resultados do esquema EI—PM e as tabelas do Anexo 2, apresentaram resultados excelentes, não havendo nenhuma situação em que não houvesse convergência. Também, uma outra proposta de melhoria aos esquemas DTS é a adoção de métodos adaptativos no passo de tempo.

CAPÍTULO VI

REFERÊNCIAS BIBLIOGRÁFICAS

- R. HAVERKAMP, M. VAUCLIN, J. TOUMA, P. WIERENGA, and G. VACHAUD, "A comparison of numerical simulation models for one-dimensional infiltration," *Soil Sic. Soc. Am. J.*, vol. 41, 1977.
- [2] F. LIST and F. RADU, "A study on iterative methods for solving richards' equation," *Computational Geosciences*, vol. 20, no. 2, pp. 341–353, 2016.
- [3] J. LIMA, R. FERREIRA, and D. CHRISTOFIDIS, "O uso da irrigação no brasil," 1999.
- [4] L. BRITO, A. SILVA, and E. PORTO, "Disponibilidade de água e a gesão dos recursos hídricos.," Embrapa Semárido-Capítulo em livro científico (ALICE), 2007.
- [5] W. SILVA, M. SILVA, and T. PIRES, "O uso sustentável ea qualidade da água na produção animal," *Nutritime Revista Eletrônica*, vol. 11, pp. 3617–3636, 2014.
- [6] F. PIZARRO, "Riegos localizados de alta frecuencia-goteo-microaspersionexudacion," *Madrid. Mundi-Prensa*, 1996.
- [7] J. F. R. Bezerra, A. J. T. Guerra, and S. C. Rodrigues, "Relações entre potencial matricial no solo e cobertura vegetal em uma estação experimental, uberlândia-mg," *Sociedade & Natureza*, vol. 24, pp. 103–113, 2012.
- [8] J. FERZIGER, M. PERIC, and R. L. STREET, Computational methods for fluid dynamics, vol. 3. Springer, 2002.
- [9] H. VEREECKEN, A. SCHNEPF, J. HOPMANS, M. JAVAUX, D. OR, T. ROOSE, J. VANDERBORGHT, M. YOUNG, W. AMELUNG, M. AITKENHEAD, S. ALLI-SON, S. ASSOULINE, P. BAVEYE, M. BERLI, N. BRÜGGEMANN, P. FINKE, M. FLURY, T. GAISER, G. GOVERS, T. GHEZZEHE, P. HALLETT, H. H. FRANSSEN, J. HEPPELL, R. HORN, J. HUISMAN, D. JACQUES, F. JONARD, S. KOLLET, F. LAFOLIE, K. LAMORSKI, D. LEITNER, A. MCBRATNEY, B. MI-NASNY, C. MONTZKA, W. NOWAK, Y. PACHEPSKY, J. PADARIAN, N. RO-MANO, K. ROTH, Y. ROTHFUSS, E. ROWE, A. SCHWEN, J. ŠIMŮNEK, A. TIK-TAK, J. V. DAM, S. V. D. ZEE, H. VOGEL, J. VRUGT, T. WÖHLING, and I. YOUNG., "Modeling soil processes: Review, key challenges, and new perspectives," Vadose zone journal, vol. 15, no. 5, 2016.
- [10] P. L. LIBARDI, *Dinâmica da Água no Solo*. Edusp, 1 ed., 2005.
- [11] M. FARTHING and F. OGDEN, "Numerical solution of richards' equation: a review of advances and challenges," *Soil Science Society of America Journal*, vol. 81, no. 6, pp. 1257–1269, 2017.

- [12] M. A. CELIA, E. T. BOULOUTAS, and R. L. ZARBA, "A general mass-conservative numerical solution for the unsaturated flow equation," *Water resources research*, vol. 26, no. 7, pp. 1483–1496, 1990.
- [13] S. PANDYA, S. VENKATESWARAN, and T. PULLIAN, "Implementation of preconditioned dual-time procedures in overflow," in 41st Aerospace Sciences Meeting and Exhibit, p. 72, 2003.
- [14] J. NORDSTROM and A. RUGGIU, "Dual time-stepping using second derivatives," *Journal of Scientific Computing*, vol. 81, no. 2, pp. 1050–1071, 2019.
- [15] L. RICHARDS, "Capillary conduction of liquids through porous mediums," *Physics*, vol. 1, no. 5, pp. 318–333, 1931.
- [16] Y. MUALEM, "A new model for predicting the hydraulic conductivity of unsaturated porous media," *Water resources research*, vol. 12, no. 3, pp. 513–522, 1976.
- [17] M. VAN GENUCHTEN, "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils," *Soil science society of America journal*, vol. 44, no. 5, pp. 892–898, 1980.
- [18] P. MILLY, "Advances in modeling of water in the unsaturated zone," Transport in porous media, vol. 3, no. 5, pp. 491–514, 1988.
- [19] D. CAVIEDES-VOULLIÈME, P. GARCI, and J. MURILLO, "Verification, conservation, stability and efficiency of a finite volume method for the 1d richards equation," *Journal of hydrology*, vol. 480, pp. 69–84, 2013.
- [20] F. OGDEN and W. LAI, "A mass-conservative finite volume predictor-corrector solution of the 1d richards' equation," *Journal of Hydrology*, vol. 523, pp. 119–127, 2015.
- [21] C. ZAMBRA, M. DUMBSER, E. TORO, and N. MORAGA, "A novel numerical method of high-order accuracy for flow in unsaturated porous media," *International journal for numerical methods in engineering*, vol. 89, no. 2, pp. 227–240, 2012.
- [22] S. BOUCHEMELLA, A. SERIDI, and I. ALIMI-ICHOLA, "Numerical simulation of water flow in unsaturated soils: comparative study of different forms of richards's equation," *European Journal of Environmental and Civil Engineering*, vol. 19, no. 1, pp. 1–26, 2015.
- [23] M. SHANMUGAM, G. KUMAR, B. NARASIMHAN, and S. SHRESTHA, "Effective saturation-based weighting for interblock hydraulic conductivity in unsaturated zone soil water flow modelling using one-dimensional vertical finite-difference model," *Journal of Hydroinformatics*, pp. 1–19, 2019.
- [24] C. VASCONCELLOS and J. AMORIM, "Effective saturation-based weighting for interblock hydraulic conductivity in unsaturated zone soil water flow modelling using one-dimensional vertical finite-difference model," *Proceedings of COBEM, Fluid Mechanics*, vol. 8, no. 140, 2001.

- [25] M. ALLEN and C. MURPHY, "A finite element collocation method for variably saturated flows in porous media," *Numerical Methods for Partial Differential Equations*, vol. 1, no. 3, pp. 229–239, 1985.
- [26] M. ALLEN and C. MURPHY, "A finite-element collocation method for variably saturated flow in two space dimensions," *Water Resources Research*, vol. 22, no. 11, pp. 1537–1542, 1986.
- [27] C. MERKLE and Y. CHOI, "Computation of low-speed compressible flows with timemarching procedures," *International Journal for Numerical Methods in Engineering*, vol. 25, no. 2, pp. 293–311, 1988.
- [28] R. TEIXEIRA, L. ALVES, A. KARAGOZIAN, and R. KELLY, "On the solution of the compressible flow equations at small mach numbers," in *Proc. 12th Brazilian Congress of Thermal Engineering and Sciences, Belo Horizonte, MG*, pp. 101–110, Citeseer, 2008.
- [29] R. TEIXEIRA, "Esquemas de marcha com ganho mínimo para o desenvolvimento de soluções em regime permanente para problemas instáveis," 2014.
- [30] R. TEIXEIRA and L. ALVES, "Modelling far-field entrainment in compressible flows," *International Journal of Computational Fluid Dynamics*, vol. 26, no. 1, pp. 67–78, 2012.
- [31] R. TEIXEIRA and L. ALVES, "Minimal gain marching schemes for steady-state solution generation," In 14th Brazilian Congress of Thermal Engineering and Sciences, 2012.
- [32] R. TEIXEIRA and L. ALVES, "Minimal gain time marching schemes for the construction of accurate steady-states," in *Instability and Control of Massively Separated Flows*, pp. 217–222, Springer, 2015.
- [33] R. TEIXEIRA and L. ALVES, "Minimal gain marching schemes: searching for unstable steady-states with unsteady solvers," *Theoretical and Computational Fluid Dynamics*, vol. 31, no. 5, pp. 607–621, 2017.
- [34] A. JAMESON, "Application of dual time stepping to fully implicit runge kutta schemes for unsteady flow calculations," in 22nd AIAA Computational Fluid Dynamics Conference, p. 2753, 2015.
- [35] J. CARVALHO, G. JUNIOR, and E. CARVALHO, "Tópicos sobre infiltração: teoria e prática aplicadas a solos tropicais," *Faculdade de Tecnologia, Brasília*, 2012.
- [36] F. M. S. MOREIRA, J. E. CARES, R. ZANETTI, and S. L. STUMER, "O ecossistema solo: componentes, relacões ecoógicas e efeitos na produção vegetal," UFLA, Lavras, 2013.
- [37] B. QUEIROZ, "Estudo de soluções numéricas da equação de richards através do método de elementos finitos e diferenças finitas para simulação de fluxo unidimensional em solo não-saturado," 2017.
- [38] C. ANDRADE, D. DOSSA, and F. DURAES, Uso e Manejo de Irrigação. Embrapa, 1 ed., 2008.

- [39] S. CHAPRA and R. CANALE, Métodos Numéricos para Engenharia. McGraw Hill Brasil, 7 ed., 2016.
- [40] M. MANNICH and A. K. GUETTER, "Erros numéricos da equação de richards utilizando o método dos volumes finitos," Universidade Federal do Paraná, 2011.
- [41] B. GILDING, "Qualitative mathematical analysis of the richards equation," Transport in Porous Media, vol. 6, no. 5, pp. 651–666, 1991.
- [42] U. NOWAK and L. WEIMANN, "A family of newton codes for systems of highly nonlinear equations.," 1992.
- [43] C. MARONGIU, P. VITAGLIANO, P. CATAIANO, V. TARANTINO, and D. DI SE-RAFINO, "An improvement of the dual time stepping technique for unsteady rans computations," in *Proceedings of European Conference for Aerospace Sciences (EU-CASS)*, Moscow, 2005.

CAPÍTULO VII

ANEXOS

		Total de iterações - Picard $(h_0 = -61, 5cm)$									
$\Delta t \text{ (s)} \qquad \Delta z \text{ (cm)}$	0.0625	0.125	0.25	0.5	1	2	4	8			
0.1	36744	31917	24030	16421	15531	14804	13304	11351			
0.25	17115	15791	12851	8811	7467	6697	6075	5145			
0.5	9451	8988	7713	5400	4458	4116	3648	2975			
1	5176	5016	4483	3385	2696	2490	2140	1833			
2	2807	2769	2557	2076	1626	1542	1219	949			
5	1260	1257	1194	1039	910	821	668	474			
10	739	729	711	646	577	506	423	298			
30	383	377	370	336	286	242	208	152			
60	253	253	242	235	195	155	128	102			
90	197	197	192	181	147	115	96	78			
120	162	151	151	135	116	87	80	60			

ANEXO 1: Total de iterações para o esquema EI—P

Parâm	etros	Total de	iterações - Pi	card (solos ma	uis secos)
$\Delta z \ (\mathrm{cm})$	Δt (s)	$h_0 = -200 \text{cm}$	$h_0 = -400 \text{cm}$	$h_0 = -600 \text{cm}$	$h_0 = -800 \text{cm}$
	0.0001	7668117	_	_	-
	0.0005	1750659	_	_	-
0.5	0.001	—	—	—	—
0.5	1	—	—	—	—
	2	—	—	—	—
	10	1082	—	—	—
	0.0001	7288317	—	_	_
	0.0005	1611612	—	—	-
1	0.001	950278	—	—	—
	1	—	—	—	-
	2	—	—	—	—
	10	—	—	—	—
	0.0001	7247616	7281733	_	—
	0.0005	1530408	—	—	—
2	0.001	872250	—	—	—
	1	20486	—	_	—
	2	_	_	_	—
	10	_	_	_	_

	Т	Total de iterações - Picard Modificado $(h_0 = -61, 5 \text{cm})$							
$\Delta t \text{ (s)}$	0.0625	0.125	0.25	0.5	1	2	4	8	
0.1	36733	31911	24002	16363	15429	14589	13376	10800	
0.25	17104	15792	12841	8801	7458	6672	5760	4988	
0.5	9447	8984	7720	5385	4411	4044	3511	2842	
1	5155	5015	4494	3385	2666	2425	2040	1586	
2	2785	2765	2563	2084	1629	1491	1165	823	
5	1241	1241	1198	1050	905	777	605	406	
10	710	707	694	660	595	498	379	229	
30	357	355	348	334	313	258	198	103	
60	233	232	227	222	201	169	125	62	
90	179	178	177	166	152	130	104	52	
120	151	151	150	138	127	105	87	43	

ANEXO 2: Total de iterações para o esquema EI—PM

		Total de ite	erações - Picar	d Mod. (solos	mais secos)
$\Delta z \ (\text{cm})$	Δt (s)	$h_0 = -200 \text{cm}$	$h_0 = -400 \text{cm}$	$h_0 = -600 \text{cm}$	$h_0 = -800 \text{cm}$
	0.0001	7740449	7706090	7817708	7965018
	0.0005	1851220	2150330	2166470	2168394
0.5	0.001	1083504	1087135	1088669	1091206
0.5	1	3484	3537	3580	3618
	2	2173	2231	2264	2287
	10	778	818	839	862
	0.0001	7485365	7497945	7626150	7766703
	0.0005	1749979	2006846	2163194	2160003
1	0.001	1081672	1083202	1084078	1080262
L	1	2803	2922	2967	3025
	2	1738	1799	1855	1913
	10	674	713	732	746
	0.0001	7376629	7400983	7494835	7588341
	0.0005	1623162	1832803	1975239	2149101
9	0.001	1024099	1080269	1081833	1080481
	1	2495	2587	2632	2709
	2	1548	1576	1595	1623
	10	543	563	588	588

	Г	Total de iterações - Newton-Raphson $(h_0 = -61, 5cm)$							
$\Delta t \text{ (s)}$	0.0625	0.125	0.25	0.5	1	2	4	8	
0.1	11409	—	11387	11328	11139	10887	10887	10800	
0.25	5070	—	_	5023	4884	4688	4416	4393	
0.5	2922	2919	_	2903	2886	2817	2516	2260	
1	—	1482	_	—	1461	1448	1445	1176	
2	_	769	764	_	748	733	727	720	
5	_	—	345	344	—	313	295	294	
10	_	—	_	187	—	184	166	151	
30	_	—	_	—	69	—	64	62	
60	_	—	_	—	41	—	—	31	
90	_	-	_	—	29	27	_	24	
120	—	_	_	—	-	22	—	—	

ANEXO 3: Total de iterações para o esquema EI—NR

		Total de iterações - Newton-Raphson (solos mais secos)					
$\Delta z \ (\text{cm})$	Δt (s)	$h_0 = -200 \text{cm}$	$h_0 = -400 \text{cm}$	$h_0 = -600 \text{cm}$	$h_0 = -800 \text{cm}$		
	0.0001	8281174	8285668	8285946	—		
	0.0005	2141950	2160678	_	—		
0.5	0.001	1080432	_	_	_		
0.5	1	—	—	—	—		
	2	—	—	—	—		
	10	—	—	—	—		
	0.0001	7982209	7983568	7983937	8001705		
	0.0005	2025179	2160503	2160535	_		
1	0.001	1080200	1080498	—	_		
	1	—	—	—	—		
	2	—	—	—	—		
	10	_	_	—	—		
	0.0001	7621567	7622117	7622160	7697640		
	0.0005	1818359	2068168	2160553	2160596		
2	0.001	1080208	1080447	1080557	—		
	1	_	—	_	_		
	2	_	—	_	_		
	10	_	-		_		

		Total de	e iterações	- Euler Imp. –	– Euler	Exp. $(h_0 = -61)$,5cm $)$	
				Δz (c)	m)			
	0	.0625	0.125		0.25			0.5
Δt (s)	$\Delta \tau$	n ⁰ iterações						
0.1		1203684		315434		71160	0.099	19065
0.25		1210613		326326 329034		86743	0.2	16382
0.5		1209601				90861	0.2	23307
1	1	1203795		328913	0.055	92398		24545
2		1191891		326413		92358		25492
5	0.00351	1162228	0.0143	318845		90702		25468
10		1125737		309270		88428	0.91	25058
30		1046052		288756		83011	0.21	23766
60		990877		274897		79379		22834
90		959269		267034	1	77328		22307
120		937384		261612		75914		21941

ANEXO 4: Total de iterações para o esquema EI—EE

		Total de iterações - Euler Imp. — Euler Exp. $(h_0 = -61, 5 \text{cm})$											
				Δz	(cm)								
	1			2		4		8					
Δt (s)	$\Delta \tau$	n ^o iterações	$\Delta \tau$	n ^o iterações	$\Delta \tau$	n ^o iterações	$\Delta \tau$	n ^o iterações					
0.1	0.099	18273	0.099	18048	0.099	17962	0.099	16407					
0.25	0.247	7948	0.247	7320	0.247	7227	0.247	7137					
0.5	0.48	5469	0.492	4008	0.492	3645	0.492	3612					
1	0.79	4483	0.99	2743	0.99	2085	0.99	1832					
2		5723	1.8	1725	1.9	1293	1.99	991					
5	0.85	6426		1364	4.6	656	4.9	491					
10		6451		1622	8	480	9.5	305					
30		6118	30	1659	10.5	483	24	178					
60	0.84	5892	0.2	1579		509	27	176					
90		6011		1535	10	526	40	115					
120		5946		1605		542	29	167					

		Euler 1	Imp. — Euler I	Exp. (Solos	mais secos)
		h_0 =	= -200cm	$h_0 =$	= -400cm
$\Delta z \ (\text{cm})$	Δt (s)	$\Delta \tau$	n ^o iterações	$\Delta \tau$	n ⁰ iterações
	0.0001	0.0001	7354307	0.00001	289180000
	0.0005	0.0004	6048642	0.00002	159780000
0.5	0.001		4082087	0.00002	160890000
0.0	1	0.0007	5965505		_
	2	0.0007	5877448		
	10		5416949		_
	0.0001	0.0001	7301393	0.00007	35382000
	0.0005	0.0005	1630210	0.00008	43206000
1	0.001	0.0007	4048885	0.00007	50509000
1	1		2248129		45321600
	2	0.002	2223950	0.00008	44810997
	10		2066169		41466474
	0.0001	0.0001	7244432	0.00008	27272000
	0.0005	0.0005	1566163	0.00009	37603000
9	0.001	0.0007	3922756	0.0003	11888000
4	1		495190		36160562
	2	0.01	490656	0.0001	35818056
	10		463399		33540717

		Total	de iterae	ções - Euler Im	p. — Rŀ	K4 $(h_0 = -61, 5c)$	m)	
				Δz (c	m)			
	0	.0625	0.125		0.25		0.5	
Δt (s)	$\Delta \tau$	n ⁰ iterações	$\Delta \tau$	n ⁰ iterações	$\Delta \tau$	n ⁰ iterações	dtau	n ⁰ iterações
0.1		1221880	0.015	322052	0.048	110385	0.1	55993
0.25		1217859	0.015	320220	0.056	94682	0.16	35821
0.5		1213229		283935	0.06	88185	0.10	35434
1		1205626		282051	0.066	80069	-	24982
2		1192826		279037	0.068	76995		24674
5	0.00351	1162617		272075		73071		24036
10		1125954	0.017	263771		70898	0.23	23328
30]	1046811]	246298	0.07	66472	0.25	21938
60		990945		234587	0.01	63578		21044
90		959328		227957		61952		20550
120		937439	1	223386		60839		20209

ANEXO 5: Total de iterações para o esquema EI—RK4

		Total de iterações - Euler Imp. — RK4 $(h_0 = -61, 5cm)$										
				Δz	(cm)							
		1	2		4		8					
Δt (s)	$\Delta \tau$	n ⁰ iterações	$\Delta \tau$	n ⁰ iterações	$\Delta \tau$	n ⁰ iterações	$\Delta \tau$	n ⁰ iterações				
0.1	0.1	55632	0.1	55098	0.1	53596	0.1	51314				
0.25	0.25	23570	0.25	23295	0.25	22542	0.25	21913				
0.5	0.5	12329	0.5	12115	0.5	11849	0.5	11598				
1	0.5	12107	1	6266	1	6172	1	6026				
2	0.8	7674	2	3234	2	3189	2	3060				
5	0.92	6538	2.7	2368	5	1315	5	1284				
10		5870		2071	9	730	10	671				
30		5530		1964		519	25	265				
60	1	5322	3	1891	12	508	38	169				
90		5205		1850	12	497	40	150				
120		5125		1822		489	45	127				

			Euler Imp. — RK4. (Solos mais secos)						
			h_0 =	= -200cm	$h_0 =$	= -400cm			
	$\Delta z \ (\mathrm{cm})$	Δt (s)	$\Delta \tau$	n ⁰ iterações	$\Delta \tau$	n ⁰ iterações			
		0.0001	0.0001	36506000	0.00001	300780000			
		0.0005	0.0004	10471000	0.00002	162320000			
	0.5	0.001	0.0005	8409090	0.00002	162150000			
	0.0	1	0.0007	5977531					
		2	0.0007	5898030					
		10	0.0007	5426566					
		0.0001	0.0001	35680000	0.00006	61011000			
		0.0005	0.0005	8307197	0.00008	46240000			
	1	0.001	0.001	4448958	0.00008	46079000			
	1	1	0.003	1548083					
		2	0.003	1530809					
		10	0.003	1422413					
		0.0001	0.0001	34445000	0.0001	37693000			
		0.0005	0.0005	8171137	0.0002	19833000			
	0	0.001	0.0001	4318036	0.0002	19692000			
	2	1	0.01	498146	0.0003	13359000			
		2	0.01	493399	0.0003	13231000			
		10	0.01	464228	0.0003	12399000			

ANEXO 6: Total de iterações para o esquema CN—EE

	Total de iterações - CN — Euler Exp. $(h_0 = -61, 5 \text{cm})$										
		Δz (cm)									
	0.0625 0.125 0.25 0.5							0.5			
Δt (s)	$\Delta \tau$	n ⁰ iterações	$\Delta \tau$	$\Delta \tau$ n ⁰ iterações		n ^o iterações	$\Delta \tau$	n ⁰ iterações			
0.1					0.05	80947	0.1	15561			
0.25					0.04	119797	0.21	14628			
0.5	—				—		0.2	23205			
1					_		0.16	32292			
2					—		—				
5					_		—				
10											
30					—						
60					_		—				
90					_		_				
120							_				

	Total de iterações - CN — Euler Exp. $(h_0 = -61, 5 \text{cm})$									
	Δz (cm)									
		1		2	4		8			
Δt (s)	$\Delta \tau$ n ^o iterações		$\Delta \tau$	n ^o iterações	$\Delta \tau$	n ^o iterações	$\Delta \tau$	n ^o iterações		
0.1	0.1	15020	0.1	14085	0.1	12608	0.1	11485		
0.25	0.249	6634	0.249	6006	0.249	5849	0.25	5507		
0.5	0.498	4296	0.498	3649	0.498	3089	0.498	2933		
1	0.85	3691	0.99	2168	0.99	1857	1	1644		
2	0.74	6728	1.7	1835	1.98	1106	1.98	940		
5			2.7	1702	4.2	797	4.98	466		
10			3	1752	7.49	517	9.98	314		
30					11	489	22	191		
60					—		29	184		
90							29	243		
120							29	329		

		CN — Euler Exp. (Solos mais secos)					
		h_0 :	= -200cm	$h_0 = -400 \text{cm}$			
$\Delta z \ (cm)$	Δt (s)	$\Delta \tau$ n ⁰ iterações		$\Delta \tau$	n ⁰ iterações		
	0.0001	0.0001	7263400	0.00002	150560000		
	0.0005	0.0004	6048117	0.00002	159770000		
0.5	0.001	0.0007	4081885	0.00002	160880000		
0.5	1	—		—			
	2						
	10	—	_				
	0.0001	0.0001	7323482	0.00007	35382000		
	0.0005	0.0005	1512802	0.00009	38538000		
1	0.001	0.001	819169	0.00008	44578000		
1	1	0.002	2205867	0.00008	44340000		
	2	0.002	2160645	0.00008	43312000		
	10	—					
	0.0001	0.0001	7206097	0.0001	7218340		
	0.0005	0.0005	1474340	0.0003	9886360		
2	0.001	0.001	780684	0.0003	11888000		
2	1	0.009	538890	0.0003	13122000		
	2	0.009	530186	0.0003	12855000		
	10	0.009	497329	0.0003	11882000		

ANEXO 7: Total de iterações para o esquema CN—RK4

		Total de iterações - CN — RK4 ($h_0 = -61,5$ cm)									
		$\Delta z \ (cm)$									
	0.0625 0.125 0.25 0.5										
Δt (s)	s) $\Delta \tau$ n ⁰ iterações Δ		$\Delta \tau$	n ⁰ iterações	$\Delta \tau$	n ⁰ iterações	$\Delta \tau$	n ^o iterações			
0.1					0.048	110260	0.1	55891			
0.25					0.056	94536	0.17	33944			
0.5							0.16	35314			
1				_		—	0.23	24910			
2											
5	—	_		—		—					
10				_		—					
30											
60											
90							—				
120				—		—					

	Total de iterações - CN — RK4 ($h_0 = -61,5$ cm)									
	$\Delta z (m cm)$									
	1 2					4	8			
Δt (s)	$\Delta \tau$	n ⁰ iterações	$\Delta \tau$	$\Delta \tau$ n ^Q iterações		n ⁰ iterações	$\Delta \tau$	n ⁰ iterações		
0.1	0.1	55634	0.1	55063	0.1	53578	0.1	51320		
0.25	0.25	23556	0.25	23321	0.25	22563	0.25	21920		
0.5	0.5	12310	0.5	12036	0.5	11844	0.5	11603		
1	0.73	8463	1	6232	1	6188	1	6029		
2	0.74	8217	1.7	3779	2	3156	2	3079		
5			2.7	2357	5	1308	5	1288		
10		—	3	2099	9	750	10	663		
30			—		12	545	25	274		
60					_		38	185		
90			_		_		40	211		
120		_				_	45	230		

			CN - RK4 (Solos mais secos)				
		h_0 =	= -200cm	$h_0 = -400 \text{cm}$			
$\Delta z \ (\text{cm})$	Δt (s)	$\Delta \tau$	n ^o iterações	$\Delta \tau$	n ⁰ iterações		
	0.0001	0.0001	36506000	0.00002	163830000		
	0.0005	0.0004	10471000	0.00002	162320000		
0.5	0.001	0.0004	10282000	0.00002	162140000		
0.0	1	—		—			
	2	—					
	10	—					
	0.0001	0.0001	35679000	0.00006	61011000		
	0.0005	0.0005	8307090	0.00008	46240000		
1	0.001	0.001	4448897	0.00008	46077000		
1	1	0.003	1519212	0.00009	39871000		
	2	0.003	1487600	0.00009	38949000		
	10	—					
	0.0001	0.0001	34445000	0.0001	37693000		
	0.0005	0.0005	8171103	0.0002	19833000		
9	0.001	0.001	4317896	0.0002	19691000		
	1	0.01	490736	0.0003	13124000		
	2	0.01	481857	0.0003	12856000		
	10	0.01	451419	0.0003	11882000		